=RogueWave

Accelerating Great Code

IMSL® FORTRAN MATH LIBRARY
Version 7.1.0

ROGUE WAVE SOFTWARE / 5500 FLATIRON PARKWAY, SUITE 200 / BOULDER, CO 80301, USA / WWW.ROGUEWAVE.COM

F T W A R E

= RogueWav

rating Great Code

© 1970-2014 Rogue Wave Software, Visual Numerics, IMSL and PV-WAVE are registered trademarks of Rogue
Wave Software, Inc. in the U.S. and other countries. JMSL, JWAVE, TS-WAVE, PyIMSL are trademarks of Rogue
Wave Software, Inc. or its subsidiaries. All other company, product or brand names are the property of their
respective owners.

IMPORTANT NOTICE: Information contained in this documentation is subject to change without notice. Use
of this document is subject to the terms and conditions of a Rogue Wave Software License Agreement,
including, without limitation, the Limited Warranty and Limitation of Liability. If you do not accept the terms
of the license agreement, you may not use this documentation and should promptly return the product for a
full refund. This documentation may not be copied or distributed in any form without the express written
consent of Rogue Wave.

ACKNOWLEDGMENTS

This documentation, and the information contained herein (the "Documentation"), contains proprietary information of Rogue Wave Software,
Inc. Any reproduction, disclosure, modification, creation of derivative works from, license, sale, or other transfer of the Documentation with-
out the express written consent of Rogue Wave Software, Inc., is strictly prohibited. The Documentation may contain technical inaccuracies or
typographical errors. Use of the Documentation and implementation of any of its processes or techniques are the sole responsibility of the
client, and Rogue Wave Software, Inc., assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might
result from any use or misuse of the Documentation

ROGUE WAVE SOFTWARE, INC., MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THE DOCUMENTA-
TION. THE DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ROGUE WAVE
SOFTWARE, INC., HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS WITH REGARD TO THE DOCUMEN-
TATION, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGE-
MENT. IN NO EVENT SHALL ROGUE WAVE SOFTWARE, INC., BE LIABLE, WHETHER IN CONTRACT, TORT, OR
OTHERWISE, FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES IN CON-
NECTION WITH THE USE OF THE DOCUMENTATION.

The Documentation is subject to change at any time without notice.

Rogue Wave Software, Inc.

Address: 5500 Flatiron Parkway, Boulder, CO 80301 USA

Product Information: (303)473-9118 (800) 487-3217
Fax: (303) 473-9137
Web: http://www.roguewave.com

= RogueWuve ROGUEWAVE.COM

—
—=— Contents
—

Introduction 1
The IMSL Fortran Numerical LiDrary ... e 1
(S =t [o P 2
LT (] 1o [= T (=" RS 3
Finding the RIGNt ROULINE.cc.ooiiiieiei et 3
Organization of the DOCUMENLALION........cceiiueieereeeeseesie et eree et seesre e ere s 4
NNz T Lo [0] 1= 011 o g LSS 5
UsiNg Library SUDPrOQraIMS.......c.c.oieeiirieiiesieeie ettt st s eas 6
Programming CONVENLIONSccueiueiieieeeesieeeeseesteeeesseestesseesseessesseesseessesseessessesseessesnees 6
MOAUIE USAQE ... e ceeeceeeie ettt ettt ettt e e s ae et e s e s ae e seeneeereentesneesneennesneenneennas 7
USING MPL ROULINES........coiiiiiiiieeieeiesiee ettt st beesbe st e s e nae e e e sneeneas 7
ProgramiMing TIPS ...ecuueeeeieeeeseeieeeesteeteseesseesesseesseesesseesseassesseesseessesseessesssesseessessessennses 9
Optional SUbProgram ATQUMENES.c.eieeiieeeeceeiie e steeieesee e eeesreessesseesseesesseesseeneesneenns 9
(@01 olgT= I D - = SRR 10
Overloaded =, /=, €tC., TOr DErVEd TYPES.....oiieiieiecece et ee e 11
[T o gl =T o o S 12
PHNTING RESUITS. ... ettt na e b e s 13
FOrtran 90 CONSITUCES..........cooieerrieiee et sne e s e ne e s e ereennneens 13
Shared-Memory Multiprocessors and Thread Safetyccoceveeveccececve e, 13
Using Operators and Generic FUNCHIONS..........ooiiiiiiiieee e e 14
Using ScaLAPACK, LAPACK, LINPACK, and EISPACKccccocririirireeesesieine 16
Using ScalL APACK ENhanced ROULINES.........c.ccoiiieiieie et 20

Chapter 1: Linear Systems 23
01U (] 1= PR 23
USBOE NOLES ...ttt n e ne e sn e e n e e s n e e ne e nnreeneeaas 28
LIN_SOL_GENeitiiiiitiiieiieeee ettt sttt b bbbt et et et e nbenaesbenre s 33
IS IS = I =N 42
LIN_ SOL_ LSQ.oeieieeeeeeeeeeeeeeeeeeee e seees s seess s s seeseeseeseesee s ees s s ses e ees s ssesseesessenneenes 52
LIN_SOL_SVD ittt sttt sttt ettt et b nbenne s 61
TNV G 1 NN 70
IS,V 0 T OO 83

EEROQUEWFIVE ROGUEWAVE.COM Contents i

Parallel Constrained Least-SQuares SOIVESS........ociiirirerereeseeee e 92

PARALLEL_NONNEGATIVE_LSQ.....oooiiiiiiiiiii s 93
PARALLEL_BOUNDED_LSQ.....oiiiiiiiiiiiiiineese s 101
LSARG ..t E R n e nh e r e ne s 109
LSLRG .. 114
LFCRG ... 120
LETRG .ttt r e e n e nne e 126
LSRG .. 131
LFIRG e e 136
LEDRG ...ttt e bt nne e n e e ne s 141
LINRG . 143
LSACG .. e 147
S T TP TSRS PSPPSRI 152
LECCG. .. e 157
LT Gt 163
LESC G e R e r e ne e 168
LFICG e 173
LEDCG .. e 178
LINGCG .ttt r e e h e r e ne e 180
L L R e 185
L R e 189
0 T TP TR SR PSPPSRI 193
L IN R e 195
S TP TSP UT PSPPSR 197
0 O TSP U R UP PSPPSRI 201
LD CT e 205
LI T e et 207
LS A DD S . e R e E e R n e R e nneeanen 209
LOL DS e 214
LGS e 219
0 I TSP R PR PRURTRORN 224
LFESDS e 229
LFIDS e 234
LEDDS ... ettt E e R e ne e ne e 239
LINDS . e 241
L S A S e r e 245
S S TSP U R UR PSPPSRI 248
L S 251
L T S e 254
S TP URURPR RPN 257
L LS e 260
L D S e 263
LSADH . 265
L SL D H e 270
LFCDH ..o e e 275

E:'ROQUEWPVE ROGUEWAVE.COM Contents iv

=1) OO 286
LEIDH oo e e e e s s e s e s e e e s e e e ees e eeene 201
LEDDH oo eeeeee e e e e e s s e s ees e e s eeee e eeeeees 297
TN =30 299
L SLHE <o eeee e e e e s s s e e s e ees e e e ees e eeene 302
LECHF <o e e s s s e s s e s ees e eeeene 305
= 1 | =SSOSO 308
L ESHE <o eeeee e eee e s st e s e e e s e e s ees e eeene 311
LETHE oo e e e s e s e e s e s e e ees e eeene 314
=) | =3O 317
LSLTR oo eeeeeeeeeeeeeeeeeeeeeeeeeees e eesese e s e seee e e e s eeees e e s e eees e ees e e ees e eeeee 319
LSLCR oo eeeee e s e s e e s e s s ees e s ees e eeeees 321
LSARB oo eeeeee e eeeeeeeeeeeee e e e e et e e e e s e et e e ee s eee e 324
LSLRB oo eeeeeeeeeeeeee e e ee e e e e s e s ee e e e ese e eeeeees 327
LIECRB oo eeeeeeeeeee oo e e e s e s e s e e s e ees e s e ees e e e 332
LETRB - eeveeoeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeees e s e eeeeeees s sees e e s ees e eesseeeeees e eeeseeeseeeees 336
LESRB. oo eeeeeeeeeeeeeeeeeeeeseeeeeeeee e e s ese e s e s e e e s e e e eee e eee e 339
LEIRB. ooeeeeeee e eeeee e eeeee e eeeee e e s sese e s e e s e e s e e e s e ees e ees e eeene 342
=) =)= OO 345
LSADS oo eeeeee e e e e e e e e e s e s ee e e e es e eeeeees 347
LSLOS oo eeeeee e ee e e e e e s e s ee e e e eee e eeeeees 350
R = = SO OSSO 353
LIECQS eeveeoeeeeeeeeeeeeeeeeeeeeeee e e e e e e s e e e s ee s e s e eee e es e eeeeees 356
LETOS oo eeeeee e eee e e e e e e e s e es e e s es s eee e ese e eeeeees 359
LESDS eeveeeeeeeeeeeeseeeeseseeseeseeeeeseeeeeeeseeseeeseeeeeeee s e es e e e s es e e s e eee e eeeene 362
LELQS oo eeeeeeeeeeeeeeeeeeeeeeeeeeee e s e e s e e e s e ee s e s ees e eeene 365
LEDIQS oo eeeeee e eee e e e e e s s e s ee e eee e eeeeees 368
LSLTQ e eeeeeeeeeeeeeseeeeeeeeeeeeeeee e eses e e e e e e e s ee s e ese e s e ese e eeeene 370
LSLCQ e eeeeeeeeeeee e ee s es s s e s et s e s ee s ees e eeenes 372
LSACB oo eeeeee e e e e e s e s e s s e s ees e 375
LSLCB eveeoeeeeeeeeeeeeeeeeseeeeeeeeeee e ees e e s e e e e e s e s e s e e e es e eeeene 378
LECCB e eeee e eeeeeeeee e e s e s e s s e s ees e e e eee e eeeees 381
LETCB oo eeeeee e eee e e e e e s e e s e s ees s eee e eeseeeeeeeees 384
LIESCB oo eeeeeeeeeeeeeseeeeeeeeeee s e esese e oo e e e e s ee s e e s ee s eeene 387
=Tt OSSOSO 390
LEDCB oo eeee e e e s s e s e s s s e s ees e eeene 304
LSAQH oo eeeeeeseeeeee e e e ees e e e e e s e s et ee e e e ees e eeeeee 396
L SL QH oo eeeee e e e e e s e s ee e s e ees e ee s eeseeeeeene 399
LSLOB oo eeeeee e eeee e e e e e e e e s e ee s ee e e e s e eeeeees 402
=010) [T 405
LT QH oo eeee e e e ee s e esese e s e e s ee e s e e ees e ee s ees e eeeees 408
=10 OO 411
=T TR OSSO 414
LEDIQH oo eeeeeeeeeeeee e e e e e e e e s ee s eee e eee e eee e eeeeee 417

E:'ROQUEWPVE ROGUEWAVE.COM Contents v

[15 C TSRS 424
LESX Gttt bbb et a et et e e te et e e e neebe e e e nenreneas 429
LSLZG . ettt b e a e h e a et a et et e e re et e e eaeebenae e enenrennas 432
[17 C SRS 437
LIESZG .ottt et b ettt e et e te s a e e nesaeneneas 442
S I I S 446
[0S0, I SRS 450
I 1) LU PRPOPPRR 454
N Y 15 S 459
[0S 74 5 SRS 463
I 14 5 PRSP 467
N Y I 471
00 1 SO 475
S I SR 477
LS CC ettt b et a e a et ae b et et ae et et eaeeaenaennenenrennas 479
PCGRC ..ottt ettt b et e e se b s e e e R e R et Re b et et Re et et eneerennan 482
JCGRC ...ttt sttt R e b et Re Rt e e Re et et e neere b e e Reebe e ens 488
GIMIRES. ...t e e et e e et e e st e e e se e e e ae e e esreeenneeesaneeesneeeenneeennnes 491
ARPACK _SVD ..ttt sttt sttt et b e st et sente e nennens 502
LSQRR. ... teeeeeeeeeeeeeeeeeee et eee e eeesee s e s e seeeeesees et et et ee e s s s e e e e eseeneeeeeneeeeenen e ee e ee e 503
LORRVY ..o e e se e s s s se s e s ee s s sseee s eeesesneen s ensennen 509
02 o SO 516
LCLSQ ettt eee ettt e e ee et ee e ee e s e et e e en e en e eren e e e e e 519
LORRR ...t es e seeeeess s e e s se s e sseeseee s ssese s e s sneen s essesnenn 523
LQERR ..ottt sttt ettt sttt et e et et et ne st e e enennennas 530
LOQRSL ettt e s ee et e et ee e e e e et ee e en et en et en e ee e en e 535
I =0 = OO 542
[| SRS 546
O 1 o R 549
I3 L1 552
LSV RR ...ttt sttt b e b et R et et et Rt e e ne et e e nenreneas 556
83V 1 = SOOI 563
S S 567
Chapter 2: Eigensystem Analysis 573
ROULINES ...ttt bbbt b e bt bttt e e et et bbb nas 573
USAJE NOLES ...ttt st e et e bt e e e be e e s bee e sabe e s nnne e e nsaeeenaee s 575
Generalized Eigenvalue Probl@mMS...........c.ooiiiiiieneseeeeee e 579
Using ARPACK for Ordinary and Generalized Eigenvalue Problems............cccccceenee. 580
I S LTS = T =TS 581
LIN_EIG _GEN ...t s s ees s s s sse e s s sne s e snes 588
LIN_GEIG_GENeiiiiiiieiesiesieese ettt st te e besaeneenensenens 597
Y I SR 605
EV CRG ...ttt sttt a e b e eae b st e e ae et et e ae et et e e nesaeneneane e 608

E:'ROQUEWPVE ROGUEWAVE.COM Contents Vi

EVLCG ..ottt sttt sttt stk ettt ne e e e nenne e 613
Y X TS 616
S 619
Y S USSR 621
BV GO ettt R R Rt aente et e ne e 623
Y S 626
BV S ..t R ettt ne b na e enenreneas 628
Y SRR 631
Y S 634
B P S ettt et et et e e nenae e enenaeneas 637
Y I SR 639
N S 641
EVASB .ttt ettt Re et b bt nenae et nenaennas 644
EVESB ... e eaa e eae e nnnes 647
N S 650
BV FSB .ttt et b ettt E et e e neebenre e nenreneas 653
IS SRR 656
e I o | PSRN 658
Y O o S STT SRS 661
BV A e e ara e e an 664
e el o | RS 667
Y 2] o SRS 670
e o | PPN 673
e I o PSR 676
EVLRH ettt et sttt e et st e et st e e ne s te e nenne e 678
Y 1 ST 680
Y I O o 683
Y O SRS 685
(I (USSR 688
(O SRS 691
(€1 SRS 695
(€ USRS 697
(€ SRS 700
(€1 = SRS 703
LY SRR 705
L s USSP 708
L o S SRS 711
Eigenvalues and Eigenvectors Computed with ARPACK ..o, 713
The Base CIass ARPACKBASE ...ttt st 715
ARPACK_SYMMETRIC ..ottt sttt snesneneas 716
F N N O G SV 5 SR 731
ARPACK_NONSYMMETRIC......ccoiiiieieisieieese et ssene s 739
ARPACK _COMPLEX ...ttt ettt e st e s ssensene s 747

E:'ROQUEWPVE ROGUEWAVE.COM Contents vii

Chapter 3: Interpolation and Approximation 755

ROULINES ...ttt ettt e e e s re et e s s e e sbe e sar e e beesaseeteesaeeenseesseesabeesseeenseenseesnrenns 755
USAJE NOLES ...ttt st e st e bt e e bt e e s be e e sabe e e sane e e nsaeeenaee s 758
SPLINE_CONSTRAINTS ...ttt re e s e reeenes 765
SPLINE VALUESttt ettt e st s e et e e e e s et e s ean e e enneeennes 766
SPLINE_FITTING ..ottt sttt e b e e ne e enteenneeennas 768
SURFACE _CONSTRAINTSttt et st s re e s e 778
SURFACE VALUES........o oottt ettt et e sttt e e s ree e s e s e aa e e s enn e e e nneeennes 779
SURFACE _FITTING ...ttt sttt sttt ettt snae b e eeteenneeennes 781
(O | 7SRO 792
LS N R 795
(O = SRS 798
CSHER.......ee ettt e e et e e et e e e eab e e e ebaeeebeeeanbeeeaabeeeaaseesasseessreesnbeeesnnes 803
[T AN Q1Y 806
(ORS O(|N RR 809
CSPERottt ettt e et e e st e e et e e aab e e e ba e e e ba e e e be e e e beeeaabeeeaareeebreeebeeennres 813
[0V IS 816
(ORI]l SRR 817
(GRS] 5 O 820
[N XS 823
S I SRS 826
S\ O SPR 830
A N S 834
T | OSSR 837
24 | OO 840
0 I S 845
B OV AL e e e e e aae e e be e e e be e e abe e e aaaeeeeareeennres 851
S D] = OO RP 853
S 1] 5 R 856
= 1 OSSR 859
YA Y OO 862
24 1D 864
24 €] 5 SR 868
24 [C O PR 872
G Y R 876
G D OSSR 878
S] D PP 882
S0 887
BSC PP ... e e e be e e e re e e abe e e eareeeaareeeanaeeereeeereens 891
o Y O STR 893
o 1D 1 896
PPLGD ...ttt ettt et e e e e ar e e be e e e be e e e be e e eabeeeeareeebreeebeeeaareeeeareeas 899
o I I C TP 902
(115 A 905
QDDER. ... oottt e et e et e e e e b e e e e be e e e re e e aare e e baeeabeeeebeeeeareeeaareeeanes 907

E:'ROQUEWPVE ROGUEWAVE.COM Contents viii

QD2DRoovmieeeessmeeeesssseesess e ss s 913
QDBVL w.coooreieeesieesssss s ssss st 917
QDBDR ...ooomevvteares s sssss s 920
SURF ...ttt esss et 925
SURFND. ...ooovvvvmmmesissssssssssssesssssssssssss s sssss s ssss st 929
RLINE ..o vvvotomesvesssessssss s sss s ssss s 933
RCURV ...ttt sesssses sttt 936
FNLSQ v vvvvsmesssssessssssssesssss s sssss sttt 940
BSLSQ eorvvvvusmessssssesssssssssssss s 945
BSVLS i eeottaeecessssesssssses ettt 949
CONFT <ottt sssss s sss st 954
BSLS2..oumivvvvesmeesisssessssss s 964
BSLS3.oumiveuttameeeessse st 969
CSSEDvvvvumevesssesssssesesssss s sss s 975
CSSMH ...oooomievvtoese s 979
CSSCV ..voottmieeisssesessssss s 982
RATCH ..ottt sttt 985

Chapter 4: Integration and Differentiation 989
01U 1] 1= S 989
USAOE NOLES ...ttt st s b e e s b e e e san e e e nan e e s nnneennnes 991
QDAGS.ooorvetsieesisse s ssss s 995
QDAGoooooeveeeeee s 998
QDAGP.....o.oeeeetreeeets st ess s 1002
QDAGID ..ooooivetraeeesseesssss sttt 1006
QDAGL...ooooeeveoesesisssss st 1012
QDAWO ...ooroeeetiaeeessse st ess st st 1015
QDAWF ..ot eettseeeesse st et 1019
QDAWS....ooooevveerssssssessssssse st 1023
QDAWC ..cooroeeetiaeeeessse st ess st 1026
QDNG oo eessesesss st 1029
TWODQ....oooevevttiresissssesssssssssssssssssss s sss s sss s 1032
QDAG2D .ooooeetreeeesse st ess s 1037
QDAGSD .ooooieevtaeeesse sttt 1043
QAND ..ot 1049
QMIC oottt 1052
GQRUL w.cooovvreeessmeeessseessssss st ssss st 1055
GQRCFooomievvvttses s st 1059
RECCF ... oot et eessseesess st 1062
RECQRvvovvomevvsssaeesssssssesssssssssssss s ssss s ssss st 1065
FQRUL ...voooooesvvoossessssssessssss s sss s 1068
DERIV ..o eettieeesseesesssseesessss stk 1072

E:'ROQUEWPVE ROGUEWAVE.COM Contents ix

Chapter 5: Differential Equations 1077

ROULINES ...ttt bbbt bbbt bt e et et e b e benbenbenre s 1077
USAJE NOLES ...ttt et ba e s b e st e e e nab e e e bae e sbe e e naree e nnneas 1079
IV RPN 1083
IVIMIRK ettt b et s et e st et be st e ne et et e nenreneens 1091
LV = SRS 1101
Y I3 USSR 1117
BV PIM S ettt et bRttt n ettt ne b e 1129
DA s SRS 1136
D AN 1151
LY SRS 1152
Introduction to Subroutine PDE_1D MGccocoieiiiieiiece et 1159
=) =T D Y [T 1161
YY1 SRS 1192
1Y@ SRS 1205
FEYNMAN KAC . ettt s et e s e e et e e s e e s e e e snaeeenaeeennaeennneas 1206
HQSV AL ettt ettt b et b e e st et et nenne s 1263
Sy SRS 1267
G o 1273
SLEIG ettt ettt R bt r et et e b e e e nenae e 1280
S 1 RSSO 1292
Chapter 6: Transforms 1295
ROULINES ...ttt ettt sttt e b et e st e s b e et e e ae e beeeesneeee 1295
USBOE NOLES.......coeeeieee et 1297
FAST DT ettt b et et e be et et s sb e e e neere st enenrees 1300
NS H72 0] = O 1307
=N] 0] = OO 1313
I SRS 1317
e I o = PR 1321
e I8 o PSR 1325
e I SRS 1328
o e 11 SR 1331
e I 1334
S SRS 1337
1 R 1339
O 1 SRS 1341
000 15 SO 1343
QSINF et ettt ettt e et ee et e e e s e en e ener et e e e e e e 1345
(05[] =TT 1347
L5 N SRS 1349
(@O0 5 ST 1351
QECOSB ...ttt ettt s e et e ae e et e Rt sae e e RenRe et et et et et rente e enennenean 1353
(@0 1 TSR SSRSRT 1355

E:'ROQUEWFWE ROGUEWAVE.COM Contents X

Chapter 7: Nonlinear Equations

ROULINES ...t e e e e e e e e e eeeeeeens

Chapter 8: Optimization

ROULINES ...t e e e e e e e eeeaae e

=RogueWave rocuewave.com

Contents Xi

BCPOL ..ttt n e 1533
= L I TR UUTUPRTAR 1537
T O S TSR RPR R 1544
BONLS .ttt r et r e 1551
READ _IMPS... .ttt ettt b et b e s e e et e e s nn e e b e e saneeneeenes 1560
MPS _FREE ettt s b et nae e ans 1570
DENSE LP ..ttt e e r e r e 1573
DLPRS ..t h e e e R e e b e e eRe e e b e e be e e neenneeeareanneeenes 1578
SLPRS . et h et Ee et e e be e he e e be e naeeebeenreenreenreaan 1582
TRAN et b et b e e bt b et b et ne et ren s 1588
QPROG ...ttt e e ee ettt e e e et ee e en et et er e r et e eeen e en s 1591
IO | PRSP 1595
LICONG. ...ttt e et e e bt b e s bt et bt ne e e st b nn e e e b e 1601
NN L P et e s e e e e e s be e e s ne e e sane e e enneeennis 1607
NINLPG <ttt sttt sae e et ae e et e e she e s abeesae e et e e naeeenne 1613
CDGRD ...ttt b h et R R et R e st b e e b n e nne e 1621
FDGRD ...ttt ettt ettt e bt e s a e et e e ae e e b e e e ne e e ne e e an e e r e e naee s 1624
FDHES. ...ttt b et a e st e b e e nn e b e st e e aeeeaes 1627
GDHES ... bbbt b e n e n e e ne e 1630
DIDJAC ..ttt b et E e e e e be e eae e e Ee e eRe e e neeaaeeereenaeeenns 1633
FDJAC ettt e b e e he e b e he e e be e re e et e e nae e e aeenes 1642
CHGRD ...ttt b et b et h e et b et e bbb e e b e e nenne e 1645
CHHES ... ettt b e ettt e st e b e e s se e e se e saeesbeesnneanneans 1649
CHUIA C ettt et h et et e s bt e et e e e bt e e be e be e sateenbe e e neeenreenaeeen 1653
GGUES ... et b et bt e bt n e nne e 1657
Chapter 9: Basic Matrix/Vector Operations 1661
ROULINES ...ttt s et bt e et eb b e b e 1661
Basic Linear Algebra SUDPIrOgramS........coeiiiieieiereere et 1665
Programming Notesfor BLASUSING NVIDIA ..o 1691
CUBLAS GET ..ttt e bttt s b nn e ene e 1699
CUBLAS SET ittt st b et et e e st e be e s e e e beesaeeens 1701
CHECK_BUFFER_ALLOCATION ..ottt 1703
CUDA _ERROR _PRINT ...ttt sn s s sb e s snesessesneneas 1704
Other Matrix/V ector OPEIELiONS.........cceieriruirierieeeeieie et sne e sne e 1706
CRGRG ...ttt et r b r e nenne e 1707
(G0 €10 C TP TSP U TSURTPTSTRPPPON 1709
CRBRB ...ttt sttt et h e b et e saee e be et e e beenaeeen 1711
CCBEB ...ttt b e h b st R e R bR e n e n e nenne e 1713
CRGRB ...ttt ettt e s et e e b e e be e e e e e be e saneabeeeneeereenneaan 1715
CRBRG ...ttt ettt st e bt s bt e st e e be e e a e e e be e saeeebe et e ereenaeean 1717
(OO €101 = ST PP PPSTR PR 1719
COBCG ...ttt b e bbbt h e e R e et e b e b et e b e b e e bt be e e neeaeneeneas 1721
(O €0 C 7RSSR 1723

E:'ROQUEWPVE ROGUEWAVE.COM Contents Xii

(O =1 2 1727
(@RS = C T 1729
CHECG .., 1731
(0152 = 1733
CHBCB ... 1735
LI L 1737
1Y 1D 1739
1Y G I 1741
1Y, A 1 1744
L R 1746
IMMCRECIR ..ttt bbb ba bbb e e ababaa s basasasssasssssssssssasssssssasssssssasssssssssssssnnnsnsnsnnnnns 1749
L L TR 1751
2 I R 1753
POLIRG ... s bbb bbb bbb bbb e s s b s b e b s b e bs b e b e bbb s bsbebebebebebsbnbnarnrarnrnrns 1755
1YL Y 1758
IMURBY ...ttt ettt ettt sttt s bt s s be s s ae s st e s s bessab e s sbessabesebessaeesbessatesabessans 1760
IMIUGCKRY ..ttt bbb e aa st e s basabass b asssssssssssssssssssssssssssasssssssssssssnsnsnsnsnnnnns 1762
IMIUGCBV ..ttt s sttt st s st st s s st s st s s st st s s s sessssnssssesesennnnnnnnnnnns 1764
F Y =T 1766
F N O =T O = TR 1768
INRIRR ettt e ettt e e e e e e e s ee et e seseesse s s s e b s sesesseesabaasssesesenssran 1770
AL R 1772
INRZIRIR.... ettt e b e br e e a e beaaa s b essasasssssasssssssssssssssssssssssssssasssssssssssssnsnsssssnnnnns 1774
I 0 1 1776
AL R 1778
[1S SRRSO 1780
[1S TR PRORPRTRPTRRPPTRIN 1782
]IS 1784
AV OO | 1786
AV OO [T 1789
Extended PreCiSion ATTAMELICcvviiiiie et 1792

Chapter 10: Linear Algebra Operators and Generic Functions

1795
ROULINES ...ttt sttt e bt et e e e e sae e beeneesreeneeennens 1795
USBOE NOLES ..ottt r e s e nne e s e e nne e nane e 1797
Matrix Optional Data ChanQEScccviieiiieieiiese ettt sre e 1798
Dense MatrixX COMPULBLIONScuereerueeirnieesieeeesieesiesseesseeseeseesseessesessseessessesssesssesssens 1800
DeNsSe MatriX FUNCHIONS........coiierieeieneeieseesteeie e sseeeesseesteeeesseesseesessseensesseessessessenns 1802
Dense Matrix Paralelism USING MPl ..o 1803
Sparse Matrix COMPUEBLIONSccueeuirierieerieniesiee e see e e e e e eesreenee e e sseeneas 1807
GRS POTPTPPPRTRRRN 1813
1 GRS OPTRRRN 1818

E:'ROQUEWPVE ROGUEWAVE.COM Contents Xiii

X, ettt e ese e re e ehee e beeahe e e beeaaee e beeaaeeereeareeereeareearean 1826
D4 O 1830
P 1834
D e s be e ehe e e beeahe e e beeaaeeebeeaaeeereeareeereeareeareans 1837
e tteeetteeereeereeetee e et eateeereeabeeaaeebeeaaeeebeeaeeebeeaaetebeeaaseeabeeaaeeeabeeaaeeebeeareeeabeeareeebeeareeareans 1839
S PERRN 1842
Xl e ettt ettt e e e e e e e e ——ee e e et ——eeeaaa——eeeea—teeeeaaaeeeeaaateeeeeaneeeeeaanreeeeaanreeeeanreeenans 1854
(O [S ORRRPR 1858
(0@]\ | 5 2R 1861
D] = OSSOSO 1866
D] N RS 1869
] T\ N R T 1871
= LTSRS PRTOR 1873
RS 1877
o T 1879
[l I =10) GO PR PRRO 1881
1 PR 1884
IFEFT BOX .ottt ettt e e be et e et e s ae et e e b e beeatesaeesbeeaeesaeentesaeenbeenneans 1886
FSINBIN L.ttt e e et e e s b e e b e e ebeeeaee e beesaeeeabeeabeeeabeeabeeeabe e beeeaeeebeeeaeeenreenes 1889
AN = SRR 1890
N[1892
(O] 2 3 I - PO SROPRRURRRPI 1895
AN N1 TSR 1899
AN)1 1901
SV D bbb e b e e e e e be e aheeabeeabeeabeebeesareeabeeaareereesareans 1903
0] N TR 1906
Chapter 11: Utilities 1909
0111 1S OO 1909
Usage Notes for SCALAPACK ULIHITIES.......ccveciieerece e 1912
SCALAPACK _SETUP ...ttt ettt st r e e s neeneennenneas 1916
SCALAPACK _GETDIM ..ottt ettt sbeene e sneenne 1918
SCALAPACK _READ ...ttt ettt s e et e e s aae e be e saaesbeesraesbeesaeesnneens 1919
SCALAPACK WRITE ...ttt st nne s 1921
SCALAPACK IMARP- ..ottt ettt et et be s tesae e resaeesaeenteeneesbeas 1930
SCALAPACK _UNMAP ...ttt ettt st sre e sare e re e saeesare e 1932
SCALAPACK _EXIT oottt ettt et st sae e n e e esneeneennenneas 1935
ERROR POST ...ttt ettt et r e st esae e b e saeesaeennesaeesbeenneenas 1936
SHOWV ...ttt et e et e e s be e st e e s beeeabeesbeesabeeabeesntesbeesaseebeesneeeseesnneans 1939
WRRRNottt ettt et e et e e te e s s e e beesaeeebeesseesabeeabessnseeaseesnseensessnreensens 1943
L AT L 1945
WRIRN ...ttt ettt e s b e e b e e saee st e e s beeeaseesbeesateebeesasesnbeesaeeenreennnes 1948
LAY A L { R 1950
L AT A (O 1953

E:'ROQUEWPVE ROGUEWAVE.COM Contents Xxiv

VY204 TSSO 1960
=17~ OO 1966
PERMU ..vcoooeeeeeeeeesseeeeeseeesseeesssssseeseesssesssssseesssesssesssesssessssessessssessessesssssssesseesssessesseees 1968
PERMA ... eeeeeeeeeeeseeeeeesseessseeeseeseessseses s seessseeesessessssesssessesssseeeesssssesseesesssessseesseeseees 1970
SORT _REAL covcoreeeeeeeoeeeeeeeseesesseesessesessssssssesesseesssseseessessssssesssessssessessessssessassesseees 1973
SVRGN ..o eeeeee e eeeesee e eeseses e e se e e s e s s eess e eess s eeeseee 1976
YA = OO 1978
SVIGN oo eeeeeseseesessees e sesees e e e s s s e e s s s ee e s s s e eesssees s eesssseneeeeesseees 1980
ST = 1982
VAL N OO 1984
SV = OO 1986
VA1 = OO 1988
Y411 =TSO 1990
i OO 1992
Lo OO 1995
SSRCH oo eeeeeeeseeseseeeeeseesssseeseessesssseseessesseses e sssee e sssse e see s s e eeeeesssse e 1997
X 1N = SO 2000
X 1N = O 2002
7N =SSO 2003
Lot = ST 2005
HIDEX . vvvvveoeeeeeeeeesesseeseseessesssesssesssesseessesssesseessesesesssesssseseessesssesssesseessenesessesssseeees 2007
LY K= SO 2009
032 = oS 2010
L 11) 2O 2011
LD 1 =TT 2013
T2 N 2= 2014
DY TN covveoooeeeeeeeeeeeeeeeesesseeseeessesse e eeseesse s esssees s eeessesseeseessseesseseesssssesesseesseneeessees 2016
IDY WK ovvveeoreeeseeeeeseeseessseessesssessssessessessssessessesssssesessssssssesesssessssesesssesssssessssssssseseen 2018
VERML oo eeeeeeesseeessesseeseesssesseeseessseesseessessssesseseessssessesssessseessessesssseseseessseees 2020
2NN 0 XN = N 2022
RNGET ovooooeeeeveeeeeeeeseeseeseessessssesssessesssssssesessssssssessesssssseeasesssssesessesssssesessesssseeseeseees 2029
RNSET covvvcvo e eeeeeeeseeeeessesesseesssses s s sssees e seessseeseseesssesseseessssesseesessssse s sessseeseeseees 2030
2N = T 2032
RININBZ.ccoooeeeeeeeee e eeeeese s eseses s sesses e e s s e ssees s eessseeesesesssssseseessesseeee e 2034
RNGEB2....... e eeeveeeoeeeeeeeeeeseeeeeesssesesseesssees e seesssees s eeessess e seessseeseseesssses s sessseeseseees 2035
VT = 7O 2037
RNINGBL ... eeeeveeeeeeeseeseeseseesssssessesseesesseseseeesssees e esesssesseseessseessesesssssseseeseesseses e 2038
RNGEBA........eovveoeoeeeeeeeeeesesseessseesesseessssesessessssses s eesssesseeseessssesessesssseseessessseesreseees 2039
RNSEBZ ... eveeeeeeeeeeeeeesesseeesesssesseessssss e eesseees s eeesseseeseessseees s eessssne s seesseneeseees 2041
RNUNF oo eeeee e sssesseeseessseess s sseess s s sesesseeseeseseesessessesseeeeseessseeseeseees 2042
RINUN ooovcoooeeeeeeeeoe e eesees e esessseeesesseeeseeesessssesseesesssessseseessseesseseesssseesessessseeseessee 2044
FAURE_INIT woovooooeeeeeeeeeeseeeseseeesesesessseessesssessseesesssssssessesssssssesessessesssssesessssssesesessees 2046
FAURE _FREE.........oetvvooeeeseesssseeeessssssssessssssssssssessssssssssssssssssesssssssssssssseessssssessssessees 2047
FAURE NEXT covcooreeeeeveeeeeseesssseseessesssssssesssessssssssssesssssssssssessssssesssessssessassesssssssssee 2048

E:'ROQUEWPVE ROGUEWAVE.COM Contents xv

IMAGCH ..o

MaLriX SIOrage MOGEScceiuiiirieriieieeee e
RESEIVEA NAIMES ... e
Deprecated Features and Renamed ROULINES............ccoceeveieecieccie v

Appendix A: Alphabetical Summary of Routines
Appendix B: References
Appendix C: Product Support

Index

EEROQUEWPUE ROGUEWAVE.COM

Contents XVi

Introduction

il

The IMSL Fortran Numerical Library

The IMSL Fortran Numerical Library consists of two separate but coordinated Libraries that allow easy user
access. These Libraries are organized as follows:

¢ MATH/LIBRARY general applied mathematics and special functions
The User’s Guide for IMSL MATH/LIBRARY has two parts:
+ MATH/LIBRARY
« MATH/LIBRARY Special Functions
¢ STAT/LIBRARY statistics

Most of the routines are available in both single and double precision versions. Many routines for linear solv-
ers and eigensystems are also available for complex and double -complex precision arithmetic. The same user
interface is found on the many hardware versions that span the range from personal computer to
supercomputer.

This library is the result of a merging of the products: IMSL Fortran Numerical Libraries and IMSL Fortran 90
Library.

EE R{nggmq\{q Introduction 1

User Background

To use this product you should be familiar with the Fortran 90 language as well as the withdrawn Fortran 77
language, which is, in practice, a subset of Fortran 90. A summary of the ISO and ANSI standard language is
found in Metcalf and Reid (1990). A more comprehensive illustration is given in Adams et al. (1992).

Those routines implemented in the IMSL Fortran Numerical Library provide a simpler, more reliable user
interface than was possible with Fortran 77. Features of the IMSL Fortran Numerical Library include the use
of descriptive names, short required argument lists, packaged user-interface blocks, a suite of testing and
benchmark software, and a collection of examples. Source code is provided for the benchmark software and
examples.

Some of the routines in the IMSL Fortran Numerical Library can take advantage of a standard (MPI) Message
Passing Interface environment but do not require an MPI environment if the user chooses to not take advan-
tage of MPL

The MPI logo shown below cues the reader when this is the case:

EIMPI

Routines documented with the MPI Capable logo can be called in a scalar or one computer environment.

Other routines in the IMSL Library take advantage of MPI and require that an MPI environment be present in
order to use them. The MPI Required logo shown below clues the reader when this is the case:

CMe]

NOTE: It is recommended that users considering using the MPI capabilities of the product read the follow-
ing sections of the MATH Library documentation:

Introduction: Using MPI Routines

Introduction: Using ScaLAPACK Enhanced Routines

Chapter 10, “Linear Algebra Operators and Generic Functions” — see “Dense Matrix Parallelism Using MPI”.
Vendor Supplied Libraries Usage

The IMSL Fortran Numerical Library contains functions which may take advantage of functions in vendor
supplied libraries such as the Intel® Math Kernel Library (MKL) or the Sun™ High Performance Library.
Functions in the vendor supplied libraries are finely tuned for performance to take full advantage of the
environment for which they are supplied. For these functions, the user of the IMSL Fortran Numerical

= Rogygmﬂn\{q User Background Introduction 2

Library has the option of linking to code which is based on either the IMSL legacy functions or the functions
in the vendor supplied library. The following icon in the function documentation alerts the reader when this
is the case:

HIGH
PE (E

Details on linking to the appropriate IMSL Library and alternate vendor supplied libraries are explained in
the online README file of the product distribution.

Getting Started

The IMSL MATH/LIBRARY is a collection of Fortran routines and functions useful in mathematical analysis
research and application development. Each routine is designed and documented for use in research activi-
ties as well as by technical specialists.

To use any of these routines, you must write a program in Fortran 90 (or possibly some other

language) to call the MATH/LIBRARY routine. Each routine conforms to established conventions in pro-
gramming and documentation. We give first priority in development to efficient algorithms, clear
documentation, and accurate results. The uniform design of the routines makes it easy to use more than one
routine in a given application. Also, you will find that the design consistency enables you to apply your
experience with one MATH /LIBRARY routine to other IMSL routines that you use.

Finding the Right Routine

The MATH/LIBRARY is organized into chapters; each chapter contains routines with similar computational
or analytical capabilities. To locate the right routine for a given problem, you may use either the table of con-
tents located in each chapter introduction, or the alphabetical list of routines.

Often the quickest way to use the MATH/LIBRARY is to find an example similar to your problem and then
to mimic the example. Each routine document has at least one example demonstrating its application. The
example for a routine may be created simply for illustration, it may be from a textbook (with reference to the
source), or it may be from the mathematical literature.

= ROQQ?WQ\{E{ User Background Introduction

Organization of the Documentation

This manual contains a concise description of each routine, with at least one demonstrated example of each
routine, including sample input and results. You will find all information pertaining to the MATH /LIBRARY
in this manual. Moreover, all information pertaining to a particular routine is in one place within a chapter.

Each chapter begins with an introduction followed by a table of contents that lists the routines included in
the chapter. Documentation of the routines consists of the following information:

& IMSL Routine’s Generic Name

o Purpose: a statement of the purpose of the routine. If the routine is a function rather than a
subroutine the purpose statement will reflect this fact.

& Function Return Value: a description of the return value (for functions only).

& Required Arguments: a description of the required arguments in the order of their occurrence.
Input arguments usually occur first, followed by input/output arguments, with output
arguments described last. Futhermore, the following terms apply to arguments:

+ Input Argument must be initialized; it is not changed by the routine.

« Input/Output Argument must be initialized; the routine returns output through this
argument; cannot be a constant or an expression.

+ Input[/Output] Argument must be initialized; the routine may return output through
this argument based on other optional data the user may choose to pass to this routine;
cannot be a constant or an expression.

+ Input or Output Select appropriate option to define the argument as either input or out-
put. See individual routines for further instructions.

« Output No initialization is necessary; cannot be a constant or an expression. The routine
returns output through this argument.

¢ Optional Arguments: a description of the optional arguments in the order of their occurrence.
o Fortran 90 Interface: a section that describes the generic and specific interfaces to the routine.

& Fortran 77 Style Interface: an optional section, which describes Fortran 77 style interfaces, is
supplied for backwards compatibility with previous versions of the Library.

¢ ScaLAPACK Interface: an optional section, which describes an interface to a ScaLAPACK-based
version of this routine.

o Description: a description of the algorithm and references to detailed information. In many
cases, other IMSL routines with similar or complementary functions are noted.

¢ Comments: details pertaining to code usage.

Programming notes: an optional section that contains programming details not covered
elsewhere.

& Example: at least one application of this routine showing input and required dimension and
type statements.

= R{ngﬁ.lnewlg\{er Organization of the Documentation Introduction

Output: results from the example(s). Note that unique solutions may differ from platform to
platform.

Additional Examples: an optional section with additional applications of this routine showing
input and required dimension and type statements.

Naming Conventions

The names of the routines are mnemonic and unique. Most routines are available in both a single precision
and a double precision version, with names of the two versions sharing a common root. The root name is also
the generic interface name. The name of the double precision specific version begins with a “D_" and the sin-
gle precision specific version begins with an “S_". For example, the following pairs are precision specific
names of routines in the two different precisions: S_GQRUL/D_GQRUL (the root is “GORUL ,” for “Gauss
quadrature rule”) and S_RECCF/D_RECCF (the root is “RECCF,” for “recurrence coefficient”). The precision
specific names of the IMSL routines that return or accept the type complex data begin with the letter “C_" or
“z_" for complex or double complex, respectively. Of course, the generic name can be used as an entry point

for all precisions supported.

When this convention is not followed the generic and specific interfaces are noted in the documentation. For
example, in the case of the BLAS and trigonometric intrinsic functions where standard names are already
established, the standard names are used as the precision specific names. There may also be other interfaces
supplied to the routine to provide for backwards compatibility with previous versions of the IMSL Fortran
Numerical Library. These alternate interfaces are noted in the documentation when they are available.

Except when expressly stated otherwise, the names of the variables in the argument lists follow the Fortran
default type for integer and floating point. In other words, a variable whose name begins with one of the let-
ters “I” through “N” is of type INTEGER, and otherwise is of type REAL or DOUBLE PRECISION, depending
on the precision of the routine.

An assumed-size array with more than one dimension that is used as a Fortran argument can have an
assumed-size declarator for the last dimension only. In the MATH /LIBRARY routines, the information about
the first dimension is passed by a variable with the prefix “LD” and with the array name as the root. For
example, the argument LDA contains the leading dimension of array A. In most cases, information about the
dimensions of arrays is obtained from the array through the use of Fortran 90’s size function. Therefore,
arguments carrying this type of information are usually defined as optional arguments.

Where appropriate, the same variable name is used consistently throughout a chapter in the
MATH/LIBRARY. For example, in the routines for random number generation, NR denotes the number of
random numbers to be generated, and R or IR denotes the array that stores the numbers.

When writing programs accessing the MATH /LIBRARY, the user should choose Fortran names that do not
conflict with names of IMSL subroutines, functions, or named common blocks. The careful user can avoid
any conflicts with IMSL names if, in choosing names, the following rules are observed:

Do not choose a name that appears in the Alphabetical Summary of Routines, at the end of the
User’s Manual, nor one of these names preceded byaD,S_,D_, C_, or Z_.

= R{ngﬁ.lnewlg\{er Organization of the Documentation Introduction 5

Do not choose a name consisting of more than three characters with a numeral in the second or
third position.

For further details, see the section on Reserved Names in the Reference Material.

Using Library Subprograms

The documentation for the routines uses the generic name and omits the prefix, and hence the entire suite of
routines for that subject is documented under the generic name.

Examples that appear in the documentation also use the generic name. To further illustrate this principle,
note the LIN_SOL_GEN documentation (see Chapter 1, “Linear Systems”), for solving general systems of linear
algebraic equations. A description is provided for just one data type. There are four documented routines in
this subject area: s_1in_sol_gen,d_lin_sol_gen,c_lin_sol_gen,and z_lin_sol_gen.

These routines constitute single-precision, double-precision, complex, and double-complex precision ver-
sions of the code.

The Fortran 90 compiler identifies the appropriate routine. Use of a module is required with the routines. The
naming convention for modules joins the suffix “_int” to the generic routine name. Thus, the line “use
lin_sol_gen_int” is inserted near the top of any routine that calls the subprogram “1in_sol_gen”.
More inclusive modules are also available, such as ims1_libraries and numerical libraries. To
avoid name conflicts, Fortran 90 permits re-labeling names defined in modules so they do not conflict with
names of routines or variables in the user’s program. The user can also restrict access to names defined in
IMSL Library modules by use of the “: ONLY, <list of names>" qualifier.

When dealing with a complex matrix, all references to the transpose of a matrix, 47, are replaced by the adjoint
matrix

AT =4 =4

where the overstrike denotes complex conjugation. IMSL Fortran Numerical Library linear algebra software
uses this convention to conserve the utility of generic documentation for that code subject. All references to
orthogonal matrices are to be replaced by their complex counterparts, unitary matrices. Thus, an n X n orthog-

onal matrix Q satisfies the condition Q' Q = I,. An n X n unitary matrix V satisfies the analogous condition

for complex matrices, V'V =1I,,.

Programming Conventions

In general, the IMSL MATH /LIBRARY codes are written so that computations are not affected by underflow,
provided the system (hardware or software) places a zero value in the register. In this case, system error mes-
sages indicating underflow should be ignored.

= ROQQ?WQ\{E{ Organization of the Documentation Introduction

IMSL codes are also written to avoid overflow. A program that produces system error messages indicating
overflow should be examined for programming errors such as incorrect input data, mismatch of argument
types, or improper dimensioning.

In many cases, the documentation for a routine points out common pitfalls that can lead to failure of the
algorithm.

Library routines detect error conditions, classify them as to severity, and treat them accordingly. This error-
handling capability provides automatic protection for the user without requiring the user to make any spe-
cific provisions for the treatment of error conditions. See the section on User Errors in the Reference Material
for further details.

Module Usage

Users are required to incorporate a “use” statement near the top of their program for the IMSL routine being
called when writing new code that uses this library. However, legacy code which calls routines in the previ-
ous version of the library without the use of a “use” statement will continue to work as before. Also, code
that employed the “use numerical_libraries” statement from the previous version of the library will
continue to work properly with this version of the library.

Users wishing to update existing programs so as to call other routines from this library should incorporate a
use statement for the specific new routine being called. (Here, the term “new routine” implies any routine in
the library, only “new” to the user’s program.) Use of the more encompassing “ims1_libraries” module
in this case could result in argument mismatches for the “old” routine(s) being called. (The compiler would
catch this.)

Users wishing to update existing programs to call the new generic versions of the routines must change their
calls to the existing routines to match the new calling sequences and use either the routine specific interface
modules or the all-encompassing “imsl_libraries” module.

Using MPI Routines

C.A. PABLE FtEnIJI RED

Users of the IMSL Fortran Numerical Library benefit by having a standard (MPI) Message Passing Interface
environment. This is needed to accomplish parallel computing within parts of the Library. Either of the icons

above clues the reader when this is the case. If parallel computing is not required, then the IMSL Library suite of
dummy MPI routines can be substituted for standard MPI routines. All requested MPI routines called by the

= Rogygmﬂn\{q Organization of the Documentation Introduction

IMSL Library are in this dummy suite. Warning messages will appear if a code or example requires more
than one process to execute. Typically users need not be aware of the parallel codes.

NOTE: that a standard MPI environment is not part of the IMSL Fortran Numerical Library. The standard
includes a library of MPI Fortran and C routines, MPI “include” files, usage documentation, and other
run-time utilities.

NOTE: Details on linking to the appropriate libraries are explained in the online README file of the product
distribution.

There are three situations of MPI usage in the IMSL Fortran Numerical Library:

1. There are some computations that are performed with the ‘box” data type that benefit from the use of
parallel processing. For computations involving a single array or a single problem, there is no IMSL
use of parallel processing or MPI codes. The box type data type implies that several problems of the
same size and type are to be computed and solved. Each rack of the box is an independent problem.
This means that each problem could potentially be solved in parallel. The default for computing a box
data type calculation is that a single processor will do all of the problems, one after the other. If this is
acceptable there should be no further concern about which version of the libraries is used for linking.
If the problems are to be solved in parallel, then the user must link with a working version of an MPI
Library and the appropriate IMSL Library. Examples demonstrating the use of box type data may be
found in Chapter 10, “Linear Algebra Operators and Generic Functions”.

NOTE: Box data type routines are marked with the MPI Capable icon.

2. Various routines in Chapter 1, “Linear Systems” allow the user to interface with the ScaLAPACK Library
routines. If the user chooses to run on only one processor then these routines will utilize either IMSL
Library code or LAPACK Library code based on the libraries the user chooses to use during linking. If
the user chooses to run on multiple processors then working versions of MPI, ScaLAPACK, PBLAS,
and Blacs will need to be present. These routines are marked with the MPI Capable icon.

3. There are some routines or operators in the Library that require that a working MPI Library be present
in order for them to run. Examples are the large-scale parallel solvers and the ScaLAPACK utilities.
Routines of this type are marked with the MPI Required icon. For these routines, the user must link
with a working version of an MPI Library and the appropriate IMSL Library.

In all cases described above it is the user’s responsibility to supply working versions of the aforementioned
third party libraries when those libraries are required.

Table 1 below lists the chapters and IMSL routines calling MPI routines or the replacement non-parallel

package.
Table | — IMSL Routines Calling MPI Routines or Replacement Non-Parallel Package
Chapter Name and Number Routine with MPI Utilized
Linear Systems, 1 PARALLEL_NONNEGATIVE_LSQ
Linear Systems, 1 PARALLEL_BOUNDED_LSQ
Linear Systems, 1 Those routines which utilize ScalAPACK listed in
Table D below.

= R{ngﬁ.lnewlg\{er Organization of the Documentation Introduction 8

Table | — IMSL Routines Calling MPI Routines or Replacement Non-Parallel Package

Chapter Name and Number Routine with MPI Utilized

Linear Algebra and Generic Functions, 10 See entire following Table 2, “Defined Operators and Generic
Functions for Dense Arrays.”

Utilities, 11 ScaLAPACK_SETUP

Utilities, 11 ScaLAPACK_GETDIM

Utilities, 11 ScaLAPACK_READ

Utilities, 11 ScaLAPACK_WRITE

Utilities, 11 ScaLAPACK_MAP

Utilities, 11 ScaLAPACK_UNMAP

Utilities, 11 ScaLAPACK_EXIT

Reference Material Entire Error Processor Package for IMSL Library, if MPI is
utilized

Programming Tips

Each subject routine called or otherwise referenced requires the “use” statement for an interface block
designed for that subject routine. The contents of this interface block are the interfaces to the separate rou-
tines available for that subject. Packaged descriptive names for option numbers that modify documented
optional data or internal parameters might also be provided in the interface block. Although this seems like
an additional complication, many errors are avoided at an early stage in development through the use of
these interface blocks. The “use” statement is required for each routine called in the user’s program. As illus-
trated in Examples 3 and 4 in routine 1in_geig_gen, the “use” statement is required for defining the
secondary option flags.

The function subprogram for s_NaN () or d_NaN () does not require an interface block because it has only a
single “required” dummy argument. Also, if one is only using the Fortran 77 interfaces supplied for back-
wards compatibility then the “use” statements are not required.

Optional Subprogram Arguments

IMSL Fortran Numerical Library routines have required arguments and may have optional arguments. All
arguments are documented for each routine. For example, consider the routine 1in_sol_gen that solves the
linear algebraic matrix equation Ax = b. The required arguments are three rank-2 Fortran 90 arrays: A, b, and
x. The input data for the problem are the A and b arrays; the solution output is the x array. Often there are
other arguments for this linear solver that are closely connected with the computation but are not as compel-

ling as the primary problem. The inverse matrix A may be needed as part of a larger application. To output

= ROQQ?WQ\{E{ Organization of the Documentation Introduction

this parameter, use the optional argument given by the “ainv="keyword. The rank-2 output array argu-
ment used on the right-hand side of the equal sign contains the inverse matrix. See Example 2 of
LIN_SOL_GEN in Chapter 1, “Linear Systems” for an example of computing the inverse matrix.

For compatibility with previous versions of the IMSL Libraries, the NUMERICAL_LIBRARIES interface mod-
ule includes backwards-compatible positional argument interfaces to all routines that existed in the Fortran
77 version of the Library. Note that it is not necessary to include “use” statements when calling these routines
by themselves. Existing programs that called these routines will continue to work in the same manner as
before.

Some of the primary routines have arguments “epack="and “iopt=". As noted the “epack=" argument is
of derived type s_error or d_error. The prefix “s_" or “d_" is chosen depending on the precision of the
data type for that routine. These optional arguments are part of the interface to certain routines, and are used
to modify internal algorithm choices or other parameters.

Optional Data

This additional optional argument (available for some routines) is further distinguished—a derived type
array that contains a number of parameters to modify the internal algorithm of a routine. This derived type
has the name ?_options, where “?_" is either “s_" or “d_". The choice depends on the precision of the
data type. The declaration of this derived type is packaged within the modules for these codes.

The definition of the derived types is:
type ?_options

integer idummy; real (kind(?)) rdummy
end type
where the “?_" is either “s_" or “d_", and the kind value matches the desired data type indicated by the

“u_n

choice of “s” or “d”.

Example 3 of LIN_SOL_GEN in Chapter 1, “Linear Systems” illustrates the use of iterative refinement to com-
pute a double-precision solution based on a single-precision factorization of the matrix. This is
communicated to the routine using an optional argument with optional data. For efficiency of iterative
refinement, perform the factorization step once, and then save the factored matrix in the array A and the piv-
oting information in the rank-1 integer array, ipivots. By default, the factorization is normally discarded.
To enable the routine to be re-entered with a previously computed factorization of the matrix, optional data
are used as array entries in the “iopt=" optional argument. The packaging of LIN_SOL_GEN includes the
definitions of the self-documenting integer parameters 1in_sol_gen_save_LU and
lin_sol_gen_solve_A. These parameters have the values 2 and 3, but the programmer usually does not
need to be aware of it.

The following rules apply to the “iopt=iopt” optional argument:

1. Define a relative index, for example I0, for placing option numbers and data into the array argument
iopt. Initially, set IO = 1. Before a call to the IMSL Library routine, follow Steps 2 through 4.

2. The data structure for the optional data array has the following form:
iopt (IO0) = ?_options (Option_number, Optional_data)
[iopt (IO + 1) =?_options (Option_number, Optional_data)]

= ROQQ?WQ\{E{ Organization of the Documentation Introduction

The length of the data set is specified by the documentation for an individual routine. (The
Optional_data is output in some cases and may not be used in other cases.) The square braces [...]
denote optional items.

Mustration: Example 3 of LIN_EIG_SELF in Chapter 2, “Singular Value and Eigenvalue Decomposition”, a
new definition for a small diagonal term is passed to 1in_sol_self. There is one line of code
required for the change and the new tolerance:

iopt (1) = d_options(d_lin_sol_self set_small,
epsilon(one) *abs (d(i)))

3. The internal processing of option numbers stops when Option_number == 0 or when
I0 > SIZE (iopt). This signals each routine having this optional argument that all desired changes to
default values of internal parameters have been made. This implies that the last option number is the
value zero or the value of SIZE (iopt) matches the last optional value changed.

4. Toadd more options, replace IO with I0 + 1, where # is the number of items required for the previous
option. Go to Step 2.

Option numbers can be written in any order, and any selected set of options can be changed from the
defaults. They may be repeated. Example 3 in of LIN_SOL_SELF in Chapter 1, “Linear Systems” uses three and
then four option numbers for purposes of computing an eigenvector associated with a known eigenvalue.

Overloaded =, /=, etc., for Derived Types

To assist users in writing compact and readable code, the IMSL Fortran Numerical Library provides over-
loaded assignment and logical operations for the derived types s_options, d_options, s_error, and
d_error. Each of these derived types has an individual record consisting of an integer and a floating-point
number. The components of the derived types, in all cases, are named idummy followed by rdummy. In many
cases, the item referenced is the component idummy. This integer value can be used exactly as any integer by
use of the component selector character (%). Thus, a program could assign a value and test after calling a
routine:

s_epack(l)%idummy = 0

call lin_sol_gen(A,b,x,epack=s_epack)

if (s_epack(l)%idummy > 0) call error_post (s_epack)

Using the overloaded assignment and logical operations, this code fragment can be written in the equivalent
and more readable form:

s_epack(l) =0

call lin_sol_gen(A,b,x, epack=s_epack)

if (s_epack(l) > 0) call error_post (s_epack)

Generally the assignments and logical operations refer only to component idummy. The assignment
“s_epack (1) =0"is equivalent to “s_epack (1) =s_error (0, 0E0) ”. Thus, the floating-point component
rdummy is assigned the value 0EO. The assignment statement “I=s_epack (1) ”, for I an integer type, is

= ROQQ?WQ\{E{ Organization of the Documentation Introduction

equivalent to “I=s_epack (1) $idummy”. The value of component rdummy is ignored in this assignment.
For the logical operators, a single element of any of the IMSL Fortran Numerical Library derived types can
be in either the first or second operand.

Derived Type Overloaded Assignments and Tests

s_options I=s_options(1l);s_options(l)=I |= = /= < <= |> >=
d_options I=d_options(1l);d_options(l)=I |= = /= < <= |> >=
s_epack I=s_epack(l);s_epack(l)=I = = /= < <= |> >=
d_epack I=d_epack(l);d_epack(l)=I = = /= < <= |> >=

In the examples, operator_ex01, ..., _ex37, the overloaded assignments and tests have been used when-
ever they improve the readability of the code.

Error Handling

T MPI

CAPABLE

The routines in the IMSL MATH/LIBRARY attempt to detect and report errors and invalid input. Errors are
classified and are assigned a code number. By default, errors of moderate or worse severity result in mes-
sages being automatically printed by the routine. Moreover, errors of worse severity cause program
execution to stop. The severity level and the general nature of the error are designated by an “error type”
ranging from 0 to 5. An error type 0 is no error; types 1 through 5 are progressively more severe. In most
cases, you need not be concerned with our method of handling errors. For those interested, a complete
description of the error-handling system is given in the Reference Material, which also describes how you can
change the default actions and access the error code numbers.

A separate error handler is provided to allow users to handle errors of differing types being reported from
several nodes without danger of “jumbling” or mixing error messages. The design of this error handler is
described more fully in Hanson (1992). The primary feature of the design is the use of a separate array for
each parallel call to a routine. This allows the user to summarize errors using the routine error_postina
non-parallel part of an application. For a more detailed discussion of the use of this error handler in applica-
tions which use MPI for distributed computing, see the Reference Material.

= Rogygmﬂn\{q Organization of the Documentation Introduction 12

Printing Results

Most of the routines in the IMSL MATH/LIBRARY (except the line printer routines and special utility rou-
tines) do not print any of the results. The output is returned in Fortran variables, and you can print these
yourself. See Chapter 11, “Utilities” for detailed descriptions of these routines.

A commonly used routine in the examples is the IMSL routine UMACH (see the Reference Material), which
retrieves the Fortran device unit number for printing the results. Because this routine obtains device unit
numbers, it can be used to redirect the input or output. The section on Machine-Dependent Constants in the
Reference Material contains a description of the routine UMACH.

Fortran 90 Constructs

TMPI

caAaPABLE

The IMSL Fortran Numerical Library contains routines which take advantage of Fortran 90 language con-
structs, including Fortran 90 array data types. One feature of the design is that the default use may be as
simple as the problem statement. Complicated, professional-quality mathematical software is hidden from
the casual or beginning user.

In addition, high-level operators and functions are provided in the Library. They are described in Chapter 10,
“Linear Algebra Operators and Generic Functions”.

Shared-Memory Multiprocessors and Thread Safety

HIGH

W,

PE (E

The IMSL Fortran Numerical Library allows users to leverage the high-performance technology of shared
memory parallelism (SMP) when their environment supports it. Support for SMP systems within the IMSL
Library is delivered through various means, depending upon the availability of technologies such as
OpenMP, high performance LAPACK and BLAS, and hardware-specific IMSL algorithms. Use of the IMSL
Fortran Numerical Library on SMP systems can be achieved by using the appropriate link environment vari-
able when building your application. Details on the available link environment variables for your installation
of the IMSL Fortran Numerical Library can be found in the online README file of the product distribution.

= Rogygmﬂn\{q Organization of the Documentation Introduction

The IMSL Fortran Numerical Library is thread-safe in those environments that support OpenMP. This was
achieved by using OpenMP directives that define global variables located in the code so they are private to

the individual threads. Thread safety allows users to create instances of routines running on multiple threads

and to include any routine in the IMSL Fortran Numerical Library in these threads.

Using Operators and Generic Functions

For users who are primarily interested in easy-to-use software for numerical linear algebra, see Chapter 10,
“Linear Algebra Operators and Generic Functions”. This compact notation for writing Fortran 90 programs,
when it applies, results in code that is easier to read and maintain than traditional subprogram usage.

Users may begin their code development using operators and generic functions. If a more efficient executable

code is required, a user may need to switch to equivalent subroutine calls using IMSL Fortran Numerical

Library routines.

Table 2 and Table 3 contain lists of the defined operators and some of their generic functions.

Table 2 — Defined Operators and Generic Functions for Dense Arrays

Defined Array Operation

Matrix Operation

A .x. B AB

i. a Al

£. A h. A AT A"

A .ix. B A7'B

B .xi. A BA™!

A .tx. B,or (.t. A) .x. B ATB A'B

A .hx. B,or (.h. A) .x. B

B .xt. A, OrB .x. (.t. A) BAT BA"

B .xh. A,0rB .x. (.h. A)

S=SVD(A [,U=U, V=V]) A=UusvT
E=EIG(A [[,B=B, D=D], V=V, W=W]) (AV = VE), AVD = BVE, (AW = WE), AWD = BWE
R=CHOL (3) A=RTR
Q=ORTH (A [,R=R]) (A=QR),QTQ =1

U=UNIT (A) [uq,...1=lag/llaqll,...]
F=DET (A) det(A) = determinant
K=RANK (A) rank(A) = rank

=RogueWave

Organization of the Documentation

Introduction

14

Table 2 — Defined Operators and Generic Functions for Dense Arrays

P=NORM(A[, [type=]i])

m
= [l = £

p= ||4||,=s; = largest singular value
> lay|
= AH = max; a ;
P H ooehuge(l) ! gll 1
c=con) 470 - L4l
Z=EYE (N) Z=1Iy
A=DIAG (X) A =diag(xq,...)

X=DIAGONALS (A)

x = (x11,---)

W=FFT(Z); Z=IFFT (W)

Discrete Fourier Transform, Inverse

A=RAND (A)

random numbers, 0 < A <1

L=isNaN (A)

test for NaN, if () then...

Table 3 — Defined Operators and Generic Functions for Harwell-Boeing Sparse Matrices

Defined Operation

Matrix Operation

Data Management

Define entries of sparse matrices

A .x. B AB

.t. A, h. A AT A

A .ix. B A7lB

B .xi. A BAl

A .tx. B,or (.t. A) .x. B ATB,A'B

A .hx. B,or (.h. A) .x. B

B .xt. A,0rB .x. (.t. A) BAT BA

B .xh. A,0orB .x. (.h. A)

A+B Sum of two sparse matrices
c=conD () L1l - L4l

=RogueWave

Organization of the Documentation

Introduction

15

Using ScaLAPACK, LAPACK, LINPACK, and EISPACK

Many of the codes in the IMSL Library are based on LINPACK, Dongarra et al. (1979), and EISPACK, Smith
et al. (1976), collections of subroutines designed in the 1970s and early 1980s. LAPACK, Anderson et al.
(1999), was designed to make the linear solvers and eigensystem routines run more efficiently on high per-
formance computers. For a number of IMSL routines, the user of the IMSL Fortran Numerical Library has the
option of linking to code which is based on either the legacy routines or the more efficient LAPACK routines.

Table 4 below lists the IMSL routines that make use of LAPACK codes. The intent is to obtain improved per-
formance for IMSL codes by using LAPACK codes that have good performance by virtue of using BLAS with
good performance. To obtain improved performance we recommend linking with High Performance ver-
sions of LAPACK and BLAS, if available. The LAPACK, codes are listed where they are used. Details on
linking to the appropriate IMSL Library and alternate libraries for LAPACK and BLAS are explained in the
online README file of the product distribution.

Table 4 — IMSL Routines and LAPACK Routines Utilized Within

Generic Name of LAPACK Routines
IMSL Routine used when Linking with
High Performance Libraries

LSARG ?GERFS, ?GETRF, ?GECON, ?=S/D
LSLRG ?GETRF, ?GETRS, ?=S/D
LFCRG ?GETRF, ?GECON, ?=S/D
LFTRG ?GETRF, ?=S/D
LFSRG ?GETRS, ?=S/D
LFIRG ?GETRS, ?=S/D
LINRG ?GETRF, ?GETRI ?=S/D
LSACG ?GETRF, GETRS, ?GECON, ?=C/Z
LSLCG ?GETRF, ?GETRS, ?=C/Z
LFCCG ?GETRF, ?GECON, ?=C/Z
LFTCG ?GETRF, ?C/Z
LEFSCG ?GETRS, ?C/Z
LFICG ?GERFS, ?GETRS, ?=C/Z
LINCG ?GETRF, ?GETRI, ?=C/Z
LSLRT ?TRTRS, ?=S/D
LFCRT ?TRCON, ?=S/D
LSLCT ?TRTRS, ?=C/Z
LFCCT ?TRCON, ?=C/Z
LSADS ?PORFS, ?POTRS, ?=S/D
LSLDS ?POTRF, ?POTRS, ?=S/D
LFCDS ?POTRF, ?POCON, ?=S/D

= ROQUEWFWE Using ScaLAPACK, LAPACK, LINPACK, and EISPACK Introduction 16

Table 4 — IMSL Routines and LAPACK Routines Utilized Within

LFTDS ?POTRF, ?=S/D

LFSDS ?POTRS, ?=S/D

LFIDS ?PORFS, ?POTRS, ?=S/D
LINDS ?POTRF, ?=S/D

LSASF ?SYRFS, ?SYTRF, ?SYTRS, ?=S/D
LSLSF ?SYTRF, ?SYTRS, ?=S/D
LFCSF ?SYTRF, ?SYCON, ?=S/D
LFTSF ?SYTRF, ?=S/D

LFSSF ?SYTRF, ?=S/D

LFISF ?SYRFS, ?=S/D

LSADH ?POCON, ?POTRF, ?POTRS, ?=C/Z
LSLDH ?TRTRS, ?POTRF, ?=C/Z
LFCDH ?POTRF, ?POCON, ?=C/Z
LFTDH ?POTRF, ?=C/Z

LFSDH ?TRTRS, ?=C/Z

LFIDH ?PORFS, ?POTRS, ?=C/Z
LSAHF ?HECON, ?HERFS, ?HETRF, ?HETRS, ?=C/Z
LSLHF ?HECON, ?HETRF, ?HETRS, ?=C/Z
LFCHF ?HETRF, ?HECON, ?=C/Z
LFTHF ?HETRF, ?=C/Z

LFSHF ?HETRS, ?=C/Z

LFIHF ?HERFS, ?HETRS, ?=C/Z
LSARB ?GBTRF, ?GBTRS, ?GBRFS ?=S/D
LSLRB ?GBTRF, ?GBTRS, ?=S/D
LFCRB ?GBTRF, ?GBCON, ?=S/D
LFTRB ?GBTRF, ?=S/D

LFSRB ?GBTRS, ?=S/D

LFIRB ?GBTRS, ?GBRFS, ?=S/D
LSQORR ?GEQP3, ?GEQRF, ?0RMQR, ?TRTRS. ?=S/D
LORRV ?GEQP3, ?GEQRF, ?0RMQR, ?=S/D
LSBRR ?GEQRF, ?=S/D

LORRR ?GEQRF, ?=S/D

LSVRR ?GESVD, ?-S/D

LSVCR ?GESVD, ?=C/Z

LSGRR ?GESVD, ?=S/D

=RogueWave

Using ScaLAPACK, LAPACK, LINPACK, and EISPACK

Introduction

17

Table 4 — IMSL Routines and LAPACK Routines Utilized Within

LORSL ?TRTRS, ?ORMQR, ?=S/D

LOERR ?0RGQR, ?=S/D

EVLRG ?GEBAL, ?GEHRD, ?HSEQR ?=S/D

EVCRG ?GEEVX, ?=S/D

EVLCG ?HSEQR, ?GEBAL, ?GEHRD, ?=C/Z

EVCCG ?GEEV, ?=C/Z

EVLSF ?SYEV, ?=S/D

EVCSF ?SYEV, ?=S/D

EVLHF ?HEEV, ?=C/Z

EVCHF ?HEEV, ?=C/Z

GVLRG ?GEQRF, ?0ORMQR, ?GGHRD, ?HGEQZ, ?=S/D
GVCRG ?GEQRF, 7?ORMQR, ?GGHRD, ?HGEQZ, ?TGEVC, ?=5/D
GVLCG ?GEQRF, ?UMMQR, ?GGHRD, ?HGEQZ,?=C/Z
GVCCG ?GEQRF, °?UMMQR, ?GGHRD, ?HGEQZ,?TGEVC, ?=C/Z
GVLSP ?SYGV, ?=S/D

GVCSP ?SYGV, ?=S/D

ScaLAPACK, Blackford et al. (1997), includes a subset of LAPACK codes redesigned for use on distributed
memory MIMD parallel computers. A number of IMSL Library routines make use of a subset of the

ScaLAPACK library.

Table 5 below lists the IMSL routines that make use of ScaLAPACK codes. The intent is to provide access to
the ScaLAPACK codes through the familiar IMSL routine interface. The IMSL routines that utilize

ScaLAPACK codes have a ScaLAPACK Interface documented in addition to the FORTRAN 90 Interface. Like
the LAPACK codes, access to the ScaLAPACK codes is made by linking to the appropriate library. Details on

linking to the appropriate IMSL Library and alternate libraries for ScaLAPACK and BLAS are explained in
the online README file of the product distribution.

Table 5 — IMSL Routines and ScaLAPACK Routines Utilized Within

Generic Name of
IMSL Routine

ScaLAPACK Routines
used when Linking with
High Performance Libraries

LSARG

P?GERFS, P?GETRF, P?GETRS, ?=S/D

LSLRG

P?GETRF, P?GETRS, ?=S/D

LFCRG

P?GETRF, P?GECON, ?=S/D

LFTRG

P?GETRF, ?=S/D

LFSRG

P?GETRS, ?=S/D

LFIRG

P?GETRS, P?GERFS, ?=S/D

LINRG

P?GETRF, P?GETRI ?=S/D

=RogueWave

Using ScaLAPACK, LAPACK, LINPACK, and EISPACK

Introduction

18

Table 5 — IMSL Routines and ScaLAPACK Routines Utilized Within

Generic Name of ScaLAPACK Routines
IMSL Routine used when Linking with

High Performance Libraries
LSACG P?GETRF, P?GETRS, P?GERFS, ?=C/Z
LSLCG P?GETRF, P?GETRS, ?=C/Z
LFCCG P?GETRF, P?GECON, ?=C/Z
LFTCG P?GETRF, ?C/7Z
LFSCG P?GETRS, ?C/Z
LFICG P?GERFS, P?GETRS, ?=C/Z
LINCG P?GETRF, P?GETRI, ?=C/Z
LSLRT P?TRTRS, ?=S/D
LFCRT P?TRCON, ?=S/D
LSLCT P?TRTRS, ?=C/Z
LFCCT P?TRCON, ?=C/Z
LSADS P?PORFS, P?POTRF, P?POTRS, ?=S/D
LSLDS P?POTRF, P?POTRS, ?=S/D
LFCDS P?POTRF, P?POCON, ?=S/D
LFTDS P?POTRF, ?-S/D
LFSDS P?POTRS, ?-S/D
LFIDS P?PORFS, P?POTRS, ?=S/D
LINDS P?GETRF, P?GETRI, ?=S/D
LSADH P?POTRF, P?PORFS, P?POTRS, ?=C/Z
LSLDH P?POTRS, P?POTRF, ?=C/Z
LFCDH P?POTRF, P?POCON, ?=C/Z
LFTDH P?POTRF, ?=C/Z
LFSDH P?POTRS, ?=C/Z
LFIDH P?PORFS, P?POTRS, ?=C/Z
LSLRB P?GBTRF, P?GBTRS, ?=S/D
LSQRR P?GEQPF, P?GEQRF, P?0RMQR, P?TRTRS, ?=S/D
LQRRV P?TRTRS, P?GEQRF, P?0RMQR, ?=S/D
LORRR P?GEQRF, P?GEQPF, P?0RMQR, ?=S/D
LSVRR P?GESVD, ?-S/D
LSGRR P?GESVD, ?=S/D
LORSL P?TRTRS, P?0RMQR, ?=S/D
LQERR P?0RGQR, ?=S/D

=RogueWave

Using ScaLAPACK, LAPACK, LINPACK, and EISPACK

Introduction

19

Using ScaLAPACK Enhanced Routines

(M PI

CAPABLE

General Remarks

Use of the ScaLAPACK enhanced routines allows a user to solve large linear systems of algebraic equations
at a performance level that might not be achievable on one computer by performing the work in parallel
across multiple computers. One might also use these routines on linear systems that prove to be too large for
the address space of the target computer. Rogue Wave has tried to facilitate the use of parallel computing in
these situations by providing interfaces to ScaLAPACK routines which accomplish the task. The IMSL
Library solver interface has the same look and feel whether one is using the routine on a single computer or
across multiple computers.

The basic steps required to utilize the IMSL routines which interface with ScaLAPACK routines are:
1. Initialize MPI

Initialize the processor grid

Define any necessary array descriptors

Allocate space for the local arrays

Set up local matrices across the processor grid

Call the IMSL routine which interfaces with ScaLAPACK

Gather the results from across the processor grid

Release the processor grid

% N o o L DN

Exit MPI

Utilities are provided in the IMSL Library that facilitate these steps for the user. Each of these utilities is doc-
umented in Chapter 11, “Utilities”. We visit the steps briefly here:

1. Initialize MPI

The user should call MP_SETUP () in this step. This function is described in detail in"”Getting Started with
Modules MPI_setup_int and MPI_node_int” in Chapter 10, “Linear Algebra Operators and Generic Functions”. For
ScaLAPACK usage, suffice it to say that following a call to the function MP_SETUP (), the module
MPI_node_int will contain information about the number of processors, the rank of a processor, and the
communicator for the application. A call to this function will return the number of processors available to
the program. Since the module MPT_node_int is used by MPI_setup_int, it is not necessary to explicitly
use the module MPI_node_int. If MP_SETUP () is not called, the program computes entirely on one node.
No routine from MPI is called.

= ROQQ?WQ\{EF Using ScaLAPACK Enhanced Routines Introduction 20

2. Initialize the processor grid

SCALAPACK_SETUP (see Chapter 11, “Ultilities”) is called at this step. This call will set up the processor grid
for the user, define the context ID variable, MP_ICTXT, for the processor grid, and place MP_ICTXT into the
module GRIDINFO_INT. Use of SCALAPACK_SUPPORT will make the information in MPI_NODE_INT and

GRIDINFO_INT available to the user’s program.

3. Define any necessary array descriptors

Consider the generic matrix A which is to be carved up and distributed across the processors in the processor
grid. In ScaLAPACK parlance, we refer to A as being the “global” array A which is to be distributed across the
processor grid in 2D block cyclic fashion (see Chapter 11, “Ultilities”). Each processor in the grid will then have
access to a subset of the global array A. We refer to the subset array to which the individual processor has
access as the “local” array A0. Just as it is sometimes necessary for a program to be aware of the leading
dimension of the global array 2, it is also necessary for the program to be aware of other critical information
about the local array A0. This information can be obtained by calling the IMSL utility SCALAPACK_GETDIM.
The ScaLAPACK Library utility DESCINIT is then used to store this information in a vector. (For more infor-
mation, see the Usage Notes section of Chapter 11, “Utilities”.)

4. Allocate space for the local arrays

The array dimensions, obtained in the previous step, are used at this point to allocate space for any local
arrays that will be used in the call to the IMSL routine.

5. Set up local matrices across the processor grid

If the matrices to be used by the solvers have not been distributed across the processor grid, IMSL provides
utility routines SCALAPACK_READ and SCALAPACK_MAP to help in the distribution of global arrays across
processors. SCALAPACK_READ will read data from a file while SCALAPACK_MAP will map a global array to
the processor grid. Users may choose to distribute the arrays themselves as long as they distribute the arrays
in 2D block cyclic fashion consistent with the array descriptors that have been defined.

6. Call the IMSL routine which interfaces with ScaLAPACK
The IMSL routines which interface with ScaLAPACK are listed in Table 5.
7. Gather the results from across the processor grid

IMSL provides utility routines SCALAPACK_WRITE and SCALAPACK_UNMAP to help in the gathering of
results from across processors to a global array or file. SCALAPACK_WRITE will write data to a file while
SCALAPACK_UNMAP will map local arrays from the processor grid to a global array.

8. Release the processor grid
This is accomplished by a call to SCALAPACK_EXIT.
9. Exit MPI

A call to MP_SETUP with the argument ‘FINAL’ will shut down MPI and set the value of MP_NPROCS = 0.
This flags that MPI has been initialized and terminated. It cannot be initialized again in the same program
unit execution. No MPI routine is defined when MP_NPROCS has this value.

= ROQQ?WQ\{E{ Using ScaLAPACK Enhanced Routines Introduction

21

% Rogygmqv.‘e" Using ScaLAPACK Enhanced Routines Introduction 22

1.2
1.21
1.2.2

1.23

1.3
1.3.1

Linear Solvers

Solves a general system of linear equations Ax=b LIN_SOL_GEN
Solves a system of linear equations Ax = b,

where Ais a self-adjointmatrix LIN_SOL_SELF
Solves a rectangular system of linear

equations Ax = b, in a least-squaressense LIN_SOL_LSQ
Solves a rectangular least-squares system of linear

equations Ax = b using singular value decomposition LIN_SOL_SVD
Solves multiple systems of linear equations LIN_SOL_TRI
Computes the singular value decomposition (SVD)

of arectangular matrix, A. LIN_SVD

Large-Scale Parallel Solvers
Parallel Constrained Least-Squares Solvers
Solves a linear, non-negative constrained

least-squares system. PARALLEL_NONNEGATIVE_LSQ
Solves a linear least-squares system
with bounds onthe unknowns PARALLEL_BOUNDED_LSQ

Solution of Linear Systems, Matrix Inversion, and Q Determinant Evaluation

Real General Matrices

High accuracy linear system solution LSARG
Solves alinearsystem. LSLRG
Factors and computes condition number. LFCRG
Factors e LFTRG
Solves afterfactoring LFSRG
High accuracy linear system solution after factoring LFIRG
Computes determinant after factoring LFDRG
INVertS .. LINRG

33

42

52

61
70

83

92

93

101

109
114
120
126
131
136
141
143

=RogueWave

Chapter 1: Linear Systems

23

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

Complex General Matrices

High accuracy linear system solution. LSACG
Solves alinearsystem. LSLCG
Factors and computes condition number., LFCCG
Factors. . ..o e LFTCG
Solves a linear system afterfactoring L. LFSCG
High accuracy linear system solution after factoring LFICG
Computes determinant after factoring, LFDCG
INVertS ..o LINCG
Real Triangular Matrices

Solves alinearsystem. e LSLRT
Computes condition number LFCRT
Computes determinant after factoring, LFDRT
INVerS . . LINRT
Complex Triangular Matrices

Solves alinearsystem. e LSLCT
Computes condition number LFCCT
Computes determinant after factoring L. LFDCT
INVerS .. LINCT
Real Positive Definite Matrices

High accuracy linear system solution. LSADS
Solves alinearsystem. LSLDS
Factors and computes conditionnumber. LFCDS
Factors. . .. LFTDS
Solve a linear system after factoring LFSDS
High accuracy linear system solution after factoring LFIDS
Computes determinant after factoring LFDDS
INVeS . . LINDS
Real Symmetric Matrices

High accuracy linear system solution. LSASF
Solves alinearsystem. e LSLSF
Factors and computes condition number. LFCSF
Factors. . .. LFTSF
Solves a linear system after factoring LFSSF
High accuracy linear system solution after factoring LFISF
Computes determinant after factoring LFDSF

Complex Hermitian Positive Definite Matrices

High accuracy linear system solution. LSADH
Solves alinearsystem. LSLDH
Factors and computes conditionnumber. LFCDH

147
152
157
163
168
173
178
180

185
189
193
195

197
201
205
207

209
214
219
224
229
234
239
241

245
248
251
254
257
260
263

265
270
275

= RogueWave

Chapter 1: Linear Systems

24

1.3.8

1.3.9

1.3.10

1.3.11

Factors. LFTDH

Solves a linear system afterfactoring LFSDH
High accuracy linear system solution after factoring LFIDH
Computes determinant after factoring L. LFDDH

Complex Hermitian Matrices

High accuracy linear system solution. LSAHF
Solves alinearsystem. i LSLHF
Factors and computes condition number. oL LFCHF
Factorso LFTHF
Solves a linear system after factoring, LFSHF
High accuracy linear system solution after factoring LFIHF
Computes determinant after factoring LFDHF

Real Band Matrices in Band Storage

Solves atridiagonal system LSLTR
Solves a tridiagonal system: Cyclic Reduction. LSLCR
High accuracy linear system solution. LSARB
Solves alinearsystem. LSLRB
Factors and compute conditionnumber. LFCRB
Factors. LFTRB
Solves a linear system after factoring LFSRB
High accuracy linear system solution after factoring LFIRB
Computes determinant after factoring LFDRB

Real Band Symmetric Positive Definite Matrices in Band Storage

High accuracy linear system solution. LSAQS
Solves alinearsystem. LSLQS
Solves alinearsystem. e LSLPB
Factors and computes conditionnumber. L. LFCQS
Factorso LFTQS
Solves a linear system afterfactoring LFSQS
High accuracy linear system solution after factoring LFIQS
Computes determinant after factoring LFDQS

Complex Band Matrices in Band Storage

Solves a tridiagonal system LSLTQ
Solves a tridiagonal system: Cyclic Reduction. LSLCQ
High accuracy linear system solution. LSACB
Solves alinearsystem. LSLCB
Factors and computes condition number. o L. LFCCB
Factorso LFTCB
Solves a linear system after factoring LFSCB
High accuracy linear system solution after factoring LFICB
Computes determinant after factoring LFDCB

281
286
291
297

299
302
305
308
311
314
317

319
321
324
327
332
336
339
342
345

347
350
353
356
359
362
365
368

370
372
375
378
381
384
387
390
394

= RogueWave

Chapter 1: Linear Systems

25

1.3.12

1.3.13

1.3.14

1.3.15

1.3.16

1.3.17

1.3.18

1.3.19

1.3.20

Complex Band Positive Definite Matrices in Band Storage

High accuracy linear system solution. LSAQH
Solves alinearsystem. LSLQH
Solves alinearsystem. e LSLQB
Factors and compute condition number. LFCQH
Factors. . .. LFTQH
Solves a linear system after factoring LFSQH
High accuracy linear system solution after factoring LFIQH
Computes determinant after factoring LFDQH

Real Sparse Linear Equation Solvers

Solves asparselinearsystem.......... LSLXG
Factors. . ..o LFTXG
Solves a linear system after factoring LFSXG

Complex Sparse Linear Equation Solvers

Solves asparse linearsystem. LSLZG
Factors. . .. LFTZG
Solves a linear system after factoring LFSZG

Real Sparse Symmetric Positive Definite Linear Equation Solvers

Solves asparselinearsystem.......... LSLXD
Symbolic Factor. LSCXD
Computes Factor LNFXD
Solves a linear system after factoring LFSXD

Complex Sparse Hermitian Positive Definite Linear Equation Solvers

Solves asparselinearsystem.......... LSLZD
Computes Factor LNFZD
Solves a linear system afterfactoring LFSZD

Real Toeplitz Matrices in Toeplitz Storage
Solves alinearsystem. LSLTO

Complex Toeplitz Matrices in Toeplitz Storage
Solves alinearsystem. LSLTC

Complex Circulant Matrices in Circulant Storage
Solves alinearsystem. e LSLCC

Iterative Methods

Preconditioned conjugate gradient PCGRC
Jacobi conjugate gradient JCGRC
Generalized minimumresidual GMRES
Partial Singular Value Decomposition ARPACK_SVD

396
399
402
405
408
411
414
417

419
424
429

432
437
442

446
450
454
459

463
467
471

475

477

479

482
488
491
502

= RogueWave

Chapter 1: Linear Systems

26

14
1.41

1.4.2

143

Linear Least Squares and Matrix Factorization

Least Squares, QR Decomposition and Generalized Inverse

Solves a Least-squares system.
Solves a Least-squares system. i e
High accuracy Leastsquares. i
Linearly constrained Leastsquares
QR decomposition
Accumulation of QR decomposition.
QR decomposition Utilities.
QRfactorupdate

Cholesky Factorization

Cholesky factoring for rank deficient matrices
Cholesky factorupdate
Cholesky factordown-date.

Singular Value Decomposition (SVD)

Real singular value decomposition,
Complex singular value decomposition
Generalized INVErSE.

503
509
516
519
523
530
535
542

546
549
552

556
563
567

= RogueWave

Chapter 1: Linear Systems

27

Usage Notes

Section 1.1 describes routines for solving systems of linear algebraic equations by direct matrix factorization
methods, for computing only the matrix factorizations, and for computing linear least-squares solutions.

Section 1.2 describes routines for solving systems of parallel constrained least-squares.

Many of the routines described in sections 1.3 and 1.4 are for matrices with special properties or structure.
Computer time and storage requirements for solving systems with coefficient matrices of these types can
often be drastically reduced, using the appropriate routine, compared with using a routine for solving a gen-
eral complex system.

The appropriate matrix property and corresponding routine can be located in the “Routines” section. Many
of the linear equation solver routines in this chapter are derived from subroutines from LINPACK, Dongarra
et al. (1979). Other routines have been developed by Visual Numerics, derived from draft versions of
LAPACK subprograms, Bischof et al. (1988), or were obtained from alternate sources.

A system of linear equations is represented by Ax = b where A is the n X n coefficient data matrix, b is the
known right-hand-side n-vector, and x is the unknown or solution n-vector. Figure 1-1 summarizes the rela-
tionships among the subroutines. Routine names are in boxes and input/output data are in ovals. The suffix
** in the subroutine names depend on the matrix type. For example, to compute the determinant of A use
LFC** or LEFT** followed by LFD**.

The paths using LSA** or LFI* * use iterative refinement for a more accurate solution. The path using
LSA** is the same as using LFC* * followed by LFI**. The path using LSL* * is the same as the path using
LFC** followed by LFS* *. The matrix inversion routines LIN* * are available only for certain matrix types.

Matrix Types

The two letter codes for the form of coefficient matrix, indicated by ** in Figure 1.1, are as follows:

RG Real general (square) matrix.

CG Complex general (square) matrix.

TR Oor CR Real tridiagonal matrix.

RB Real band matrix.

TQ or CQ Complex tridiagonal matrix.

CB Complex band matrix.

SF Real symmetric matrix stored in the upper half of a square matrix.

DS Real symmetric positive definite matrix stored in the upper half of a square matrix.

DH Complex Hermitian positive definite matrix stored in the upper half of a complex
square matrix.

HF Complex Hermitian matrix stored in the upper half of a complex square matrix.

QS or PB Real symmetric positive definite band matrix.

QH or QOB Complex Hermitian positive definite band matrix.

= ROQQ?WQ\{EF Usage Notes Chapter 1: Linear Systems 28

XG Real general sparse matrix.

ZG Complex general sparse matrix.

XD Real symmetric positive definite sparse matrix.

zD Complex Hermitian positive definite sparse matrix.

v v

LET*™ LECY ™

c}'s

Condition
munber

Factorization

¥ ¥ ¥ ¥
LIN** LSL** LEI*™ LED*
LSL** LE3%*
| |
¥
or T
x=A%b
Figure 1.1 — Solution and Factorization of Linear Systems

Solution of Linear Systems

The simplest routines to use for solving linear equations are LSL** and LSA* *. For example, the mnemonic
for matrices of real general form is RG. So, the routines LSARG and LSLRG are appropriate to use for solving
linear systems when the coefficient matrix is of real general form. The routine LSARG uses iterative refine-
ment, and more time than LSLRG, to determine a high accuracy solution.

The high accuracy solvers provide maximum protection against extraneous computational errors. They do
not protect the results from instability in the mathematical approximation. For a more complete discussion of
this and other important topics about solving linear equations, see Rice (1983), Stewart (1973), or Golub and
van Loan (1989).

Multiple Right Sides

There are situations where the LSL* * and LSA* * routines are not appropriate. For example, if the linear sys-
tem has more than one right-hand-side vector, it is most economical to solve the system by first calling a
factoring routine and then calling a solver routine that uses the factors. After the coefficient matrix has been

= R{ngﬁ.lnew'g\{er Usage Notes Chapter 1: Linear Systems 29

factored, the routine LFS* * or LFI** can be used to solve for one right-hand side at a time. Routines LFI * *
uses iterative refinement to determine a high accuracy solution but requires more computer time and storage
than routines LFS* *.

Determinants

The routines for evaluating determinants are named LFD* *. As indicated in Figure 1-1, these routines
require the factors of the matrix as input. The values of determinants are often badly scaled. Additional com-
plications in structures for evaluating them result from this fact. See Rice (1983) for comments on
determinant evaluation.

Iterative Refinement

Iterative refinement can often improve the accuracy of a well-posed numerical solution. The iterative refine-
ment algorithm used is as follows:

xg=A"1b
Fori=1,50
r; = Ax;_1 — b computed in higher precision
pi=A"lr
Xi=Xi-17Pi
if (IIpill o < Ellx;ll o) Exit
End for

Error — Matrix is too ill-conditioned

If the matrix A is in single precision, then the residual r; = Ax;_; — b is computed in double precision. If A is in
double precision, then quadruple-precision arithmetic routines are used.

The use of the value 50 is arbitrary. In fact a single correction is usually sufficient. It is also helpful even when
r; is computed in the same precision as the data.

Matrix Inversion

An inverse of the coefficient matrix can be computed directly by one of the routines named LIN**. These
routines are provided for general matrix forms and some special matrix forms. When they do not exist, or
when it is desirable to compute a high accuracy inverse, the two-step technique of calling the factoring rou-
tine followed by the solver routine can be used. The inverse is the solution of the matrix system AX = I where

I denotes the 1 X 1 identity matrix, and the solution is X = A™1,

Singularity

The numerical and mathematical notions of singularity are not the same. A matrix is considered numerically
singular if it is sufficiently close to a mathematically singular matrix. If error messages are issued regarding
an exact singularity then specific error message level reset actions must be taken to handle the error condi-
tion. By default, the routines in this chapter stop. The solvers require that the coefficient matrix be

= R{ngﬁ.lnewlg\{er Usage Notes Chapter 1: Linear Systems

30

numerically nonsingular. There are some tests to determine if this condition is met. When the matrix is fac-
tored, using routines LFC* *, the condition number is computed. If the condition number is large compared
to the working precision, a warning message is issued and the computations are continued. In this case, the
user needs to verify the usability of the output. If the matrix is determined to be mathematically singular, or
ill-conditioned, a least-squares routine or the singular value decomposition routine may be used for further
analysis.

Special Linear Systems

Toeplitz matrices have entries which are constant along each diagonal, for example:

Py P Py P3
4= Py Py P Py
| P Py Py P

P PoH P4 Dy
Real Toeplitz systems can be solved using LSLTO. Complex Toeplitz systems can be solved using LSLTC.

Circulant matrices have the property that each row is obtained by shifting the row above it one place to the
right. Entries that are shifted off at the right reenter at the left. For example:

Py
Py
P
%)

%)
Py
Py
P3

P3
P
Py
Py

Py
Ps3
Py
Py

Complex circulant systems can be solved using LSLCC.

Iterative Solution of Linear Systems

The preconditioned conjugate gradient routines PCGRC and JCGRC can be used to solve symmetric positive
definite systems. The routines are particularly useful if the system is large and sparse. These routines use
reverse communication, so A can be in any storage scheme. For general linear systems, use GMRES.

QR Decomposition

The QR decomposition of a matrix A consists of finding an orthogonal matrix Q, a permutation matrix P, and
an upper trapezoidal matrix R with diagonal elements of nonincreasing magnitude, such that AP = QR. This
decomposition is determined by the routines LORRR or LQRRV. It returns R and the information needed to
compute Q. To actually compute Q use LQERR. Figure 1.2 summarizes the relationships among the
subroutines.

The QR decomposition can be used to solve the linear system Ax = b. This is equivalent to Rx = QT Pb. The

routine LQRSL, can be used to find Q' Pb from the information computed by LORRR. Then x can be computed
by solving a triangular system using LSLRT. If the system Ax = b is overdetermined, then this procedure
solves the least-squares problem, i.e., it finds an x for which

Usage Notes Chapter 1: Linear Systems

= RogueWave

| Ax— blI3
is a minimum.

If the matrix A is changed by a rank-1 update, A—~A + axy’, the QR decomposition of A can be
updated/down-dated using the routine LUPQR. In some applications a series of linear systems which differ
by rank-1 updates must be solved. Computing the QR decomposition once and then updating or down-dat-
ing it usually faster than newly solving each system.

LORRR Of LQRRV

A—>4 +ax” ¢

LUBGQR ' QR decompcrsflion)
[
v !

LOERR LORSL

05, 075,

e Least-squares
sohution

Figure 1.2 — Least-Squares Routine

= ROQQ?WQ\{EF Usage Notes Chapter 1: Linear Systems 32

LIN_SOL_GEN

HLGH

PE (E

more. ..

Solves a general system of linear equations Ax = b. Using optional arguments, any of several related compu-
tations can be performed. These extra tasks include computing the LU factorization of A using partial

pivoting, representing the determinant of A, computing the inverse matrix A}, and solving ATx = b or Ax = b
given the LU factorization of A.

Required Arguments

A — Array of size n X n containing the matrix. (Input [/Output])
If the packaged option 1in_sol_gen_save_LU is used then the LU factorization of A is saved in A.
For solving efficiency, the diagonal reciprocals of the matrix U are saved in the diagonal entries of A.

B — Array of size n X nb containing the right-hand side matrix. (Input [/Output])
If the packaged option 1in_sol_gen_save_LU is used then input B is used as work storage and is
not saved.

X — Array of size n X nb containing the solution matrix.(Output)

Optional Arguments

NROWS = n (Input)
Uses array A(1:n, 1:n) for the input matrix.
Default: n = size (3, 1)
NRHS = nb (Input)
Uses array b(1:n, 1:nb) for the input right-hand side matrix.
Default: nb = size(b, 2)
Note that b must be a rank-2 array.
pivots = pivots(:) (Output[/Input])
Integer array of size n that contains the individual row interchanges. To construct the permuted order
so that no pivoting is required, define an integer array ip(n). Initialize ip(i) =7, i = 1, n and then exe-
cute the loop, after calling 1in_sol_gen,

k=pivots (i)
interchange ip (i) and ip(k), i=1,n

The matrix defined by the array assignment that permutes the rows, A(1:n, 1:n) = A(ip(1:n), 1:n),
requires no pivoting for maintaining numerical stability. Now, the optional argument “iopt="and
the packaged option number ?_1in_sol_gen no_pivoting can be safely used for increased effi-
ciency during the LU factorization of A.

det = det (1:2) (Output)
Array of size 2 of the same type and kind as 2 for representing the determinant of the input matrix.
The determinant is represented by two numbers. The first is the base with the sign or complex angle of

= ROQQ?WQ\{E{ LIN_SOL_GEN Chapter 1: Linear Systems

33

the result. The second is the exponent. When det(2) is within exponent range, the value of this expres-
sion is given by abs(det(1))* *det(2) * (det(1))/abs(det(1)). If the matrix is not singular,
abs(det(1)) = radix(det); otherwise, det (1) = 0, and det(2) = — huge(abs(det(1))).

ainv = ainv(:,:) (Output)
Array of the same type and kind as A(1 :n, 1:n). It contains the inverse matrix, A~!, when the input
matrix is nonsingular.

iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix; used for passing optional data to the
routine. The options are as follows:

Packaged Options for 1in_sol_gen
Option Prefix = ? Option Name Option Value
s_,d ,c_,z_ lin_sol_gen_set_small 1
s_,d_,c_,z_ lin_sol_gen_save_LU 2
s_,d ,c_,z_ lin_sol_gen_solve_A 3
s_,d ,c_,z_ 1lin_sol_gen_solve_ADJ 4
s_,d_,c_,z_ 1lin_sol_gen_no_pivoting 5
s_,d_,c_,z_ 1lin_sol_gen_scan_for_NaN 6
s_,d_,c_,z_ lin_sol_gen_no_sing_mess 7
s ,d ,c_,z_ 1lin_sol_gen_A_is_sparse 8

iopt(I0) = ?_options(?_lin_sol_gen_set_small, Small)
Replaces a diagonal term of the matrix U if it is smaller in magnitude than the value Small using the
same sign or complex direction as the diagonal. The system is declared singular. A solution is approx-
imated based on this replacement if no overflow results.
Default: the smallest number that can be reciprocated safely

iopt(I0) = ?_options (?_lin_sol_gen_save_ LU, ?_dummy)
Saves the LU factorization of A. Requires the optional argument “pivots=" if the routine will be used
later for solving systems with the same matrix. This is the only case where the input arrays A and b are
not saved. For solving efficiency, the diagonal reciprocals of the matrix U are saved in the diagonal
entries of A.
iopt(I0) = ?_options (?_lin_sol_gen_solve_ A, ?_dummy)
Uses the LU factorization of A computed and saved to solve Ax = b.
iopt(I0) = ?_options (?_lin_sol_gen_solve_ADJ, ?_dummy)
Uses the LU factorization of A computed and saved to solve ATx = b.
iopt(I0) = ?_options(?_lin_sol_gen_no_pivoting, ?_dummy)
Does no row pivoting. The array pivots (:), if present, are output as pivots (i) =i, fori=1, ..., n.
iopt(I0) = ?_options (?_lin_sol_gen_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that
isNaN(a(i,j)) .or. isNan(b(i,j)) == .true.
See the isNaN() function, Chapter 10.
Default: Does not scan for NaNs.
iopt(I0) = ?_options (?_lin_sol_gen_no_sing_mess, ?_dummy)
Do not output an error message when the matrix A is singular.

= Rogygmﬂn\{q LIN_SOL_GEN Chapter 1: Linear Systems

34

iopt(I0) = ?_options (?_lin_sol_gen A is_sparse, ?_dummy)
Uses an indirect updating loop for the LU factorization that is efficient for sparse matrices where all
matrix entries are stored.

FORTRAN 90 Interface

Generic: CALL LIN SOL_GEN(A,B,X [,...])

Specific: The specific interface names are S_LIN_SOL_GEN, D_LIN_SOL_GEN, C_LIN_SOL_GEN,
and Z_LIN_SOL_GEN.

Description

Routine LIN_SOL_GEN solves a system of linear algebraic equations with a nonsingular coefficient matrix A.
It first computes the LU factorization of A with partial pivoting such that LU = A. The matrix U is upper tri-
angular, while the following is true:

L'a=Lr.pP,L, P, |~ LPA=U

The factors P; and L; are defined by the partial pivoting. Each P, is an interchange of row i with row j > 1.
Thus, P; is defined by that value of j. Every

T

i

Li=1+me

is an elementary elimination matrix. The vector m; is zero in entries 1, ..., i. This vector is stored as column i in
the strictly lower-triangular part of the working array containing the decomposition information. The recip-
rocals of the diagonals of the matrix U are saved in the diagonal of the working array. The solution of the
linear system Ax = b is found by solving two simpler systems,

y=L'bandx=U"y
More mathematical details are found in Golub and Van Loan (1989, Chapter 3).

Fatal and Terminal Error Messages

See the messages.gls file for error messages for LIN_SOL_GEN. The messages are numbered 161-175; 181-195;
201-215; 221-235.

Examples

Example 1: Solving a Linear System of Equations

This example solves a linear system of equations. This is the simplest use of 1in_sol_gen. The equations
are generated using a matrix of random numbers, and a solution is obtained corresponding to a random
right-hand side matrix. Also, see operator_ex01, supplied with the product examples, for this example
using the operator notation.

use lin_sol_gen_int

= R{ngﬁ.lnewlg\{er LIN_SOL_GEN Chapter 1: Linear Systems

35

use rand_gen_int
use error_option_packet

implicit none

! This is Example 1 for LIN_SOL_GEN.

integer, parameter :: n=32

real (kind(1e0)), parameter one=1e0
real (kind(1e0)) err

real (kind(1e0)) A(n,n), b(n,n), x(n,n),

! Generate a random matrix.
call rand_gen(y)

! Generate random right-hand sides.
call rand_gen (y)
b = reshape(y, (/n,n/))

! Compute the solution matrix of Ax=Db.
call lin_sol_gen(A, b, x)

! Check the results for small residuals.
res = b - matmul (A, x)

err = maxval (abs(res)) /sum(abs (A)+abs (b))

y(n**2)

if (err <= sqgrt(epsilon(one))) then
write (*,*) 'Example 1 for LIN_SOL_GEN is correct.'
end if
end
Output

Example 1 for LIN_SOL_GEN is correct.

Example 2: Matrix Inversion and Determinant

This example computes the inverse and determinant of A, a random matrix. Tests are made on the conditions

A4 =1

and

det(A7) =det(4)

Also, see operator_ex02.

use lin_sol_gen_int
use rand_gen_int

implicit none

=RogueWave

LIN_SOL_GEN

Chapter 1: Linear Systems

36

! This is Example 2 for LIN_SOL_GEN.

integer i

integer, parameter :: n=32

real (kind(1e0)), parameter :: one=1.0e0, zero=0.0e0

real (kind(1e0)) err

real (kind(1e0)) A(n,n), b(n,0), inv(n,n), x(n,0), res(n,n), &
v(n**2), determinant(2), inv_determinant(2)

! Generate a random matrix.
call rand_gen (y)
A = reshape(y, (/n,n/))
! Compute the matrix inverse and its determinant.

call lin_sol_gen(A, b, x, nrhs=0, &
ainv=inv, det=determinant)

! Compute the determinant for the inverse matrix.

call lin_sol_gen(inv, b, x, nrhs=0, &
det=inv_determinant)

! Check residuals, A times inverse = Identity.

res = matmul (A, inv)
do i=1, n

res(i,i) = res(i,i) - one
end do
err = sum(abs(res)) / sum(abs(a))
if (err <= sqgrt(epsilon(one))) then
if (determinant(l) == inv_determinant(l) .and. &
(abs (determinant (2) +inv_determinant (2)) &
<= abs (determinant (2)) *sgrt (epsilon(one)))) then
write (*,*) 'Example 2 for LIN_SOL_GEN is correct.'
end if
end if
end

Output

Example 2 for LIN_SOL_GEN is correct.

Example 3: Solving a System with Iterative Refinement

This example computes a factorization of a random matrix using single-precision arithmetic. The double-pre-
cision solution is corrected using iterative refinement. The corrections are added to the developing solution
until they are no longer decreasing in size. The initialization of the derived type array

iopti(1l:2) = s_option(0,0.0e0) leaves the integer part of the second element of iopti (:) at the

= Rogygmq\{q LIN_SOL_GEN Chapter 1: Linear Systems

value zero. This stops the internal processing of options inside 1in_sol_gen. It results in the LU factoriza-
tion being saved after exit. The next time the routine is entered the integer entry of the second element of
iopt (:) results in a solve step only. Since the LU factorization is saved in arrays A (:, :) and ipivots(:),
at the final step, solve only steps can occur in subsequent entries to 1in_sol_gen. Also, see
operator_ex03, Chapter 10.

use lin_sol_gen_int
use rand_gen_int

implicit none

! This is Example 3 for LIN_SOL_GEN.

integer, parameter :: n=32

real (kind(1e0)), parameter :: one=1.0e0, zero=0.0e0
real (kind(1d0)), parameter :: d_zero=0.0d0

integer ipivots(n)

real (kind(1le0)) a(n,n), b(n,1l), x(n,1l), w(n**2)

real (kind(1e0)) change_new, change_old
real (kind(1d0)) c¢(n,1), d(n,n), yv(n,1)
type (s_options) iopti(2)=s_options (0, zero)

! Generate a random matrix.

call rand_gen (w)
a = reshape(w, (/n,n/))

! Generate a random right hand side.
call rand _gen(b(l:n,1))
! Save double precision copies of the matrix and right hand side.

d = a
c =Db

! Start solution at zero.

vy = d_zero
change_old = huge (one)

! Use packaged option to save the factorization.
iopti(l) = s_options(s_lin_sol_gen_save_LU, zero)

iterative_refinement: do
b = ¢ - matmul (4d,vy)
call lin_sol_gen(a, b, x, &
pivots=ipivots, iopt=iopti)
Yy =X +Yy
change_new = sum(abs(x))

! Exit when changes are no longer decreasing.

= Rogygmq\{q LIN_SOL_GEN Chapter 1: Linear Systems

38

if (change_new >= change_old) &
exit iterative_refinement
change_old = change_new

| Use option to re-enter code with factorization saved; solve only.
iopti(2) = s_options(s_lin_sol_gen_solve_A, zero)
end do iterative_refinement

write (*,*) 'Example 3 for LIN_SOL_GEN is correct.'
end

Output

Example 3 for LIN_SOL_GEN is correct.

Example 4: Evaluating the Matrix Exponential

This example computes the solution of the ordinary differential equation problem

dy
@

with initial values y(0) = y,. For this example, the matrix A is real and constant with respect to t. The unique
solution is given by the matrix exponential:

»(1) = ey,

This method of solution uses an eigenvalue-eigenvector decomposition of the matrix

A= XDXx !

to evaluate the solution with the equivalent formula

y(t) = XeDtZO

where

—1
zo=X "y

is computed using the complex arithmetic version of 1in_sol_gen. The results for y(t) are real quantities,
but the evaluation uses intermediate complex-valued calculations. Note that the computation of the complex
matrix X and the diagonal matrix D is performed using the IMSL MATH /LIBRARY FORTRAN 77 interface
to routine EVCRG. This is an illustration of intermixing interfaces of FORTRAN 77 and Fortran 90 code. The
information is made available to the Fortran 90 compiler by using the FORTRAN 77 interface for EVCRG.
Also, see operator_ex04, supplied with the product examples, where the Fortran 90 function EIG () has
replaced the call to EVCRG.

use lin_sol_gen_int
use rand_gen_int
use Numerical_Libraries

= ROQQ?WQ\{E{ LIN_SOL_GEN Chapter 1: Linear Systems

39

implicit none

! This is Example 4 for LIN_SOL_GEN.

integer, parameter :: n=32, k=128
real (kind(1e0)), parameter :: one=1.0e0, t_max=1, delta_t=t_max/ (k-1)
real (kind(1e0)) err, A(n,n), atemp(n,n), ytemp(n**2)

real (kind(1e0)) t(k), y(n,k), y_prime(n,k)

complex (kind(1le0)) EVAL(n), EVEC(n,n)

complex (kind(le0)) x(n,n), z_0(n,1), y.0(n,1), d(n)
integer i

! Generate a random matrix in an F90 array.

call rand_gen (ytemp)
atemp = reshape(ytemp, (/n,n/))

! Assign data to an F77 array.
A = atemp

! Use IMSL Numerical Libraries F77 subroutine for the
! eigenvalue-eigenvector calculation.
CALL EVCRG(N, A, N, EVAL, EVEC, N)

! Generate a random initial value for the ODE system.
call rand_gen(ytemp(1l:n))
yv_0(1l:n,1) = ytemp(l:n)

! Assign the eigenvalue-eigenvector data to F90 arrays.
d = EVAL; x = EVEC

! Solve complex data system that transforms the initial values, Xz_0=y_0.

call lin_sol_gen(x, y_0, z_0)
t = (/(i*delta_t,1i=0,k-1

! Compute v and y' at the values t(l:k).
vy = matmul (x, exp(spread(d,2,k)*spread(t,1l,n))* &
spread(z_0(1:n,1),2,k))
y_prime = matmul (x, spread(d,2,k)* &
exp (spread(d, 2,k) *spread(t,1,n))* &
spread(z_0(1:n,1),2,k))

! Check results. Is y' - Ay = 07
err = sum(abs(y_prime-matmul (atemp,y))) / &
(sum(abs (atemp)) *sum(abs (v)))
if (err <= sgrt(epsilon(one))) then
write (*,*) 'Example 4 for LIN_SOL_GEN is correct.'
end if
end

= Roguewvuve LIN_SOL_GEN

Chapter 1: Linear Systems

40

Output

Example 4 for LIN_SOL_GEN is c orrect.

= Rogygmq\{q LIN_SOL_GEN Chapter 1: Linear Systems 41

LIN_SOL_SELF

HIGH

PE (E

more. ..

Solves a system of linear equations Ax = b, where A is a self-adjoint matrix. Using optional arguments, any of
several related computations can be performed. These extra tasks include computing and saving the factor-

ization of A using symmetric pivoting, representing the determinant of A, computing the inverse matrix A_l,
or computing the solution of Ax = b given the factorization of A. An optional argument is provided indicat-
ing that A is positive definite so that the Cholesky decomposition can be used.

Required Arguments

A — Array of size n X n containing the self-adjoint matrix. (Input [/Output])
If the packaged option 1in_sol_self save_factors is used then the factorization of A is saved in
A. For solving efficiency, the diagonal reciprocals of the matrix R are saved in the diagonal entries of A
when the Cholesky method is used.

B — Array of size n X nb containing the right-hand side matrix. (Input [/ Output])
If the packaged option 1in_sol_self_ save_factors is used then input B is used as work storage
and is not saved.

X — Array of size n X nb containing the solution matrix. (Output)

Optional Arguments

NROWS = n (Input)
Uses array A(1:n, 1:n) for the input matrix.
Default: n = size(a, 1)
NRHS = nb (Input)
Uses the array b(1:n, 1:nb) for the input right-hand side matrix.
Default: nb = size(b, 2)
Note that b must be a rank-2 array.

pivots = pivots(:) (Output[/Input])
Integer array of size n + 1 that contains the individual row interchanges in the first n locations.
Applied in order, these yield the permutation matrix P. Location n + 1 contains the number of the first
diagonal term no larger than Small, which is defined on the next page of this chapter.

det = det (1:2) (Output)
Array of size 2 of the same type and kind as A for representing the determinant of the input matrix.
The determinant is represented by two numbers. The first is the base with the sign or complex angle of
the result. The second is the exponent. When det(2) is within exponent range, the value of the deter-
minant is given by the expression abs(det(1))**det(2) * (det(1))/abs(det(1)). If the matrix is not
singular, abs(det(1)) = radix(det); otherwise, det(1) = 0, and det(2) = -huge(abs(det(1))).

ainv = ainv(;:) (Output)
Array of the same type and kind as A(1: 1, 1:n). It contains the inverse matrix, A~ when the input
matrix is nonsingular.

= ROQQ?WQ\{E{ LIN_SOL_SELF Chapter 1: Linear Systems 42

iopt= iopt(:) (Input)
Derived type array with the same precision as the input matrix; used for passing optional data to the
routine. The options are as follows:

Packaged Options for 1in_sol_self
Option Prefix = ? Option Name Option Value
s_,d_,c_,z_ lin_sol_self_set_small 1
s_,d_,c_,z_ lin_sol_self_save_factors 2
s_,d_,c_,z_ lin_sol_self_no_pivoting 3
s_,d_,c_,z_ lin_sol_self_use_Cholesky 4
s_,d_,c_,z_ lin_sol_self_solve_A 5
s_,d_,c_,z_ 1lin_sol_self_scan_for_NaN 6
s_,d_,c_,z_ lin_sol_self_no_sing_mess 7

iopt(I0) = ?_options(?_lin_sol_self set_small, Small)
When Aasen’s method is used, the tridiagonal system Tu = v is solved using LU factorization with par-
tial pivoting. If a diagonal term of the matrix U is smaller in magnitude than the value Small, it is
replaced by Small. The system is declared singular. When the Cholesky method is used, the upper-tri-
angular matrix R, (see Description), is obtained. If a diagonal term of the matrix R is smaller in
magnitude than the value Small, it is replaced by Small. A solution is approximated based on this
replacement in either case.
Default: the smallest number that can be reciprocated safely

iopt(I0) = ?_options (?_lin_sol_self_save_factors, ?_dummy)
Saves the factorization of A. Requires the optional argument “pivots=" if the routine will be used for
solving further systems with the same matrix. This is the only case where the input arrays A and b are
not saved. For solving efficiency, the diagonal reciprocals of the matrix R are saved in the diagonal
entries of A when the Cholesky method is used.
iopt(I0) = ?_options (?_lin_sol_self no_pivoting, ?_dummy)
Does no row pivoting. The array pivots(:), if present, satisfies pivots(i) =i+ 1fori=1,...,n-1
when using Aasen’s method. When using the Cholesky method, pivots(i) =ifori=1, ..., n.
iopt(I0) = ?_options(?_lin_sol_self use_Cholesky, ?_dummy)
The Cholesky decomposition PAPT = R™R is used instead of the Aasen method.
iopt(I0) = ?_options (?_lin_sol_self_solve_A, ?_dummy)
Uses the factorization of A computed and saved to solve Ax = b.
iopt(I0) = ?_options (?_lin_sol_self_ scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that
isNaN(a(i,j)) .or. isNan(b(i,j)) == .true.
See the isNaN() function, Chapter 10.
Default: Does not scan for NaNs
iopt(I0) = ?_options (?_lin_sol_self _no_sing_mess, ?_dummy)
Do not print an error message when the matrix A is singular.

FORTRAN 90 Interface

Generic: CALL LIN_SOL_SELF (A, B,X [,...])

= Rogygmﬂn\{q LIN_SOL_SELF Chapter 1: Linear Systems

Specific: The specific interface names are S_LIN_SOL_SELF, D_LIN_SOL_SELF,
C_LIN_SOL_SELF, and Z_LIN_SOL_SELF.
Description

Routine LIN_SOL_SELF routine solves a system of linear algebraic equations with a nonsingular coefficient
matrix A. By default, the routine computes the factorization of A using Aasen’s method. This decomposition
has the form

paPT = L1L”

where P is a permutation matrix, L is a unit lower-triangular matrix, and T is a tridiagonal
self-adjoint matrix. The solution of the linear system Ax = b is found by solving simpler systems,

u=L"Pb
Tv=u
and
x=PlLTy
More mathematical details for real matrices are found in Golub and Van Loan (1989, Chapter 4).

When the optional Cholesky algorithm is used with a positive definite, self-adjoint matrix, the factorization
has the alternate form

PAP"=R"R

where P is a permutation matrix and R is an upper-triangular matrix. The solution of the linear system
Ax = b is computed by solving the systems

u=R"Pb
and
x=P'R
The permutation is chosen so that the diagonal term is maximized at each step of the decomposition. The
individual interchanges are optionally available in the argument “pivots”.
Fatal and Terminal Error Messages

See the messages.gls file for error messages for LIN_SOL_SELF. These error messages are numbered 321—
336; 341-356; 361-376; 381-396.

= ROQQ?WQ\{E{ LIN_SOL_SELF Chapter 1: Linear Systems

44

Examples

Example 1: Solving a Linear Least-squares System

This example solves a linear least-squares system Cx = d, where C,,,,,, is a real matrix with m > n. The least-

squares solution is computed using the self-adjoint matrix

A=C'c
and the right-hand side

b=A4a"d

The n X n self-adjoint system Ax = b is solved for x. This solution method is not as satisfactory, in terms of
numerical accuracy, as solving the system Cx = d directly by using the routine 1in_sol_lsqg. Also, see

operator_ex05, Chapter 10.

use lin_sol_self_ int
use rand_gen_int

implicit none

! This is Example 1 for LIN_SOL_SELF.

integer, parameter :: m=64, n=32

real (kind(1e0)), parameter :: one=1e0

real (kind(1e0)) err

real (kind(1le0)), dimension(n,n) :: A, b, x,
C(m,n), d(m,n)

| Generate two rectangular random matrices.
call rand_gen(y)
C = reshape(y, (/m,n/))

call rand_gen (y)
d = reshape(y, (/m,n/))

y(m*n) , &

! Form the normal equations for the rectangular system.

A = matmul (transpose(C),C)
b = matmul (transpose(C),d)

! Compute the solution for Ax = b.
call lin_sol_self (A, b, x)

! Check the results for small residuals.
res = b - matmul (A, x)
err = maxval (abs(res))/sum(abs (A)+abs (b))

if (err <= sqgrt(epsilon(one))) then

write (*,*) 'Example 1 for LIN_SOL_SELF is correct.'
end if
end

=RogueWave

LIN_SOL_SELF

Chapter 1: Linear Systems

45

Output

Example 1 for LIN_SOL_SELF is correct.

Example 2: System Solving with Cholesky Method

This example solves the same form of the system as Example 1. The optional argument “iopt="is used to
note that the Cholesky algorithm is used since the matrix A is positive definite and self-adjoint. In addition,

the sample covariance matrix

I =c¢°4"

is computed, where

2 _ lld—cxl?
O

- m—n

the inverse matrix is returned as the “ainv=" optional argument. The scale factor o>and I are computed

after returning from the routine. Also, see operator_ex06, Chapter 10.
use lin_sol_self_ int
use rand_gen_int
use error_option_packet

implicit none

! This is Example 2 for LIN_SOL_SELF.

integer, parameter :: m=64, n=32

real (kind(1e0)), parameter :: one=1.0e0, zero=0.0e0

real (kind (1e0)) err

real (kind(1le0)) a(n,n), b(n,1), c(m,n), d(m,1l), cov(n,n), x(n,1l), &
res(n,1l), y(m*n)

type(s_options) :: iopti(l)=s_options(0,zero)

! Generate a random rectangular matrix and a random right hand side.

call rand_gen (y)
¢ = reshape(y, (/m,n/))

call rand_gen(d(l:n,1))

! Form the normal equations for the rectangular system.

a matmul (transpose(c),c)
b = matmul (transpose(c),d)

! Use packaged option to use Cholesky decomposition.
iopti(l) = s_options(s_lin_sol_self Use_ Cholesky, zero)

! Compute the solution of Ax=b with optional inverse obtained.

= ROQUEWVGVE LIN_SOL_SELF

Chapter 1: Linear Systems

46

call lin_sol_self(a, b, x, ainv=cov, &
iopt=iopti)

I Compute residuals, x - (inverse)*b, for consistency check.
res = x - matmul (cov,b)

! Scale the inverse to obtain the covariance matrix.
cov = (sum((d-matmul(c,x))**2)/(m-n)) * cov

! Check the results.

err = sum(abs(res)) /sum(abs (cov))

if (err <= sqgrt(epsilon(one))) then
write (*,*) 'Example 2 for LIN_SOL_SELF is correct.'
end if
end
Output

Example 2 for LIN_SOL_SELF is correct.

Example 3: Using Inverse Iteration for an Eigenvector

This example illustrates the use of the optional argument “iopt="to reset the value of a Small diagonal term
encountered during the factorization. Eigenvalues of the self-adjoint matrix

A=c'c
are computed using the routine 1in_eig_self. An eigenvector, corresponding to one of these eigenvalues,

A, is computed using inverse iteration. This solves the near singular system (A — Al)x = b for an eigenvector, x.
Following the computation of a normalized eigenvector

y= X
x|
the consistency condition
A=yl 4y

is checked. Since a singular system is expected, suppress the fatal error message that normally prints when
the error post-processor routine error_post is called within the routine 1in_sol_self. Also, see
operator_ex07, Chapter 10.

use lin_sol_self_int
use lin_eig_self_int
use rand_gen_int

use error_option_packet

= Rogygmq\{q LIN_SOL_SELF Chapter 1: Linear Systems

47

implicit none
! This is Example 3 for LIN_SOL_SELF.

integer i, tries

integer, parameter :: m=8, n=4, k=2

integer ipivots (n+1)

real (kind(1d0)), parameter :: one=1.0d0, zero=0.0d0

real (kind (1d0)) err

real (kind(1d0)) a(n,n), b(n,1l), c(m,n), x(n,1), y(m*n), &
e(n), atemp(n,n)

type (d_options) :: iopti(4)

! Generate a random rectangular matrix.

call rand_gen (y)
¢ = reshape(y, (/m,n/))

! Generate a random right hand side for use in the inverse
! iteration.

call rand_gen(y(l:n))
b = reshape(y, (/n,1/))

! Compute the positive definite matrix.
a = matmul (transpose(c),c)

! Obtain just the eigenvalues.
call lin_eig _self(a, e)

! Use packaged option to reset the value of a small diagonal.
iopti = d_options (0, zero)
iopti(l) = d_options(d_lin_sol_self set_small, &
epsilon(one) * abs(e(l)))
! Use packaged option to save the factorization.
iopti(2) = d_options(d_lin_sol_self_save_factors, zero)
! Suppress error messages and stopping due to singularity
! of the matrix, which is expected.
iopti(3) = d_options(d_lin_sol_self no_sing_mess, zero)
atemp = a
do i=1, n
a(i,i) = a(i,i) - e(k)
end do

! Compute A-eigenvalue*I as the coefficient matrix.
do tries=1, 2
call lin_sol_self(a, b, x, &
pivots=ipivots, iopt=iopti)

! When code is re-entered, the already computed factorization
! is used.

iopti(4) = d_options(d_lin_sol_self solve_A, zero)
! Reset right-hand side nearly in the direction of the eigenvector.

= R{nggmq\{q LIN_SOL_SELF Chapter 1: Linear Systems

b = x/sgrt(sum(x**2))
end do

! Normalize the eigenvector.
X = xX/sqgrt(sum(x**2))

! Check the results.
err = dot_product(x(l:n,1l),matmul (atemp(l:n,1l:n),x(1:n,1))) - &
e (k)

! If any result is not accurate, quit with no summary printing.

if (abs(err) <= sgrt(epsilon(one))*e(l)) then
write (*,*) 'Example 3 for LIN_SOL_SELF is correct.'
end if
end
Output

Example 3 for LIN_SOL_SELF is correct.

Example 4: Accurate Least-squares Solution with Iterative Refinement

This example illustrates the accurate solution of the self-adjoint linear system

I 4 [r] B [b]
AT o] LxI 1o
computed using iterative refinement. This solution method is appropriate for least-squares problems when
an accurate solution is required. The solution and residuals are accumulated in double precision, while the

decomposition is computed in single precision. Also, see operator_ex08, supplied with the product
examples.

use lin_sol_self_ int
use rand_gen_int

implicit none
! This is Example 4 for LIN_SOL_SELF.

integer i

integer, parameter :: m=8, n=4

real (kind(1le0)), parameter :: one=1.0e0, zero=0.0e0

real (kind(1d0)), parameter :: d_zero=0.0d0

integer ipivots((n+m)+1)

real (kind(1le0)) a(m,n), b(m,1l), w(m*n), £ (n+m,n+m), &
g(n+m,1), h(n+m,1)

real (kind(1e0)) change_new, change_old

real (kind(1d40)) c¢(m,1), d(m,n), y(n+m,1)

type(s_options) :: iopti(2)=s_options(0,zero)

! Generate a random matrix.

= Rogygmq\{q LIN_SOL_SELF Chapter 1: Linear Systems

49

call rand_gen (w)
a = reshape(w, (/m,n/))

! Generate a random right hand side.
call rand _gen(b(l:m,1))

! Save double precision copies of the matrix and right hand side.
d = a
c=Db

! Fill in augmented system for accurately solving the least-squares

! problem.
f = zero
do i=1, m
f(i,1) = one
end do
f(l:m,m+l:) = a
f(m+l:,1:m) = transpose(a)

! Start solution at zero.

y = d_zero
change_old = huge (one)

! Use packaged option to save the factorization.
iopti(l) = s_options(s_lin_sol_self_save_factors, zero)

iterative_refinement: do
g(lim,1l) = c(l:m,1) - v(l:m,1) - matmul(d,y(m+l:m+n,1))
g(m+l:m+n,1l) = - matmul (transpose(d),y(l:m,1))
call lin_sol_self(f, g, h, &
pivots=ipivots, iopt=iopti)
y =h+y
change_new = sum(abs(h))

! Exit when changes are no longer decreasing.

if (change_new >= change_old) &
exit iterative_refinement
change_old = change_new

! Use option to re-enter code with factorization saved; solve only.
iopti(2) = s_options(s_lin_sol_self_solve_A, zero)
end do iterative_refinement
write (*,*) 'Example 4 for LIN_SOL_SELF is correct.'
end

= ROQUEWFWE LIN_SOL_SELF

Chapter 1: Linear Systems

50

Output

Example 4 for LIN_SOL_SELF is correct.

= Rogygmg\{q LIN_SOL_SELF Chapter 1: Linear Systems 51

LIN_SOL_LSQ

Solves a rectangular system of linear equations Ax =, in a least-squares sense. Using optional arguments,
any of several related computations can be performed. These extra tasks include computing and saving the
factorization of A using column and row pivoting, representing the determinant of A, computing the general-

ized inverse matrix AT, or computing the least-squares solution of
Ax =b
or
ATy =bp,

given the factorization of A. An optional argument is provided for computing the following unscaled covari-
ance matrix

c=(4"4)"

Least-squares solutions, where the unknowns are non-negative or have simple bounds, can be computed
with PARALLEL_NONNEGATIVE_LSQ and PARALLEL_BOUNDED_LSOQ. These codes can be restricted to exe-
cute without MPL

Required Arguments

A — Array of size m X n containing the matrix. (Input [/Output])
If the packaged option 1in_sol_lsqg save_QRis used then the factorization of A is saved in A. For
efficiency, the diagonal reciprocals of the matrix R are saved in the diagonal entries of A.

B — Array of size m X nb containing the right-hand side matrix. When using the option to solve adjoint
systems ATx = b, the size of b is n X nb. (Input [/Output])
If the packaged option 1in_sol_lsqg_save_QRis used then input B is used as work storage and is
not saved.

X — Array of size n X nb containing the right-hand side matrix. When using the option to solve adjoint
systems ATx = b, the size of x is m X nb. (Output)

Optional Arguments

MROWS = m (Input)
Uses array A(1:m, 1:n) for the input matrix.
Default: m = size(a, 1)

NCOLS = n (Input)
Uses array A(1:m, 1:n) for the input matrix.
Default: n = size(, 2)

NRHS = nb (Input)
Uses the array b(1:, 1:nb) for the input right-hand side matrix.
Default: nb = size(b, 2)
Note that b must be a rank-2 array.

= ROQQ?WQ\{E{ LIN_SOL_LSQ Chapter 1: Linear Systems

52

pivots = pivots(:) (Output[/Input])
Integer array of size 2 * min(m, n) + 1 that contains the individual row followed by the column inter-
changes. The last array entry contains the approximate rank of A.

trans = trans(:) (Output[/Input])
Array of size 2 * min(m, n) that contains data for the construction of the orthogonal decomposition.

det = det (1:2) (Output)
Array of size 2 of the same type and kind as A for representing the products of the determinants of the
matrices Q, P, and R. The determinant is represented by two numbers. The first is the base with the
sign or complex angle of the result. The second is the exponent. When det(2) is within exponent
range, the value of this expression is given by abs (det(1))**det(2) * (det(1))/abs(det(1)). If the
matrix is not singular, abs(det(1)) = radix(det); otherwise, det(1) =0, and det(2) = -
huge(abs(det(1))).

ainv = ainv(:,:) (Output)
Array with size n X m of the same type and kind as A(1:m, 1:n). It contains the generalized inverse
matrix, At

cov = cov(:,:) (Output)
Array with size n X n of the same type and kind as A(1 :m, 1:n). It contains the unscaled covariance
matrix, C = (ATA)™L.

iopt = iopt (:) (Input)
Derived type array with the same precision as the input matrix; used for passing optional data to the
routine. The options are as follows:

Packaged Options for 1in_sol_1lsq
Option Prefix = ? Option Name Option Value
s_,d_,c_,z_ lin_sol_lsqg set_small 1
s_,d_,c_,z_ lin_sol_lsqg_save_QR 2
s_,d_,c_,z_ lin_sol_lsqg solve_A 3
s_,d_,c_,z_ lin_sol_lsqg_solve_ADJ 4
s_,d_,c_,z_ lin_sol_lsg no_row_pivoting 5
s_,d_,c_,z_ lin_sol_lsg no_col_pivoting 6
s_,d_,c_,z_ lin_sol_1lsg scan_for_NaN 7
s_,d_,c_,z_ lin_sol_1lsg no_sing mess 8

iopt(I0) = ?_options (?_lin_sol_lsqg set_small, Small)
Replaces with Small if a diagonal term of the matrix R is smaller in magnitude than the value Small. A
solution is approximated based on this replacement in either case.
Default: the smallest number that can be reciprocated safely

iopt(I0) = ?_options (?_lin_sol_lsg save_QR, ?_dummy)
Saves the factorization of A. Requires the optional arguments “pivots="and “trans=" if the routine
is used for solving further systems with the same matrix. This is the only case where the input arrays A
and b are not saved. For efficiency, the diagonal reciprocals of the matrix R are saved in the diagonal
entries of A.

iopt(I0) = ?_options(?_lin_sol_lsqg solve_A, ?_dummy)
Uses the factorization of A computed and saved to solve Ax = b.

E:' ROQQ?WQ\{EF LIN_SOL_LSQ Chapter 1: Linear Systems 53

iopt(I0) = ?_options (?_lin_sol_lsg solve_ADJ, ?_dummy)
Uses the factorization of A computed and saved to solve ATx = b.
iopt(I0) = ?_options(?_lin_sol_lsg no_row_pivoting, ?_dummy)
Does no row pivoting. The array pivots(:), if present, satisfies pivots(i) =ifori=1, ..., min (m, n).

iopt(I0) = ?_options (?_lin_sol_lsg no_col_pivoting, ?_dummy)
Does no column pivoting. The array pivots(:), if present, satisfies pivots(i + min (m, n)) =ifori=1,
..., min (m, n).

iopt(I0) = ?_options(?_lin_sol_lsqg _scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

isNaN(a(i,j)) .or. isNan(b(i,j)) == .true.

See the isNaN() function, Chapter 10.
Default: Does not scan for NaNs

iopt(I0) = ?_options (?_lin_sol_lsg no_sing_mess, ?_dummy)
Do not print an error message when A is singular or k < min(m, n).

FORTRAN 90 Interface
Generic: CALL LIN_SOL_LSQ (A, B, X [,...])

Specific: The specific interface names are S_LIN_SOL_LSQ, D_LIN_SOL_LSQ, C_LIN_SOL_LSQ,
and Z_LIN_SOL_LSQ.

Description

Routine LIN_SOL_LSQ solves a rectangular system of linear algebraic equations in a least-squares sense. It
computes the decomposition of A using an orthogonal factorization. This decomposition has the form

R 0]
0 0

where the matrices Q and P are products of elementary orthogonal and permutation matrices. The matrix R
is k X k, where k is the approximate rank of A. This value is determined by the value of the parameter Small.
See Golub and Van Loan (1989, Chapter 5.4) for further details. Note that the use of both row and column
pivoting is nonstandard, but the routine defaults to this choice for enhanced reliability.

QAP = [

Fatal and Terminal Error Messages

See the messages.gls file for error messages for LIN_SOL_LSQ. These error messages are numbered 241-256;
261-276; 281-296; 301-316.

Examples

Example 1: Solving a Linear Least-squares System

This example solves a linear least-squares system Cx = d, where

= R{ngﬁ.lnewlg\{er LIN_SOL_LSQ Chapter 1: Linear Systems

54

C

mxn

is a real matrix with m > n. The least-squares problem is derived from polynomial data fitting to the function

y(x) = ex+cos<7r%>

using a discrete set of values in the interval -1 < x < 1. The polynomial is represented as the series

u(x) = ZciT,(x)

where the Tj(x) are Chebyshev polynomials. It is natural for the problem matrix and solution to have a col-

umn or entry corresponding to the subscript zero, which is used in this code. Also, see operator_ex09,

supplied with the product examples.

use lin_sol_1lsqg int
use rand_gen_int
use error_option_packet

implicit none
! This is Example 1 for LIN_SOL_LSQ.
integer 1

integer, parameter :: m=128, n=8
real (kind(1d0)), parameter :: one=1d0, zero=0d0

real (kind(1d0)) A(m,0:n), <c(0:n,1), pi_over_2, x(m), y(m,1),

u(m), v(m), w(m), delta_x

! Generate a random grid of points.
call rand_gen (x)

! Transform points to the interval -1,1.
X = X*2 - one

! Compute the constant 'PI/2'.
pi_over_2 = atan(one)*2

! Generate known function data on the grid.
v(l:m,1l) = exp(x) + cos(pi_over_2%*x)

! Fill in the least-squares matrix for the Chebyshev polynomials.

A(:,0) = one; A(:,1) = x

do i=2, n
A(:,1)
end do

= 2*x*A(:,i-1) - A(:,1i-2)

! Solve for the series coefficients.
call lin_sol_1sg(aA, y, c)

= Roguewvuve LIN_SOL_LSQ

Chapter 1: Linear Systems

55

! Generate an equally spaced grid on the interval.
delta_x = 2/real(m-1,kind(one))
do i=1, m
x(1i) = -one + (i-1)*delta_x
end do

! Evaluate residuals using backward recurrence formulas.

u = zero
Vv = zero
do i=n, 0, -1
w = 2*x*1u - v + c(i,1)
v = u
u =w
end do
v(l:m,1) = exp(xX) + cos(pi_over_2*x) - (u-x*v

! Check that n+l sign changes in the residual curve occur.
X = one
x = sign(x,y(l:m,1))
if (count(x(l:m-1) /= x(2:m)) >= n+l) then
write (*,*) 'Example 1 for LIN_SOL_LSQ is correct.'

end if

end

Output

Example 1 for LIN_SOL_LSQ is correct.

Example 2: System Solving with the Generalized Inverse

This example solves the same form of the system as Example 1. In this case, the grid of evaluation points is
equally spaced. The coefficients are computed using the “smoothing formulas” by rows of the generalized

inverse matrix, AT, computed using the optional argument “ainv=". Thus, the coefficients are given by the

matrix-vector product ¢ = (A) y, where y is the vector of values of the function y(x) evaluated at the grid of

points. Also, see operator_ex10, supplied with the product examples.
use lin_sol_lsqg int
implicit none

! This is Example 2 for LIN_SOL_LSQ.

integer 1

integer, parameter :: m=128, n=8

real (kind(1d0)), parameter :: one=1.0d0, zero=0.0d0

real (kind(1d0)) a(m,0:n), c(0:n,1), pi_over 2, x(m), y(m,1),
u(m), v(m), w(m), delta_x, inv(0:n, m)

! Generate an array of equally spaced points on the interval -1,1.

&

= Roguewvuve LIN_SOL_LSQ

Chapter 1: Linear Systems

56

delta_x = 2/real (m-1,kind(one))
do i=1, m

x(1) = -one + (i-1)*delta_x
end do
Compute the constant 'PI/2'.
pi_over_2 = atan(one)*2

Compute data values on the grid.

v(l:m,1l) = exp(x) + cos(pi_over_2*x)

Fill in the least-squares matrix for the Chebyshev polynomials.

a(:,0) = one
a(:,1) = x

do i=2, n
a(:,1)
end do

= 2*x*a(:,i-1) - a(:,1-2)

Compute the generalized inverse of the least-squares matrix.

call lin_sol_1lsg(a, y, ¢, nrhs=0, ainv=inv)

Compute the series coefficients using the generalized inverse
as 'smoothing formulas.'

c(0:n,1) = matmul (inv(0:n,1:m),y(1l:m,1))

Evaluate residuals using backward recurrence formulas.

u = zero
Vv = zero
do i=n, 0, -1
w = 2*x*u - v + c(i,1)
v = u
u=w
end do
v(l:m,1l) = exp(xX) + cos(pi_over_2*x) - (u-x*v)

! Check that n+2 sign changes in the residual curve occur.

! (This test will fail when n is larger.)
X = one
x = sign(x,y(1l:m,1))

if (count(x(l:m-1)
write

end

end

/= x(2:m)) == n+2) then
(*,*) 'Example 2 for LIN_SOL_LSQ is correct.'

if

=RogueWave

LIN_SOL_LSQ

Chapter 1: Linear Systems

57

Output

Example 2 for LIN_SOL_LSQ is correct.

Example 3: Two-Dimensional Data Fitting

This example illustrates the use of radial-basis functions to least-squares fit arbitrarily spaced data points. Let
m data values {y;} be given at points in the unit square, {p;}. Each p; is a pair of real values. Then, n points {g;}

are chosen on the unit square. A series of radial-basis functions is used to represent the data,
. 12
— 2 2
F(p) = eflp=qjl*+5
Jj=1

where & is a parameter. This example uses & = 1, but either larger or smaller values can give a better
approximation for user problems. The coefficients {c;} are obtained by solving the following m X n linear

least-squares problem:

f<Pj> =)y

This example illustrates an effective use of Fortran 90 array operations to eliminate many details required to
build the matrix and right-hand side for the {c;} . For this example, the two sets of points {p;} and {g;} are cho-

sen randomly. The values {y;} are computed from the following formula:

~llp;l12
yj=e

The residual function

() :e—||p||2_f<p>

is computed at an N X N square grid of equally spaced points on the unit square. The magnitude of r(p) may
be larger at certain points on this grid than the residuals at the given points, {p;}. Also, see operator_ex11,

supplied with the product examples.

use lin_sol_1lsqg int
use rand_gen_int

implicit none
! This is Example 3 for LIN_SOL_LSQ.

integer i, J

integer, parameter :: m=128, n=32, k=2, n_eval=16

real (kind(1d0)), parameter :: one=1.0d0, delta_sgr=1.0d0

real (kind(1d0)) a(m,n), b(m,1), c(n,1), p(k,m), g(k,n), &
x(k*m), yv(k*n), t(k,m,n), res(n_eval,n_eval), &
w(n_eval), delta

E:' ROQQ?WQ\{E{ LIN_SOL_LSQ Chapter 1: Linear Systems

58

! Generate a random set of data points in k=2 space.

call rand_gen (x)
p = reshape(x, (/k,m/))

! Generate a random set of center points in k-space.

call rand_gen(y)
g = reshape(y, (/k,n/))

! Compute the coefficient matrix for the least-squares system.
t = spread(p,3,n)
do j=1, n
t(l:,:,3) = t£(1:,:,3) - spread(g(l:,]),2,m)
end do
a = sqgrt(sum(t**2,dim=1) + delta_sqr)
! Compute the right hand side of data values.
b(l:,1) = exp(-sum(p**2,dim=1))
! Compute the solution.

call lin_sol_1lsg(a, b, c¢)

! Check the results.

if (sum(abs (matmul (transpose(a),b-matmul (a,c))))/sum(abs(a)) &
<= sqgrt(epsilon(one))) then
write (*,*) 'Example 3 for LIN_SOL_LSQ is correct.'
end if

! Evaluate residuals, known function - approximation at a square
! grid of points. (This evaluation is only for k=2.)

delta = one/real(n_eval-1,kind(one))
do 1=1, n_eval

w(i) = (i-1)*delta
end do
res = exp(-(spread(w,1l,n_eval)**2 + spread(w,2,n_eval)**2))
do j=1, n
res = res - c(j,1)*sqgrt((spread(w,1l,n_eval) - g(l,3J))**2 + &
(spread(w,2,n_eval) - g(2,3))**2 + delta_sqgr)
end do
end

Output

Example 3 for LIN_SOL_LSQ is correct.

E: R{ng?mq\{q LIN_SOL_LSQ Chapter 1: Linear Systems 59

Example 4: Least-squares with an Equality Constraint

This example solves a least-squares system Ax = b with the constraint that the solution values have a sum
equal to the value 1. To solve this system, one heavily weighted row vector and right-hand side component is
added to the system corresponding to this constraint. Note that the weight used is

E;—l/Z

where £is the machine precision, but any larger value can be used. The fact that 1in_sol_1lsqg performs
row pivoting in this case is critical for obtaining an accurate solution to the constrained problem solved using
weighting. See Golub and Van Loan (1989, Chapter 12) for more information about this method. Also, see
operator_ex12, supplied with the product examples.

use lin_sol_1lsqg int
use rand_gen_int

implicit none

! This is Example 4 for LIN_SOL_LSQ.

integer, parameter :: m=64, n=32
real (kind(1e0)), parameter :: one=1.0e0
real (kind(le0)) :: a(m+l,n), b(m+l,1), x(n,1l), y(m*n)

! Generate a random matrix.

call rand_gen (y)
a(l:m,1:n) = reshape(y, (/m,n

! Generate a random right hand side.
call rand_gen(b(l:m,1))

! Heavily weight desired constraint. All variables sum to one.
a(m+l,1:n) = one/sgrt(epsilon(one))
b(m+l,1) = one/sgrt(epsilon(one))

call lin_sol_1lsg(a, b, x)

if (abs(sum(x) - one)/sum(abs(x)) <= &
sgrt (epsilon(one))) then
write (*,*) 'Example 4 for LIN_SOL_LSQ is correct.'
end if
end
Output

Example 4 for LIN_SOL_LSQ is correct.

E:' Rogygmq\{q LIN_SOL_LSQ Chapter 1: Linear Systems

60

LIN_SOL_SVD

Solves a rectangular least-squares system of linear equations Ax = b using singular value decomposition

A=usyT

With optional arguments, any of several related computations can be performed. These extra tasks include
computing the rank of A, the orthogonal m X m and n X n matrices U and V, and the m X n diagonal matrix

of singular values, S.

Required Arguments
A — Array of size m X n containing the matrix. (Input [/ Output])

If the packaged option 1in_sol_svd_overwrite_input is used, this array is not saved on output.

B — Array of size m X nb containing the right-hand side matrix. (Input [/ Output]

If the packaged option 1in_sol_svd_overwrite_input is used, this array is not saved on output.

X— Array of size n X nb containing the solution matrix. (Output)

Optional Arguments
MROWS = m (Input)

Uses array A(1:m, 1:n) for the input matrix.
Default: m = size (2, 1)

NCOLS = n (Input)

Uses array A (1:m, 1 :n) for the input matrix.
Default: n = size(, 2)

NRHS = nb (Input)

Uses the array b(1:, 1:nb) for the input right-hand side matrix.
Default: nb = size(b, 2)

Note that b must be a rank-2 array.

RANK = k (Output)

Number of singular values that are at least as large as the value Small. It will satisfy k <= min(m, n).
u(:,:) (Output)

Array of the same type and kind as A(1:m, 1:n). It contains the m X m orthogonal matrix U of the sin-
gular value decomposition.

s(:) (Output)

Array of the same precision as A(1:m, 1:n). This array is real even when the matrix data is complex. It
contains the m X n diagonal matrix S in a rank-1 array. The singular values are nonnegative and
ordered non-increasing.

v(:,:) (Output)

Array of the same type and kind as A(1:m, 1:n). It contains the n X n orthogonal matrix V.

= ROQQ?WQ\{E{ LIN_SOL_SVD Chapter 1: Linear Systems

61

iopt = iopt (:) (Input)
Derived type array with the same precision as the input matrix. Used for passing optional data to the
routine. The options are as follows:

Packaged Options for 1in_sol_svd
Option Prefix =? Option Name Option Value
s_, d_, c_, z_ lin_sol_svd_set_small 1
s, d_, c_, z_ lin_sol_svd_overwrite_input 2
s_, d_, c_, z_ lin_sol_svd_safe_reciprocal 3
s, d_, c_, z lin_sol_svd_scan_for_NaN 4

iopt(I0) = ?_options(?_lin_sol_svd_set_small, Small)
Replaces with zero a diagonal term of the matrix S if it is smaller in magnitude than the value Small.
This determines the approximate rank of the matrix, which is returned as the “rank=" optional argu-
ment. A solution is approximated based on this replacement.
Default: the smallest number that can be safely reciprocated
iopt(I0) = ?_options (?_lin_sol_svd_overwrite_input, ?_dummy)
Does not save the input arrays A(:,:) and b(:,:).
iopt(I0) = ?_options (?_lin_sol_svd_safe_reciprocal, safe)
Replaces a denominator term with safe if it is smaller in magnitude than the value safe.
Default: the smallest number that can be safely reciprocated
iopt(I0) = ?_options (?_lin_sol_svd_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.
See the 1sNaN() function, Chapter 10.
Default: Does not scan for NaNs

FORTRAN 90 Interface

Generic: CALL LIN_SOL_SVD (A, B, X [, ...1)
Specific: The specific interface names are S_LIN_SOL_SVD, D_LIN_SOL_SVD, C_LIN_SOL_SVD,
and Z_LIN_SOL_SVD.
Description

Routine LIN_SOL_SVD solves a rectangular system of linear algebraic equations in a least-squares sense. It
computes the factorization of A known as the singular value decomposition. This decomposition has the fol-
lowing form:

A =USVT

The matrices U and V are orthogonal. The matrix S is diagonal with the diagonal terms non-increasing. See
Golub and Van Loan (1989, Chapters 5.4 and 5.5) for further details.

=RogueWave

LIN_SOL_SVD Chapter 1: Linear Systems

62

Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messages for LIN_SOL_SVD. These error messages are numbered 401-412;
421-432; 441-452; 461-472.

Examples

Example 1: Least-squares solution of a Rectangular System

The least-squares solution of a rectangular m X n system Ax = b is obtained. The use of 1in_sol_lsqgis
more efficient in this case since the matrix is of full rank. This example anticipates a problem where the
matrix A is poorly conditioned or not of full rank; thus, 1in_sol_svd is the appropriate routine. Also, see
operator_ex13,in Chapter 10.

use lin_sol_svd_int
use rand_gen_int

implicit none
! This is Example 1 for LIN_SOL_SVD.

integer, parameter :: m=128, n=32

real (kind(1d0)), parameter :: one=1d0

real (kind(140)) A(m,n), b(m,1), x(n,1), y(m*n), err
! Generate a random matrix and right-hand side.

call rand_gen(y)

A = reshape(y, (/m,n/))

call rand_gen(b(l:m,1))

! Compute the least-squares solution matrix of Ax=Db.
call lin_sol_svd(A, b, x)

! Check that the residuals are orthogonal to the
! column vectors of A.
err = sum(abs (matmul (transpose(A),b-matmul (A,x))))/sum(abs (7))

if (err <= sqgrt(epsilon(one))) then

write (*,*) 'Example 1 for LIN_SOL_SVD is correct.'
end if

end

Output

Example 1 for LIN_SOL_SVD is correct.

Example 2: Polar Decomposition of a Square Matrix

A polar decomposition of an n X n random matrix is obtained. This decomposition satisfies A = PQ, where P
is orthogonal and Q is self-adjoint and positive definite.

= ROQQ?WQ\{E{ LIN_SOL_SVD Chapter 1: Linear Systems

63

Given the singular value decomposition

A=Usv"
the polar decomposition follows from the matrix products

P=UVTand 9=vsyT

o _

This example uses the optional arguments “u=", “s=", and “v=", then array intrinsic functions to calculate P
and Q. Also, see operator_ex14, in Chapter 10.

use lin_sol_svd_int
use rand_gen_int

implicit none
! This is Example 2 for LIN_SOL_SVD.

integer i

integer, parameter :: n=32
real (kind(1d0)), parameter :: one=1.0d0, zero=0.0d0
real (kind(1d0)) a(n,n), b(n,0), ident(n,n), p(n,n), g(n,n), &

s_d(n), u.d(n,n), v_d(n,n), x(n,0), y(n*n)
! Generate a random matrix.

call rand_gen(y)
a = reshape(y, (/n,n/))

! Compute the singular value decomposition.

call lin_sol_svd(a, b, x, nrhs=0, s=s_d, &
u=u_d, v=v_d)

! Compute the (left) orthogonal factor.
p = matmul (u_d, transpose(v_d))
! Compute the (right) self-adjoint factor.
g = matmul (v_d*spread(s_d,1,n), transpose(v_d))
ident=zero
do i=1, n
ident(i,i) = one

end do

! Check the results.

if (sum(abs (matmul (p, transpose(p)) - ident))/sum(abs(p)) &
<= sqgrt(epsilon(one))) then
if (sum(abs(a - matmul (p,q)))/sum(abs(a)) &
<= sqgrt(epsilon(one))) then

write (*,*) 'Example 2 for LIN_SOL_SVD is correct.'

= R{ng?mq\{q LIN_SOL_SVD Chapter 1: Linear Systems 64

end if
end if

end

Output

Example 2 for LIN_SOL_SVD is correct.

Example 3: Reduction of an Array of Black and White

Ann X n array A contains entries that are either 0 or 1. The entry is chosen so that as a two-dimensional
object with origin at the point (1, 1), the array appears as a black circle of radius n/4 centered at the point
(n/2,n/2).

A singular value decomposition

A=usyT

is computed, where S is of low rank. Approximations using fewer of these nonzero singular values and vec-
tors suffice to reconstruct A. Also, see operator_ex15, supplied with the product examples.

use lin_sol_svd_int
use rand_gen_int

use error_option_packet
implicit none

! This is Example 3 for LIN_SOL_SVD.

integer i, j, k

integer, parameter :: n=32
real (kind(1e0)), parameter :: half=0.5e0, one=1e0, zero=0e0
real (kind(1e0)) a(n,n), b(n,0), x(n,0), s(n), u(n,n), &

v(n,n), c(n,n)

! Fill in value one for points inside the circle.

a = zero
do i=1, n
do j=1, n
if ((i-n/2)**2 + (j-n/2)**2 <= (n/4)**2) a(i,j) = one
end do
end do

! Compute the singular value decomposition.
call lin_sol_svd(a, b, x, nrhs=0,&
s=s, u=u, VvV=V)

! How many terms, to the nearest integer, exactly
! match the circle?
c = zero; k = count(s > half)
do i=1, k
c = ¢ + spread(u(l:n,i),2,n)*spread(v(l:n,i),1,n)*s (i)

= Rogygmq\{q LIN_SOL_SVD Chapter 1: Linear Systems

65

if (count(int(c-a) /= 0) == 0) exit
end do

if (i < k) then

write (*,*) 'Example 3 for LIN_SOL_SVD is correct.'
end if
end

Output

Example 3 for LIN_SOL_SVD is correct.

Example 4: Laplace Transform Solution

This example illustrates the solution of a linear least-squares system where the matrix is poorly conditioned.
The problem comes from solving the integral equation:

1

Ie_Stf<t)dt = s_l(l —e_s> =g(s)

0

The unknown function f(t) = 1 is computed. This problem is equivalent to the numerical inversion of the
Laplace Transform of the function g(s) using real values of t and s, solving for a function that is nonzero only
on the unit interval. The evaluation of the integral uses the following approximate integration rule:

L1

I[f(t)e“dt = if(@) j e “dt

‘.
J

The points { t‘j} are chosen equally spaced by using the following:

The points {Sj} are computed so that the range of g(s) is uniformly sampled. This requires the solution of m
equations

g(si> :gi:mil

forj=1,...,nandi=1, ..., m. Fortran 90 array operations are used to solve for the collocation points {Si} as

a single series of steps. Newton's method,

h

STy

is applied to the array function

= ROQQ?WQ\{E{ LIN_SOL_SVD Chapter 1: Linear Systems

66

h(s)=e +sg—1
where the following is true:

g=lg, -, g,1"

Note the coefficient matrix for the solution values

f=1@), o "

whose entry at the intersection of row i and column j is equal to the value

Lir1

I —sl-t
e 'dt

t.
J

is explicitly integrated and evaluated as an array operation. The solution analysis of the resulting linear least-
squares system

Af =g
is obtained by computing the singular value decomposition
A=Usy"
An approximate solution is computed with the transformed right-hand side
b=U Tg

followed by using as few of the largest singular values as possible to minimize the following squared error
residual:

go—fjf

This determines an optimal value k to use in the approximate solution

k V.
[=Y b
79
j=1
Also, see operator_ex16, supplied with the product examples.
use lin_sol_svd_int
use rand_gen_int

use error_option_packet

implicit none

= Rogygmq\{q LIN_SOL_SVD Chapter 1: Linear Systems 67

! This is Example 4 for LIN_SOL_SVD.

integer i, j, k

integer, parameter m=64, n=16

real (kind(1e0)), parameter one=1le0, zero=0.0e0

real (kind(1e0)) g(m), s(m), t(n+l), a(m,n), b(m,1),
f(n,1), U_S(m,m), V_S(n,n), S_S(n), &
rms, oldrms

real (kind (1e0)) delta_g, delta_t

delta_g = one/real (m+1l,kind(one))

! Compute which collocation equations to solve.
do i=1,m
g(i)=i*delta_g
end do

! Compute equally spaced quadrature points.
delta_t =one/real (n,kind(one))
do j=1,n+1
t(j)=(j-1)*delta_t
end do

! Compute collocation points.

S=m
solve_equations: do
s=s-(exp(-s)-(one-s*g))/(g-exp(-s))

if (sum(abs((one-exp(-s))/s - g)) <= &
epsilon(one) *sum(g)) &
exit solve_equations
end do solve_equations

! Evaluate the integrals over the quadrature points.
a = (exp(-spread(t(l:n),1l,m)*spread(s,2,n)) &
- exp(-spread(t(2:n+l),1,m)*spread(s,2,n))) / &
spread(s,2,n)

b(l:,1)=g
! Compute the singular value decomposition.

call lin_sol_svd(a, b, £, nrhs=0, &
rank=k, u=U_S, v=V_S, s=S_8S)

! Singular values that are larger than epsilon determine
! the rank=k.

k = count(S_S > epsilon(one))

oldrms = huge (one)

g = matmul (transpose(U_S), b(l:m,1))

&

! Find the minimum number of singular values that gives a good

! approximation to f(t) = 1.

do i=1,k

=RogueWave

LIN_SOL_SVD

Chapter 1: Linear Systems

68

f(1:n,1) = matmul(v_S(1l:,1:1), g(l:1)/S_S(1:1))

f = £ - one
rms = sum(f**2)/n
if (rms > oldrms) exit
oldrms = rms
end do
write (*,"(' Using this number of singular values, ', &
&i4 / ' the approximate R.M.S. error is ', 1lpel2.4)") &

i-1, oldrms
if (sgrt(oldrms) <= delta_t**2) then
write (*,*) 'Example 4 for LIN_SOL_SVD is correct.'

end if

end

Output

Example 4 for LIN_SOL_SVD is correct.

= R{ng?mq\{q LIN_SOL_SVD Chapter 1: Linear Systems 69

LIN_SOL_TRI

Solves multiple systems of linear equations
A]x] Zy]',] = 1, ,k

Each matrix A]- is tridiagonal with the same dimension, 7. The default solution method is based on LU factor-

ization computed using cyclic reduction or, optionally, Gaussian elimination with partial pivoting.

Required Arguments

C — Array of size 2n X k containing the upper diagonals of the matrices A;. Each upper diagonal is entered
in array locations c(1:n -1, j). The data C(n, 1:k) are not used. (Input [/Output])
The input data is overwritten. See note below.

D — Array of size 2n X k containing the diagonals of the matrices A;. Each diagonal is entered in array
locations D(1: 1, j). (Input [/Output])
The input data is overwritten. See note below.

B — Array of size 2n X k containing the lower diagonals of the matrices A;. Each lower diagonal is entered
in array locations B(2:#, j). The data B(1, 1:k) are not used. (Input [/Output])
The input data is overwritten. See note below.

Y — Array of size 2n X k containing the right-hand sides, y;. Each right-hand side is entered in array loca-

tions Y(1:7, j). The computed solution x; is returned in locations ¥(1: 7, j). (Input [/Output])

NOTE: The required arguments have the Input data overwritten. If these quantities are used later, they
must be saved in user-defined arrays. The routine uses each array's locations (n + 1:2 * n, 1:k) for scratch
storage and intermediate data in the LU factorization. The default values for problem dimensions are

n = (size (D, 1))/2 and k = size (D, 2).

Optional Arguments
NCOLS = n (Input)

Uses arrays C(1:n—-1,1:k),D(1:n, 1:k), and B(2:n, 1: k) as the upper, main and lower diagonals for
the input tridiagonal matrices. The right-hand sides and solutions are in array Y(1:n, 1:k). Note that
each of these arrays are rank-2.

Default: n = (size(D, 1))/2
NPROB = k (Input)
The number of systems solved.
Default: k = size(D, 2)
iopt = iopt (:) (Input)

Derived type array with the same precision as the input matrix. Used for passing optional data to the
routine. The options are as follows:

Packaged Options for LIN_SOL_TRI
Option Prefix = ? Option Name Option Value
s_,d_,c_,z_ lin_sol_tri_set_small 1
s_,d_,c_,z_ lin_sol_tri_set_jolt 2

= R{ngﬁ.lnewlg\{er LIN_SOL_TRI Chapter 1: Linear Systems

Packaged Options for LIN_SOL_TRI

s_,d_,c_,z_ lin_sol_tri_scan_for_NaN 3
s_,d_,c_,z_ lin_sol_tri_factor_only 4
s_,d_,c_,z_ lin_sol_tri_solve_only 5
s_,d_,c_,z lin_sol_tri_use_Gauss_elim 6

iopt(I0) = ?_options (?_lin_sol_tri_set_small, Small)
Whenever a reciprocation is performed on a quantity smaller than Small, it is replaced by that value
plus 2 X jolt.
Default: 0.25 X epsilon()
iopt(I0) = ?_options(?_lin_sol_tri_set_jolt,jolt)
Default: epsilon(), machine precision
iopt(I0) = ?_options(?_lin_sol_tri_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

isNaN(C(i,j)) .or.
isNaN(D(i,3j)) .or
isNaN(B(i,j)) .or.
isNaN(Y(i,3)) ==.true.

See the 1sNaN () function, Chapter 10.
Default: Does not scan for NaNs.

iopt(I0) = ?_options (?_lin_sol_tri_factor_only, ?_dummy)
Obtain the LU factorization of the matrices A;. Does not solve for a solution.
Default: Factor the matrices and solve the systems.
iopt(I0) = ?_options(?_lin_sol_tri_solve_only, ?_dummy)
Solve the systems Ajx; = y; using the previously computed LU factorization.
Default: Factor the matrices and solve the systems.
iopt(I0) = ?_options (?_lin_sol_tri_use_Gauss_elim, ?_dummy)
The accuracy, numerical stability or efficiency of the cyclic reduction algorithm may be inferior to the

use of LU factorization with partial pivoting.
Default: Use cyclic reduction to compute the factorization.

FORTRAN 90 Interface

Generic: CALL LIN_SOL_TRI (C,D,B,Y [,...]1)

Specific: The specific interface names are S_LIN_SOL_TRI, D_LIN_SOL_TRI,C_LIN_SOL_TRI,
and z_LIN_SOL_TRI.

Description

Routine 1in_sol_tri solves k systems of tridiagonal linear algebraic equations, each problem of dimension
n X n. No relation between k and # is required. See Kershaw, pages 86-88 in Rodrigue (1982) for further
details. To deal with poorly conditioned or singular systems, a specific regularizing term is added to each
reciprocated value. This technique keeps the factorization process efficient and avoids exceptions from over-

flow or division by zero. Each occurrence of an array reciprocal a”! is replaced by the expression (a + t)},

= ROQQ?WQ\{E{ LIN_SOL_TRI Chapter 1: Linear Systems 71

where the array temporary ¢ has the value 0 whenever the corresponding entry satisfies lal > Small. Alter-
nately, ¢ has the value 2 X jolt. (Every small denominator gives rise to a finite “jolt”.) Since this tridiagonal
solver is used in the routines 1in_svd and 1in_eig_self for inverse iteration, regularization is required.
Users can reset the values of Small and jolt for their own needs. Using the default values for these parameters,
it is generally necessary to scale the tridiagonal matrix so that the maximum magnitude has value approxi-
mately one. This is normally not an issue when the systems are nonsingular.

The routine is designed to use cyclic reduction as the default method for computing the LU factorization.
Using an optional parameter, standard elimination and partial pivoting will be used to compute the factor-
ization. Partial pivoting is numerically stable but is likely to be less efficient than cyclic reduction.

Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messages for LIN_SOL_TRI. These error messages are numbered 1081-1086;
1101-1106; 1121-1126; 1141-1146.

Examples

Example 1: Solution of Multiple Tridiagonal Systems

The upper, main and lower diagonals of systems of size n X n are generated randomly. A scalar is added to
the main diagonal so that the systems are positive definite. A random vector x; is generated and right-hand

sides y; = A; y; are computed. The routine is used to compute the solution, using the A; and y;. The results
should compare closely with the X; used to generate the right-hand sides. Also, see operator_ex17, sup-
plied with the product examples.

use lin_sol_tri_int

use rand_gen_int

use error_option_packet
implicit none

! This is Example 1 for LIN_SOL_TRI.

integer i

integer, parameter :: n=128

real (kind(1d0)), parameter :: one=1d0, zero=0d4d0

real (kind (1d0)) err

real (kind (1d0)), dimension(2*n,n) :: 4, b, ¢, res(n,n), &

t(n), x, vy

Generate the upper, main, and lower diagonals of the

n matrices A_i. For each system a random vector x is used
to construct the right-hand side, Ax = y. The lower part
of each array remains zero as a result.

c = zero; d=zero; b=zero; x=zero
doi=1, n

call rand_gen (c(l:n,i))

call rand_gen (d(l:n,i))

= ROQQ?WQ\{E{ LIN_SOL_TRI Chapter 1: Linear Systems

72

call rand_gen (b(l:n,1i))
call rand_gen (x(1l:n,i))
end do

! Add scalars to the main diagonal of each system so that
! all systems are positive definite.

t = sum(c+d+b,DIM=1)

d(l:n,1:n) = d(1l:n,1:n) + spread(t,DIM=1,NCOPIES=n)

I Set Ax = y. The vector x generates y. Note the use
! of EOSHIFT and array operations to compute the matrix

! product, n distinct ones as one array operation.

v(l:n,1l:n)=d(l:n,1l:n)*x(1l:n,1l:n) + &

c(l:n,1:n)*EOSHIFT(x(1:n,1:n),SHIFT=+1,DIM=1) + &
b(l:n,1l:n)*EOSHIFT(x(1:n,1:n),SHIFT=-1,DIM=1)

! Compute the solution returned in y. (The input values of c,

' d, b, and vy are overwritten by lin_sol_tri.) Check for any

! error messages.

call lin_sol_tri (c, d, b, vy)

! Check the size of the residuals, y-x. They should be small,
! relative to the size of values in x.

res = x(1:n,1:n) - y(1l:n,1:n)
err = sum(abs(res)) / sum(abs(x(l:n,1l:n)))
if (err <= sqgrt(epsilon(one))) then
write (*,*) 'Example 1 for LIN_SOL_TRI is correct.'
end if
end
Output

Example 1 for LIN_SOL_TRI is correct.

Example 2: Iterative Refinement and Use of Partial Pivoting

This program unit shows usage that typically gives acceptable accuracy for a large class of problems. Our
goal is to use the efficient cyclic reduction algorithm when possible, and keep on using it unless it will fail. In
exceptional cases our program switches to the LU factorization with partial pivoting. This use of both factor-
ization and solution methods enhances reliability and maintains efficiency on the average. Also, see
operator_ex18, supplied with the product examples.

use lin_sol_tri_int
use rand_gen_int

implicit none
! This is Example 2 for LIN_SOL_TRI.

integer i, nopt

= Rogygmq\{q LIN_SOL_TRI Chapter 1: Linear Systems 73

integer, parameter :: n=128

real (kind(1e0)), parameter :: s_one=1e0, s_zero=0e0

real (kind(1d0)), parameter :: d_one=1d0, d_zero=0d0

real (kind(1e0)), dimension(2*n,n) :: d, b, ¢, res(n,n), &
X,y

real (kind(1e0)) change_new, change_old, err

type(s_options) :: iopt(2) = s_options(0,s_zero)

real (kind(1d0)), dimension(n,n) :: d_save, b_save, c_save, &

X_save, y_save, X_sol
logical solve_only

c = s_zero; d=s_zero; b=s_zero; X=s_zero

! Generate the upper, main, and lower diagonals of the
! matrices A. A random vector X is used to construct the
! right-hand sides: y=A*x.
doi=1, n
call rand _gen (c(l:n,i))
call rand_gen (d(1l:n,i))
call rand_gen (b(l:n,i))
call rand_gen (x(1l:n,i))
end do

! Save double precision copies of the diagonals and the
! right-hand side.
c_save = ¢(l:n,1:n); d_save = d(l:n,1l:n)
b _save = b(l:n,1l:n); X_save = x(1l:n,1l:n)
yv_save(l:n,1l:n) = d(l:n,l:n)*x save + &
c(l:n,1l:n)*EOSHIFT(x_save,SHIFT=+1,DIM=1) + &
b(l:n,1l:n)*EOSHIFT(Xx_save,SHIFT=-1,DIM=1)

! Tterative refinement loop.
factorization_choice: do nopt=0, 1

! Set the logical to flag the first time through.

solve_only = .false.
X_sol = d_zero
change_old = huge(s_one)

iterative_refinement: do

! This flag causes a copy of data to be moved to work arrays
! and a factorization and solve step to be performed.
if (.not. solve_only) then
c(l:n,1l:n)=c_save; d(l:n,l:n)=d_save
b(l:n,1:n)=b_save
end if

! Compute current residuals, y - A*xX, using current x.
v(l:n,1l:n) = -y _save + &
d_save*x_sol + &
c_save*EOSHIFT (x_sol,SHIFT=+1,DIM=1) + &

= R{nggmq\{q LIN_SOL_TRI Chapter 1: Linear Systems 74

b_save*EOSHIFT (x_sol, SHIFT=-1,DIM=1)
call lin_sol_tri (¢, d, b, y, iopt=iopt)
x_sol = x sol + y(1l:n,1:n)

change_new = sum(abs(y(l:n,1l:n)))

! If size of change is not decreasing, stop the iteration.
if (change_new >= change_o0ld) exit iterative_refinement

change_old = change_new
iopt (nopt+l) = s_options(s_lin_sol_tri_solve_only,s_zero)

solve_only .true.

end do iterative_refinement

! Use Gaussian Elimination if Cyclic Reduction did not get an
! accurate solution.
I Tt is an exceptional event when Gaussian Elimination is required.
if (sum(abs(x_sol - x_save)) / sum(abs(x_save)) &
<= sqgrt(epsilon(d_one))) exit factorization_choice

iopt = s_options(0,s_zero)
iopt (nopt+l) = s_options(s_lin_sol_tri_use_Gauss_elim,s_zero)

end do factorization_choice
! Check on accuracy of solution.

res = x(1l:n,1:n)- x_save
err = sum(abs(res)) / sum(abs(x_save))
if (err <= sgrt(epsilon(d_one))) then
write (*,*) 'Example 2 for LIN_SOL_TRI is correct.'
end if

end

Output

Example 2 for LIN_SOL_TRI is correct.

Example 3: Eigenvectors of Tridiagonal Matrices

The eigenvalues Ay, A, of a tridiagonal real, self-adjoint matrix are computed. Note that the computation

is performed using the IMSL MATH /LIBRARY FORTRAN 77 interface to routine EVASB. The user may
write this interface based on documentation of the arguments (IMSL 2003, p. 480), or use the module Numer-
ical_Libraries as we have done here. The eigenvectors corresponding to k < n of the eigenvalues are required.
These vectors are computed using inverse iteration for all the eigenvalues at one step. See Golub and Van
Loan (1989, Chapter 7). The eigenvectors are then orthogonalized. Also, see operator_ex19, supplied with
the product examples.

= Rogygmq\{q LIN_SOL_TRI Chapter 1: Linear Systems

75

!

use lin_sol_tri_int
use rand_gen_int
use Numerical_ Libraries

implicit none
This is Example 3 for LIN_SOL_TRI.

integer i, j, nopt

integer, parameter :: n=128, k=n/4, ncoda=1, 1lda=2

real (kind(1e0)), parameter :: s_one=1le0, s_zero=0e0

real (kind(1e0)) A(lda,n), EVAL(k)

type (s_options) iopt(2)=s_options(0,s_zero)

real (kind(1e0)) d(n), b(n), d_t(2*n,k), c_t(2*n,k), perf_ratio, &
b_t(2*n,k), y_t(2*n,k), eval_t(k), res(n,k), temp

logical small

This flag is used to get the k largest eigenvalues.
small = .false.

Generate the main diagonal and the co-diagonal of the
tridiagonal matrix.

call rand_gen (b)
call rand_gen (d)

A(l,1:)=b; A(2,1:)=d

Use Numerical Libraries routine for the calculation of k
largest eigenvalues.

CALL EVASB (N, K, A, LDA, NCODA, SMALL, EVAL)
EVAL_T = EVAL

Use DNFL tridiagonal solver for inverse iteration
calculation of eigenvectors.
factorization_choice: do nopt=0,1

Create k tridiagonal problems, one for each inverse
iteration system.

b_t(l:n,1l:k) = spread(b,DIM=2,NCOPIES=k)
c_t(l:n,1l:k) = EOSHIFT(b_t(l:n,1:k),SHIFT=1,DIM=1)
d_t(l:n,1:k) = spread(d,DIM=2,NCOPIES=k) - &

spread (EVAL_T,DIM=1,NCOPIES=n)

Start the right-hand side at random values, scaled downward
to account for the expected 'blowup' in the solution.

do i=1, k
call rand gen (y_t(l:n,i))
end do

Do two iterations for the eigenvectors.
do i=1, 2

= R{nggmq\{q LIN_SOL_TRI Chapter 1: Linear Systems

76

yv_t(l:n,1:k) = y t(l:n,1:k)*epsilon(s_one)
call lin_sol_tri(c_t, d_t, b_t, v t, &

iopt=iopt)
iopt (nopt+l) = s_options(s_lin_sol_tri_solve_only,s_zero)
end do
! Orthogonalize the eigenvectors. (This is the most

! intensive part of the computing.)
do j=1,k-1 ! Forward sweep of HMGS orthogonalization.
temp=s_one/sqgrt (sum(y_t(l:n,j)**2))
yv_t(l:n,j)=y_t(l:n,j)*temp

y_t(l:n,j+l:k)=y _t(l:n,j+l:k)+ &

spread (-matmul (y_t(l:n,3j),y_t(l:n,j+1l:k)), &
DIM=1,NCOPIES=n)* spread(y_t(l:n,j),DIM=2,NCOPIES=k-3Jj)
end do

temp=s_one/sqgrt(sum(y_t(l:n,k)**2))
v_t(l:n,k)=y_t(l:n,k)*temp

do j=k-1,1,-1 ! Backward sweep of HMGS.
yv_t(l:n,j+l:k)=y _t(l:n,j+l:k)+ &

spread (-matmul (y_t(l:n,j),y_t(l:n,j+1:k)), &
DIM=1,NCOPIES=n)* spread(y_t(l:n,j),DIM=2,NCOPIES=k-7)
end do

! See if the performance ratio is smaller than the value one.

I If it is not the code will re-solve the systems using Gaussian
! Elimination. This is an exceptional event. It is a necessary
! complication for achieving reliable results.

res(l:n,1:k) = spread(d,DIM=2,NCOPIES=k)*y t(l:n,1:k) + &
spread (b, DIM=2,NCOPIES=k) * &
EOSHIFT(y_t(l:n,1:k),SHIFT=-1,DIM=1) + &

EOSHIFT (spread (b, DIM=2,NCOPIES=k)*y_t(l:n,1l:k),SHIFT=1) &
-y_t(l:n,1l:k)*spread(EVAL_T(1l:k),DIM=1,NCOPIES=n)

! If the factorization method is Cyclic Reduction and perf_ratio is
! larger than one, re-solve using Gaussian Elimination. If the
! method is already Gaussian Elimination, the loop exits
! and perf_ratio is checked at the end.
perf_ratio = sum(abs(res(l:n,1:k))) / &
sum (abs (EVAL_T(1:k))) / &
epsilon(s_one) / (5*n)
if (perf_ratio <= s_one) exit factorization_choice
iopt (nopt+l) = s_options(s_lin_sol_tri_use_Gauss_elim,s_zero)

end do factorization_choice
if (perf_ratio <= s_one) then
write (*,*) 'Example 3 for LIN_SOL_TRI is correct.'

end if

end

= R{nggmq\{q LIN_SOL_TRI Chapter 1: Linear Systems

Output

Example 3 for LIN_SOL_TRI is correct.

Example 4: Tridiagonal Matrix Solving within Diffusion Equations
The normalized partial differential equation

otu
ox’ Yo

ou _
ot

Uy
is solved for values of 0 < x < 7mand ¢ > 0. A boundary value problem consists of choosing the value
u (0,t) = Uy
such that the equation
u < X150 > =u
is satisfied. Arbitrary values

_r, _1
X1 =7U1 =5

and
tHh=1
are used for illustration of the solution process. The one-parameter equation
u<x1,t1> —u; =0
The variables are changed to
v(x,t) = u(x,t) — U

that (0, t) = 0. The function v(x, t) satisfies the differential equation. The one-parameter equation solved is
therefore

v<x1,tl> - <u1 —u0> =0

To solve this equation for #,, use the standard technique of the variational equation,

W=V
5%0

Thus

= Rogygmﬂn\{q LIN_SOL_TRI Chapter 1: Linear Systems

78

0t py?
Since the initial data for
v (x,0) = —u
the variational equation initial condition is
w(x, 0) =-1

This model problem illustrates the method of lines and Galerkin principle implemented with the differential-
algebraic solver, D2SPG (IMSL 2003, pp. 889-911). We use the integrator in “reverse communication” mode
for evaluating the required functions, derivatives, and solving linear algebraic equations. See Example 4 of
routine DASPG for a problem that uses reverse communication. Next see Example 4 of routine TVPAG for the
development of the piecewise-linear Galerkin discretization method to solve the differential equation. This
present example extends parts of both previous examples and illustrates Fortran 90 constructs. It further
illustrates how a user can deal with a defect of an integrator that normally functions using only dense linear
algebra factorization methods for solving the corrector equations. See the comments in Brenan et al. (1989,

esp. p. 137). Also, see operator_ex20, supplied with the product examples.
use lin_sol_tri_int
use rand_gen_int
use Numerical_Libraries

implicit none

! This is Example 4 for LIN_SOL_TRI.

integer, parameter n=1000, ichap=5, iget=1, iput=2, &
inum=6, irnum=7

real (kind(1e0)), parameter zero=0e0, one = 1le0

integer i, ido, in(50), inr(20), iopt(6), ival(7), &
iwk (35+n)

real (kind (1e0)) hx, pi_value, t, u_0, u_1l, atol, rtol, sval(2), &
tend, wk(41+11*n), y(n), ypr(n), a_diag(n), &
a_off(n), r_diag(n), r_off(n), t_y(n), t_ypr(n), &
t_g(n), t_diag(2*n,1), t_upper(2*n,1l), &
t_lower(2*n,1l), t_sol(2*n,1)

type (s_options) iopti(2)=s_options (0, zero)

character(2) :: pi(l) = 'pi’

! Define initial data.

t = 0.0e0

u 0 =1

ul = 0.5

tend = one

! Initial values for the variational equation.

Yy = -one; ypr= zero

pi_value = const(pi)

hx = pi_value/ (n+1)

= Rogygmq\{q LIN_SOL_TRI Chapter 1: Linear Systems 79

! Get

! Get

! Set

I Set

! Set

I Set

a_diag = 2*hx/3
a_off = hx/6
r_diag = -2/hx
r off = 1/hx

integer option numbers.
iopt(l) = inum
call iumag ('math', ichap, iget, 1, iopt, in)

floating point option numbers.
iopt(1l) = irnum

call iumag ('math', ichap, iget, 1, iopt, inr)

for reverse communication evaluation of the DAE.

iopt(l) = in(26)

ival(l) =0

for use of explicit partial derivatives.

iopt(2) = in(5)

ival(2) =1

for reverse communication evaluation of partials.
iopt(3) = in(29)

ival(3) =0

for reverse communication solution of linear equations.
iopt(4) = in(31)

ival(4) =0

| Storage for the partial derivative array are not allocated or
! required in the integrator.

! Set

! Set

iopt(5) = in(34)

ival(b) =1

the sizes of iwk, wk for internal checking.
iopt(6) = in(35)

ival(6) = 35 + n

ival(7) = 41 + 1l1l*n

integer options:
call iumag ('math', ichap, iput, 6, iopt, ival)

! Reset tolerances for integrator:

! Set

atol = le-3; rtol= le-3

sval(l) = atol; sval(2) = rtol

iopt(l) = inr(5)

floating point options:

call sumag ('math', ichap, iput, 1, iopt, sval)

! Integrate ODE/DAE. Use dummy external names for g(y,y')
! and partials.

ido =1
Integration_Loop: do

call d2spg (n, t, tend, ido, vy, ypr, dgspg, djspg, iwk, wk)

! Find where g(y,y') goes. (It only goes in one place here, but can
! vary where divided differences are used for partial derivatives.)

iopt(l) = in(27)
call iumag ('math', ichap, iget, 1, iopt, ival)

! Direct user response:

select case(ido)

case(1l,4)

= R{nggmq\{q LIN_SOL_TRI Chapter 1: Linear Systems

80

This should not occur.

write (*,*) ' Unexpected return with ido = ', ido
stop
case(3)

Reset options to defaults. (This is good housekeeping but not
required for this problem.)

in = -in

call iumag ('math', ichap, iput, 50, in, ival)

inr = -inr

call sumag ('math', ichap, iput, 20, inr, sval)
exit Integration_Loop
case(5)
Evaluate partials of g(y,v').
t.y = y; t_ypr = ypr

t_g = r_diag*t_y + r_off*EOSHIFT(t_vy,SHIFT=+1) &
+ EOSHIFT(r_off*t_vy,SHIFT=-1) &
- (a_diag*t_ypr + a_off*EOSHIFT (t_ypr,SHIFT=+1) &
+ EOSHIFT (a_off*t_ypr,SHIFT=-1))
Move data from the assumed size to assumed shape arrays.

do i=1, n

wk(ival(1l)+i-1) = t_g(i)
end do
cycle Integration_Loop

case(6)
Evaluate partials of g(y,vy').
Get value of c_j for partials.
iopt(l) = inr(9)
call sumag ('math', ichap, iget, 1, iopt, sval)

Subtract c_j from diagonals to compute (partials for y')*c_j.
The linear system is tridiagonal.
t_diag(l:n,1) = r_diag - sval(l)*a_diag
t_upper(l:n,1l) = r_off - sval(l)*a_off
t_lower = EOSHIFT(t_upper, SHIFT=+1,DIM=1)

cycle Integration_Loop

case(7)
Compute the factorization.
iopti(l) = s_options(s_lin_sol_tri_factor_only, zero)

call lin_sol_tri (t_upper, t_diag, t_lower, &
t_sol, iopt=iopti)
cycle Integration_Loop

case(8)
Solve the system.
iopti(l) = s_options(s_lin_sol_tri_solve_only, zero)
Move data from the assumed size to assumed shape arrays.
t_sol(l:n,l)=wk(ival(l):ival(1l)+n-1)

call lin_sol_tri (t_upper, t_diag, t_lower, &
t_sol, iopt=iopti)

= R{nggmq\{q LIN_SOL_TRI Chapter 1: Linear Systems

81

! Move data from the assumed shape to assumed size arrays.
wk(ival(l) :ival(l)+n-1)=t_sol(l:n,1)

cycle Integration_Loop

case(2)
! Correct initial value to reach u_1l at t=tend.
u 0 =u0 - (uO*yv(n/2) - (u_1l-u_0)) / (y(n/2) + 1)

! Finish up internally in the integrator.
ido = 3
cycle Integration_Loop
end select
end do Integration_Loop

write (*,*) 'The equation u_t = u_xx, with u(0,t) = "', u_ 0
write (*,*) 'reaches the value ',u_1l, ' at time = ', tend, '.
write (*,*) 'Example 4 for LIN_SOL_TRI is correct.'

end

Output

Example 4 for LIN_SOL_TRI is correct.

= Rogypmq\{q LIN_SOL_TRI Chapter 1: Linear Systems 82

LIN_SVD

Computes the singular value decomposition (SVD) of a rectangular matrix, A. This gives the decomposition

A=usyT

where V' is an n X n orthogonal matrix, U is an m X m orthogonal matrix, and S is a real, rectangular diagonal
matrix.

Required Arguments

A — Array of size m X n containing the matrix. (Input [/Output])
If the packaged option 1in_svd_overwrite_input is used, this array is not saved on output.

S — Array of size min(m, n) containing the real singular values. These nonnegative values are in non-
increasing order. (Output)

U — Array of size m X m containing the singular vectors, U. (Output)

V — Array of size n X n containing the singular vectors, V. (Output)

Optional Arguments

MROWS = m (Input)
Uses array A(1:m, 1:n) for the input matrix.
Default: m = size(a, 1)
NCOLS = n (Input)
Uses array A(1 :m, 1:n) for the input matrix.
Default: n = size(a, 2)
RANK = k (Output)
Number of singular values that exceed the value Small. RANK will satisfy k <= min(m, n).
iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix. Used for passing optional data to the
routine. The options are as follows:

Packaged Options for LIN_SVD
Option Prefix = ? Option Name Option Value
S_,d_,c_,z_ lin_svd_set_small 1
S ,d_,c_,z_ lin_svd_overwrite_input 2
S_,d_,c_,z_ lin_svd_scan_for_ NaN 3
s ,d_,c_,z_ lin_svd_use_qgr 4
S_,d_,c_,z_ lin_svd_skip_orth 5
s_,d_,c_,z_ lin_svd_use_gauss_elim 6
S_,d_,c_,z_ lin_svd_set_perf_ratio 7

= Rogygmﬂn\{q LIN_SVD Chapter 1: Linear Systems 83

iopt(I0) = ?_options (?_lin_svd_set_small, Small)
If a singular value is smaller than Small, it is defined as zero for the purpose of computing
the rank of A.
Default: the smallest number that can be reciprocated safely

iopt(IO) = ?_options(?_lin_svd_overwrite_input, ?_dummy)
Does not save the input array A(:, :).

iopt(I0) = ?_options (?_lin_svd_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

isNaN(a(i,j)) == .true.

See the 1sNaN () function, Chapter 10.
Default: The array is not scanned for NaNs.

iopt(IO0)= ?_options(?_lin_svd_use_gr, ?_dummy)
Uses a rational QR algorithm to compute eigenvalues. Accumulate the singular vectors using this
algorithm.
Default: singular vectors computed using inverse iteration

iopt(I0) = ?_options (?_lin_svd_skip_Orth, ?_dummy)
If the eigenvalues are computed using inverse iteration, skips the final orthogonalization of the vec-
tors. This method results in a more efficient computation. However, the singular vectors, while a
complete set, may not be orthogonal.
Default: singular vectors are orthogonalized if obtained using inverse iteration

iopt(I0) = ?_options (?_lin_svd_use_gauss_elim, ?_dummy)
If the eigenvalues are computed using inverse iteration, uses standard elimination with partial pivot-
ing to solve the inverse iteration problems.
Default: singular vectors computed using cyclic reduction

iopt(I0) = ?_options (?_lin_svd_set_perf_ratio, perf_ratio)
Uses residuals for approximate normalized singular vectors if they have a performance index no
larger than perf_ratio. Otherwise an alternate approach is taken and the singular vectors are computed
again: Standard elimination is used instead of cyclic reduction, or the standard QR algorithm is used
as a backup procedure to inverse iteration. Larger values of perf_ratio are less likely to cause these
exceptions.
Default: perf_ratio = 4

FORTRAN 90 Interface

Generic: CALL LIN_SVD(A,S,U,VI[,...1)
Specific: The specific interface names are S_LIN_SVD, D_LIN_SVD, C_LIN_SVD, and Z_LIN_SVD.
Description

Routine 1in_svd is an implementation of the QR algorithm for computing the SVD of rectangular matrices.
An orthogonal reduction of the input matrix to upper bidiagonal form is performed. Then, the SVD of a real
bidiagonal matrix is calculated. The orthogonal decomposition AV = US results from products of intermedi-
ate matrix factors. See Golub and Van Loan (1989, Chapter 8) for details.

= ROQQ?WQ\{E{ LIN_SVD Chapter 1: Linear Systems

84

Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messages for LIN_SVD. These error messages are numbered 1001-1010;
1021-1030; 1041-1050; 1061-1070.

Examples

Example 1: Computing the SVD

The SVD of a square, random matrix A is computed. The residuals R = AV — US are small with respect to
working precision. Also, see operator_ex21, supplied with the product examples.

use lin_svd_int
use rand_gen_int

implicit none

! This is Example 1 for LIN_SVD.

integer, parameter :: n=32

real (kind(1d0)), parameter :: one=1d0

real (kind(1d0)) err

real (kind(1d0)), dimension(n,n) :: A, U, V, S(n), y(n*n)

! Generate a random n by n matrix.
call rand_gen (y)
A = reshape(y, (/n,n/))

! Compute the singular value decomposition.
call lin_svd(A, S, U, V)

! Check for small residuals of the expression A*V - U*S.

err = sum(abs (matmul (A,V) - U*spread(S,dim=1,ncopies=n))) &
/ sum(abs(S))
if (err <= sqgrt(epsilon(one))) then
write (*,*) 'Example 1 for LIN_SVD is correct.'
end if
end
Output

Example 1 for LIN_SVD is correct.

Example 2: Linear Least Squares with a Quadratic Constraint

Anm X n matrix equation Ax = b, m > n, is approximated in a least-squares sense. The matrix b is size m X k.

Each of the k solution vectors of the matrix x is constrained to have Euclidean length of value «; > 0. The
value of «; is chosen so that the constrained solution is 0.25 the length of the nonregularized or standard

= ROQQ?WQ\{E{ LIN_SVD Chapter 1: Linear Systems

85

least-squares equation. See Golub and Van Loan (1989, Chapter 12) for more details. In the Example 2 code,
Newton’s method is used to solve for each regularizing parameter of the k systems. The solution is then com-
puted and its length is checked. Also, see operator_ex22, supplied with the product examples.

use lin_svd_int
use rand_gen_int

implicit none

! This is Example 2 for LIN_SVD.

integer, parameter :: m=64, n=32, k=4
real (kind(1d0)), parameter :: one=1d0, zero=0d0
real (kind(1d0)) a(m,n), s(n u(m,m), v(n,n), y(m*max(n,k)), &

b(m, k), x(n, k), g(m
delta_lamda (k) ,

g(n,k), s_sqg(n), phi(n,k), &
phi_dot(n, k), rand(k

)
k), alpha(k), lamda(k), &
n
), err
! Generate a random matrix for both A and B.

call rand_gen(y)

a = reshape(y, (/m,n/))

call rand_gen (y)
b = reshape(y, (/m,k/))

! Compute the singular value decomposition.
call lin_svd(a, s, u, V)

! Choose alpha so that the lengths of the regularized solutions
! are 0.25 times lengths of the non-regularized solutions.

g = matmul (transpose(u),b)
x = matmul (v, spread(one/s,dim=2,ncopies=k)*g(l:n,1:k))
alpha = 0.25*sgrt (sum(x**2,dim=1))

t_g = g(l:n,1:k)*spread(s,dim=2,ncopies=k)
s_sqg = s**2; lamda = zero

solve_for_lamda: do
x=one/ (spread(s_sqg,dim=2,ncopies=k)+ &
spread (lamda,dim=1,ncopies=n))
phi = (t_g*x)**2; phi_dot = -2*phi*x
delta_lamda = (sum(phi,dim=1)-alpha**2)/sum(phi_dot,dim=1)

! Make Newton method correction to solve the secular equations for
! lamda.
lamda = lamda - delta_lamda

if (sum(abs(delta_lamda)) <= &
sgrt (epsilon(one)) *sum(lamda)) &
exit solve_for_lamda

! This is intended to fix up negative solution approximations.
call rand_gen (rand)
where (lamda < 0) lamda = s(l) * rand

= Rogygmq\{q LIN_SVD Chapter 1: Linear Systems

86

end do solve_for_ lamda

! Compute solutions and check lengths.
x = matmul (v, t_g/ (spread(s_sqg,dim=2,ncopies=k)+ &
spread(lamda,dim=1,ncopies=n)))

err = sum(abs(sum(x**2,dim=1) - alpha**2))/sum(abs (alpha**2))
if (err <= sgrt(epsilon(one))) then
write (*,*) 'Example 2 for LIN_SVD is correct.'
end if
end
Output

Example 2 for LIN_SVD is correct.

Example 3: Generalized Singular Value Decomposition

The n X n matrices A and B are expanded in a Generalized Singular Value Decomposition (GSVD). Two
n X n orthogonal matrices, U and V, and a nonsingular matrix X are computed such that

AX = Udiag(cy, ..., ¢y)
and
BX =V diag(sy, ..., s,)

The values s; and c; are normalized so that

The c; are nonincreasing, and the s; are nondecreasing. See Golub and Van Loan (1989, Chapter 8) for more
details. Our method is based on computing three SVDs as opposed to the QR decomposition and two SVDs
outlined in Golub and Van Loan. As a bonus, an SVD of the matrix X is obtained, and you can use this infor-
mation to answer further questions about its conditioning. This form of the decomposition assumes that the

matrix
>=[3l
has all its singular values strictly positive. For alternate problems, where some singular values of D are zero,
the GSVD becomes
UTA = diag(cy,, c)W
and

VB = diag(sy, ..., s,)W

= ROQQ?WQ\{E{ LIN_SVD Chapter 1: Linear Systems

The matrix W has the same singular values as the matrix D. Also, see operator_ex23, supplied with the

product examples.

use lin_svd_int
use rand_gen_int

implicit none

! This is Example 3 for LIN_SVD.

integer, parameter :: n=32

integer i

real (kind (1d0)), parameter :: one=1.0d0

real (kind (1d0)) a(n,n), b(n,n), d(2*n,n), x(n,n), u_d(2*n,2*n),
v_d(n,n), v_c(n,n), uc(n,n), v_s(n,n), u_s(n,n), &
yv(n*n), s_d(n), c(n), s(n), sc_c(n), sc_s(n), &

errl, err2
! Generate random square matrices for both A and B.

call rand_gen (y)
a = reshape(y, (/n,n/))

call rand_gen(y)
b = reshape(y, (/n,n/))

! Construct D; A is on the top; B is on the bottom.

d(l:n,1l:n) = a
d(n+l:2*n,1:n) = Db
! Compute the singular value decompositions used for the GSVD.

call lin_svd(d, s_d, u_d, v_d)
call lin_svd(u_d(l:n,1l:n), c, u_c, v_c)
call lin_svd(u_d(n+1l:,1:n), s, u_s, v_s)

! Rearrange c(:) so it is non-increasing. Move singular
! vectors accordingly. (The use of temporary objects sc_c and
! x is required.)

sc_c = ¢c(n:1:-1); c = sc_c
x =uc(l:n,n:1:-1); u.c = x
x = v_c(l:n,n:1:-1); v_c = X

! The columns of v_c and v_s have the same span. They are
! equivalent by taking the signs of the largest magnitude values
! positive.

do i=1, n

sc_c(i) = sign(one,v_c(sum(maxloc(abs(v_c(l:n,i)))),1))
sc_s (i) = sign(one,v_s(sum(maxloc(abs(v_s(l:n,i)))),1))
end do

v_c = v_c*spread(sc_c,dim=1,ncopies=n)

&

= R{nggmq\{q LIN_SVD Chapter 1: Linear Systems

88

u_c = u_c*spread(sc_c,dim=1,ncopies=n)

<
0]
|

= v_s*spread(sc_s,dim=1,ncopies=n)
= u_s*spread(sc_s,dim=1,ncopies=n)

lz
0
I

! In this form of the GSVD, the matrix X can be unstable if D
! is ill-conditioned.
x = matmul (v_d*spread(one/s_d,dim=1,ncopies=n),v_c)

! Check residuals for GSVD, A*X = u_c*diag(c_1l, ..., c_n), and
I B*X = u_s*diag(s_1, ..., s_n).
errl = sum(abs(matmul (a,x) - u_c*spread(c,dim=1,ncopies=n))) &
/ sum(s_d)
err2 = sum(abs (matmul (b,x) - u_s*spread(s,dim=1,ncopies=n))) &
/ sum(s_d)
if (errl <= sqgrt(epsilon(one)) .and. &
err2 <= sqgrt(epsilon(one))) then

write (*,*) 'Example 3 for LIN_SVD is correct.'
end if

end

Example 4: Ridge Regression as Cross-Validation with Weighting

This example illustrates a particular choice for the ridge regression problem: The least-squares problem Ax = b
is modified by the addition of a regularizing term to become

. 2 2 2
min (|| 4x = blI5 + 21113

The solution to this problem, with row k deleted, is denoted by x;(A). Using nonnegative weights
(wy, ..., wy,), the cross-validation squared error C(A) is given by:

mC(/l) = iwk<agxk</1) —bk>2

With the SVD A = USVT and product g = U'b, this quantity can be written as

= Rogygmq\{q LIN_SVD Chapter 1: Linear Systems 89

2

n
_ o
m bk]Z:l uk]g}(s? + 112>
mC(i) = Zw E
=1 J '

2 J
j=1 j<s§+iz>

This expression is minimized. See Golub and Van Loan (1989, Chapter 12) for more details. In the Example 4

code, mC(N), at p = 10 grid points are evaluated using a log-scale with respect to A, 0.1s; <4 < 10s,. Array
operations and intrinsics are used to evaluate the function and then to choose an approximate minimum. Fol-
lowing the computation of the optimum A, the regularized solutions are computed. Also, see
operator_ex24, supplied with the product examples.

use lin_svd_int
use rand_gen_int

implicit none
! This is Example 4 for LIN_SVD.

integer i

integer, parameter :: m=32, n=16, p=10, k=4

real (kind(1d0)), parameter :: one=1d0

real (kind(1d0)) log_lamda, log_lamda_t, delta_log_lamda

real (kind(1d0)) a(m,n), b(m,k), w(m,k), g(m,k), t(n), s(n), &
s_sg(n), u(m,m), v(n,n), y(m*max(n,k)), &
c_lamda(p,k), lamda(k), x(n,k), res(n,k)

! Generate random rectangular matrices for A and right-hand
! sides, b.

call rand_gen(y)

a = reshape(y, (/m,n/))

call rand_gen(y)
b = reshape(y, (/m,k/))

! Generate random weights for each of the right-hand sides.
call rand_gen(y)
w = reshape(y, (/m,k/))

! Compute the singular value decomposition.
call lin_svd(a, s, u, V)

g = matmul (transpose(u),b)
S_sq = s**2

log_lamda = log(10.*s(1l)); log lamda_t=log_lamda
delta_log lamda = (log_lamda - log(0.1l*s(n))) / (p-1)

! Choose lamda to minimize the "cross-validation" weighted
! square error. First evaluate the error at a grid of points,
! uniform in log_scale.

= Rogygmq\{q LIN_SVD Chapter 1: Linear Systems

90

cross_validation_error: do i=1, p
t = s_sq/ (s_sg+exp(log_lamda))
c_lamda(i,:) = sum(w* ((b-matmul (u(l:m,1:n),g(l:n,1:k)* &
spread(t,DIM=2,NCOPIES=k)))/ &
(one-matmul (u(l:m,1l:n)**2, &
spread (t,DIM=2,NCOPIES=k))))**2,DIM=1)
log_lamda = log_lamda - delta_log_lamda
end do cross_validation_error

! Compute the grid value and lamda corresponding to the minimum.

do i=1, k
lamda (i) = exp(log_lamda_t - delta_log_lamda* &
(sum(minloc(c_lamda(l:p,1)))-1))
end do

! Compute the solution using the optimum "cross-validation"
! parameter.

x = matmul (v,g(l:n,1l:k)*spread(s,DIM=2,NCOPIES=k)/ &
(spread(s_sqg,DIM=2,NCOPIES=Kk)+ &
spread (lamda, DIM=1,NCOPIES=n)))

! Check the residuals, using normal equations.
res = matmul (transpose(a),b-matmul (a,x)) - &
spread (lamda, DIM=1,NCOPIES=n) *x
if (sum(abs(res))/sum(s_sq) <= &

sgrt (epsilon(one))) then
write (*,*) 'Example 4 for LIN_SVD is correct.'
end if
end
Output

Example 4 for LIN_SVD is correct.

= R{ng?mq\{q LIN_SVD Chapter 1: Linear Systems 91

Parallel Constrained Least-Squares Solvers

Solving Constrained Least-Squares Systems

The routine PARALLEL_NONNEGATIVE_LSQ is used to solve dense least-squares systems. These are repre-
sented by Ax = b where A is an m X n coefficient data matrix, b is a given right-hand side m-vector, and x is
the solution n-vector being computed. Further, there is a constraint requirement, x > (. The routine
PARALLEL_BOUNDED_LSQ is used when the problem has lower and upper bounds for the solution,

o<x< ﬁ By making the bounds large, individual constraints can be eliminated. There are no restrictions
on the relative sizes of m and n. When n is large, these codes can substantially reduce computer time and
storage requirements, compared with using a routine for solving a constrained system and a single processor.

The user provides the matrix partitioned by blocks of columns:

A= [A1|A2|...|Ak]

An individual block of the partitioned matrix, say A,, is located entirely on the processor with rank

MP RANK = p — 1, where MP_RANK is packaged in the module MPI_SETUP_INT. This module, and the
function MP_SETUP () ,define the Fortran Library MPI communicator, MP_ LIBRARY_WORLD. See Chapter 10,
section Dense Matrix Parallelism Using MPI.

= ROQEI?WQ\{EF Parallel Constrained Least-Squares Solvers Chapter 1: Linear Systems 92

PARALLEL_NONNEGATIVE_LSQ

Cdmer

more. ..

For a detailed description of MPI Requirements see Dense Matrix Parallelism Using MPI in Chapter 10 of this
manual.

Solves a linear, non-negative constrained least-squares system.

Usage Notes

CALL PARALLEL_NONNEGATIVE_LSQ (A, B, X, RNORM, W, INDEX, IPART, IOPT = IOPT)

Required Arguments

A(1:M,:)— (Input/Output) Columns of the matrix with limits given by entries in the array
IPART (1:2,1:max(1,MP_NPROCS)). On output Ay is replaced by the product QA;, where Q is an
orthogonal matrix. The value SIZE (A, 1) defines the value of M. Each processor starts and exits with
its piece of the partitioned matrix.

B(1:M) — (Input/Output) Assumed-size array of length M containing the right-hand side vector, b. On
output b is replaced by the product Qb, where Q is the orthogonal matrix applied to A. All processors
in the communicator start and exit with the same vector.

X(1:N) — (Output) Assumed-size array of length N containing the solution, x>0. The value SIZE (X)
defines the value of N. All processors exit with the same vector.

RNORM — (Output) Scalar that contains the Euclidean or least-squares length of the residual vector,
|| 4x — b||. ALl processors exit with the same value.

W(1:N) — (Output) Assumed-size array of length N containing the dual vector, W = AT(b— AX) <0.Al
processors exit with the same vector.

INDEX(1:N) — (Output) Assumed-size array of length N containing the NSETP indices of columns in the
positive solution, and the remainder that are at their constraint. The number of positive components
in the solution x is given by the Fortran intrinsic function value, NSETP=COUNT (X > 0). All proces-
sors exit with the same array.

IPART(1:2,1:max(1, MP_NPROCS)) — (Input) Assumed-size array containing the partitioning describing
the matrix A. The value MP_NPROCS is the number of processors in the communicator, except when
MPI has been finalized with a call to the routine MP_ SETUP (‘Final’). This causes MP_NPROCS to be
assigned 0. Normally users will give the partitioning to processor of rank = MP_RANK by setting
IPART (1, MP_RANK+1) = first column index, and IPART (2, MP_RANK+1) = last column index. The
number of columns per node is typically based on their relative computing power. To avoid a node

with rank MP_RANK doing any work except communication, set IPART (1, MP_RANK+1) = 0 and
IPART (2,MP_RANK+1)= -1.In this exceptional case there is no reference to the array A(:,:) at that
node.

= ROQUEWPVE PARALLEL_NONNEGATIVE_LSQ Chapter 1: Linear Systems

93

Optional Argument

IOPT(:)— (Input) Assumed-size array of derived type S_OPTIONS or D_OPTIONS. This argument is used
to change internal parameters of the algorithm. Normally users will not be concerned about this argu-
ment, so they would not include it in the argument list for the routine.

Packaged Options for PARALLEL_NONNEGATIVE_LSQ
Option Name Option Value
PNLSQ_SET_TOLERANCE 1
PNLSQ_SET_MAX_ITERATIONS 2
PNLSQ_SET_MIN_RESIDUAL 3

IOPT (I0)=?_OPTIONS (PNLSQ_ SET TOLERANCE, TOLERANCE) Replaces the default rank toler-
ance for using a column, from EPSILON(TOLERANCE) to TOLERANCE. Increasing the value of
TOLERANCE will cause fewer columns to be moved from their constraints, and may cause the mini-
mum residual RNORM to increase.

IOPT (IO)=?_OPTIONS (PNLSQ_SET_ MIN_RESIDUAL, RESID) Replaces the default target for the
minimum residual vector length from 0 to RESID. Increasing the value of RESID can result in fewer
iterations and thus increased efficiency. The descent in the optimization will stop at the first point
where the minimum residual RNORM is smaller than RESID. Using this option may result in the dual
vector not satisfying its optimality conditions, as noted above.

IOPT(IO)= PNLSQ_ SET MAX ITERATIONS

IOPT (IO+1)= NEW_MAX_ITERATIONS Replaces the default maximum number of iterations from
3*N to NEW_MAX_ITERATIONS. Note that this option requires two entries in the derived type array.

FORTRAN 90 Interface

Generic: CALL PARALLEL_NONNEGATIVE_LSQ (3, B, X, RNORM, W, INDEX, IPART [,...])

Specific: The specific interface names are S_ PARALLEL_NONNEGATIVE_LSQ and
D_PARALLEL_NONNEGATIVE_LSQ.

Description

Subroutine PARALLEL_NONNEGATIVE_LSQ solves the linear least-squares system 4x = b,x > 0, using the
algorithm NNLS found in Lawson and Hanson, (1995), pages 160-161. The code now updates the dual vector
w of Step 2, page 161. The remaining new steps involve exchange of required data, using MPL.

= ROQUEWFWE PARALLEL_NONNEGATIVE_LSQ Chapter 1: Linear Systems 94

Examples

Example 1: Distributed Linear Inequality Constraint Solver

The program PNLSQ_EX1 illustrates the computation of the minimum Euclidean length solution of an
m' % n'system of linear inequality constraints , Gy > . The solution algorithm is based on Algorithm LDP,

page 165-166, loc. cit. The rows of £ = [G:h] are partitioned and assigned random values. When the mini-
mum Euclidean length solution to the inequalities has been calculated, the residuals » = Gy — h > (are
computed, with the dual variables to the NNLS problem indicating the entries of r that are precisely zero.

The fact that matrix products involving both E and ET are needed to compute the constrained solution y and
the residuals 7, implies that message passing is required. This occurs after the NNLS solution is computed.

PROGRAM PNLSQ_EX1
! Use Parallel_nonnegative_LSQ to solve an inequality
! constraint problem, Gy >= h. This algorithm uses
! Algorithm LDP of Solving Least Squares Problems,
! page 165. The constraints are allocated to the
! processors, by rows, in columns of the array A(:,:).
USE PNLSQ_INT
USE MPI_SETUP_INT
USE RAND_INT
USE SHOW_INT

IMPLICIT NONE
INCLUDE "mpif.h"

INTEGER, PARAMETER :: MP=500, NP=400, M=NP+1l, N=MP

REAL (KIND(1DO)), PARAMETER :: ZERO=0D0O, ONE=1DO
REAL (KIND(1DO)), ALLOCATABLE :: &

A(:,:), B(:), X(:), Y(:), W(:), ASAVE(:,:)
REAL (KIND(1D0O)) RNORM
INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:)

INTEGER K, L, DN, J, JSHIFT, IERROR
LOGICAL :: PRINT=.false.

! Setup for MPI:
MP_NPROCS=MP_SETUP ()

DN=N/max (1,max (1, MP_NPROCS))-1
ALLOCATE (IPART (2 ,max (1,MP_NPROCS)))

! Spread constraint rows evenly to the processors.
IPART(1,1)=1
DO L=2,MP_NPROCS
IPART(2,L-1)=IPART(1,L-1)+DN
IPART(1,L)=IPART(2,L-1)+1
END DO
IPART (2,MP_NPROCS) =N

! Define the constraint data using random values.

= ROQUEWVGVE PARALLEL_NONNEGATIVE_LSQ Chapter 1: Linear Systems

95

K=max (0, IPART (2, MP_RANK+1) -IPART (1, MP_RANK+1) +1)
ALLOCATE(A(M,K), ASAVE(M,K), X(N), W(N), &
B(M), Y(M), INDEX(N))

! The use of ASAVE can be removed by regenerating
! the data for A(:,:) after the return from
! Parallel_nonnegative_LSQ.
A=rand (A); ASAVE=A
IF (MP_RANK == 0 .and. PRINT) &
CALL SHOW (IPART, &
"Partition of the constraints to be solved")

! Set the right-hand side to be one in the last component, zero elsewhere.
B=ZERO; B (M) =ONE

! Solve the dual problem.
CALL Parallel_nonnegative_LSQ &
(A, B, X, RNORM, W, INDEX, IPART)

! Each processor multiplies its block times the part of
! the dual corresponding to that part of the partition.
Y=ZERO
DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1)
JSHIFT=J-IPART (1,MP_RANK+1)+1
Y=Y+ASAVE (:,JSHIFT) *X (J)
END DO

! Accumulate the pieces from all the processors. Put sum into B(:)
! on rank 0 processor.
B=Y
IF (MP_NPROCS > 1) &
CALL MPI_REDUCE(Y, B, M, MPI_DOUBLE_PRECISION, &
MPI_SUM, 0, MP_LIBRARY_ WORLD, IERROR)
IF (MP_RANK == 0) THEN

! Compute constrained solution at the root.
! The constraints will have no solution if B(M) = ONE.
! All of these example problems have solutions.
B(M)=B (M) -ONE; B=-B/B (M)
END IF

! Send the inequality constraint solution to all nodes.
IF (MP_NPROCS > 1) &
CALL MPI_BCAST(B, M, MPI_DOUBLE_PRECISION, &
0, MP_LIBRARY_ WORLD, IERROR)

! For large problems this printing needs to be removed.
IF(MP_RANK == 0 .and. PRINT) &
CALL SHOW(B(1:NP), &
"Minimal length solution of the constraints")

! Compute residuals of the individual constraints.

! Tf only the solution is desired, the program ends here.
X=ZERO
DO J=IPART(1l,MP_RANK+1) ,IPART (2,MP_RANK+1)

= ROQUEWFIUE PARALLEL_NONNEGATIVE_LSQ Chapter 1: Linear Systems 96

JSHIFT=J-IPART (1,MP_RANK+1)+1
X (J)=dot_product (B,ASAVE(:,JSHIFT))
END DO

! This cleans up residuals that are about rounding
! error unit (times) the size of the constraint
! equation and right-hand side. They are replaced
! by exact zero.

WHERE (W == ZERO) X=ZERO; W=X

! Each group of residuals is disjoint, per processor.
I We add all the pieces together for the total set of
! constraints.
IF (MP_NPROCS > 1) &
CALL MPI_REDUCE (X, W, N, MPI_DOUBLE_PRECISION, &
MPI_SUM, 0, MP_LIBRARY_ WORLD, IERROR)
IF(MP_RANK == 0 .and. PRINT) &
CALL SHOW (W, "Residuals for the constraints")

! See to any errors and shut down MPI.
MP_NPROCS=MP_SETUP('Final"')

IF (MP_RANK == 0) THEN
IF (COUNT (W < ZERO) == 0) WRITE(*,*)&
" Example 1 for PARALLEL_NONNEGATIVE_LSQ is correct."
END IF
END
Output

Example 1 for PARALLEL_NONNEGATIVE_LSQ is correct.

Example 2: Distributed Non-negative Least-Squares

The program PNLSQ_EX2 illustrates the computation of the solution to a system of linear least-squares equa-

tions with simple constraints: aiTx = bi,i =1,..m, subject to x > (. In this example we write the row vectors

[aiT:bi] on a file. This illustrates reading the data by rows and arranging the data by columns, as required by
PARALLEL_NONNEGATIVE_LSQ. After reading the data, the right-hand side vector is broadcast to the group
before computing a solution,x. The block-size is chosen so that each participating processor receives the same
number of columns, except any remaining columns sent to the processor with largest rank. This processor
contains the right-hand side before the broadcast.

This example illustrates connecting a BLACS ‘context” handle and the Fortran Library MPI communicator,
MP_LIBRARY_WORLD, described in Chapter 10.

PROGRAM PNLSQ_EX2
! Use Parallel_Nonnegative_LSQ to solve a least-squares
! problem, A x = b, with x >= 0. This algorithm uses a
! distributed version of NNLS, found in the book
! Solving Least Squares Problems, page 165. The data is
! read from a file, by rows, and sent to the processors,
! as array columns.

= ROQUEWVGVE PARALLEL_NONNEGATIVE_LSQ Chapter 1: Linear Systems

97

USE PNLSQ_INT
USE SCALAPACK_IO_INT
USE BLACS_INT

USE MPI_SETUP_INT
USE RAND_INT
USE ERROR_OPTION_PACKET

IMPLICIT NONE
INCLUDE "mpif.h"

INTEGER, PARAMETER :: M=128, N=32, NP=N+1l, NIN=10

real (kind (1d40)), ALLOCATABLE, DIMENSION(:) :: &
dA(:,:), A(:,:), B, C, W, X, Y

real (kind(1d0)) RNORM, ERROR

INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:)

INTEGER I, J, K, L, DN, JSHIFT, IERROR, &
CONTXT, NPROW, MYROW, MYCOL, DESC_A(9)
TYPE (d_OPTIONS) IOPT(1)

! Routines with the "BLACS_" prefix are from the
! BLACS library.
CALL BLACS_PINFO (MP_RANK, MP_NPROCS)

! Make initialization for BLACS.
CALL BLACS_GET (0,0, CONTXT)

! Define processor grid to be 1 by MP_NPROCS.
NPROW=1
CALL BLACS_GRIDINIT(CONTXT, 'N/A', NPROW, MP_NPROCS)

! Get this processor's role in the process grid.
CALL BLACS_GRIDINFO (CONTXT, NPROW, MP_NPROCS, &
MYROW, MYCOL)

! Connect BLACS context with communicator MP_LIBRARY_WORLD.
CALL BLACS_GET (CONTXT, 10, MP_LIBRARY_WORLD)

! Setup for MPI:
MP_NPROCS=MP_SETUP ()

DN=max (1, NP/MP_NPROCS)
ALLOCATE (IPART (2,MP_NPROCS))

! Spread columns evenly to the processors. Any odd
I number of columns are in the processor with highest
! rank.
IPART (1, :)=1; IPART(2,:)=0
DO L=2,MP_NPROCS
IPART(2,L-1)=IPART(1,L-1)+DN
IPART(1,L)=IPART(2,L-1)+1
END DO

= Roguenge PARALLEL_NONNEGATIVE_LSQ Chapter 1: Linear Systems 98

IPART (2,MP_NPROCS) =NP
IPART(2, :)=min (NP, IPART (2, :))

! Note which processor (L-1) receives the right-hand side.
DO L=1,MP_NPROCS
IF(IPART(1,L) <= NP .and. NP <= IPART(2,L)) EXIT
END DO

K=max (0, IPART (2, MP_RANK+1) -IPART (1,MP_RANK+1)+1)
ALLOCATE (d_A(M,K), W(N), X(N), Y(N),&
B(M), C(M), INDEX(N))

IF (MP_RANK == 0) THEN
ALLOCATE (A (M, N))
! Define the matrix data using random values.
A=rand(A); B=rand(B)

! Write the rows of data to an external file.
OPEN (UNIT=NIN, FILE='Atest.dat', STATUS='UNKNOWN')
DO I=1,M
WRITE (NIN, *) (A(I,J),J=1,N), B(I)
END DO
CLOSE (NIN)
ELSE

! No resources are used where this array is not saved.
ALLOCATE (A (M, 0))
END IF

! Define the matrix descriptor. This includes the

! right-hand side as an additional column. The row

! block size, on each processor, is arbitrary, but is

! chosen here to match the column block size.
DESC_A=(/1, CONTXT, M, NP, DN+1, DN+1, 0, 0, M/)

! Read the data by rows.
IOPT (1)=ScaLAPACK_READ_BY_ ROWS
CALL ScaLAPACK_READ ("Atest.dat", DESC_A, &
d_A, IOPT=IOPT)

! Broadcast the right-hand side to all processors.
JSHIFT=NP-IPART(1,L)+1
IF(K > 0) B=d_A(:,JSHIFT)
IF (MP_NPROCS > 1) &
CALL MPI_BCAST (B, M, MPI_DOUBLE_PRECISION , L-1, &
MP_LIBRARY_WORLD, IERROR)

! Adjust the partition of columns to ignore the
! last column, which is the right-hand side. It is
! now moved to B(:).

IPART (2, :)=min (N, IPART (2, :))

! Solve the constrained distributed problem.
C=B
CALL Parallel_ Nonnegative_LSQ &

EE Roguewvuve PARALLEL_NONNEGATIVE_LSQ

Chapter 1: Linear Systems

99

(d_A, B, X, RNORM, W, INDEX, IPART)

! Solve the problem on one processor, with data saved
! for a cross-check.
IPART (2, :)=0; IPART(2,1)=N; MP_NPROCS=1

! Since all processors execute this code, all arrays
! must be allocated in the main program.

CALL Parallel_Nonnegative_LSQ &

(A, C, Y, RNORM, W, INDEX, IPART)

! See to any errors.
CALL elpop ("Mp_Setup")

! Check the differences in the two solutions. Unique solutions
! may differ in the last bits, due to rounding.

IF (MP_RANK == 0) THEN
ERROR=SUM (ABS (X-Y)) /SUM(Y)
IF (ERROR <= sqrt (EPSILON(ERROR))) write(*,*) &

' Example 2 for PARALLEL_NONNEGATIVE_LSQ is correct.'
OPEN (UNIT=NIN, FILE='Atest.dat', STATUS='OLD')
CLOSE (NIN, STATUS='Delete')
END IF

! Exit from using this process grid.
CALL BLACS_GRIDEXIT(CONTXT)

CALL BLACS_EXIT(0)
END

Output

Example 2 for PARALLEL_NONNEGATIVE_LSQ is correct.'

EE ROQUEWFIUE PARALLEL_NONNEGATIVE_LSQ

Chapter 1: Linear Systems

100

PARALLEL_BOUNDED_LSQ

Cdmer

more. ..

For a detailed description of MPI Requirements see Dense Matrix Parallelism Using MPI in Chapter 10 of this
manual.

Solves a linear least-squares system with bounds on the unknowns.

Usage Notes

CALL PARALLEL_BOUNDED_LSQ (A, B, BND, X, RNORM, W, INDEX, IPART, NSETP, NSETZ,
IOPT=IOPT)

Required Arguments
A(1:M,:)— (Input/Output) Columns of the matrix with limits given by entries in the array

IPART (1:2,1:max(1,MP_NPROCS)).On output 4, is replaced by the product OA,, where Qis an
orthogonal matrix. The value SIZE (A, 1) defines the value of M. Each processor starts and exits with
its piece of the partitioned matrix.

B(1:M) — (Input/Output) Assumed-size array of length M containing the right-hand side vector, . On
output p is replaced by the product Q(b—Ag >, where (Jis the orthogonal matrix applied to4 and g
is a set of active bounds for the solution. All processors in the communicator start and exit with the
same vector.

BND(1:2,1:N) — (Input) Assumed-size array containing the bounds for x. The lower bound @, is in
BND (1, J), and the upper bound 8, is in BND (2, J).

X(1:N) — (Output) Assumed-size array of length N containing the solution, o < x < f. The value
SIZE (X) defines the value of N. All processors exit with the same vector.

RNORM — (Output) Scalar that contains the Euclidean or least-squares length of the residual vector,
| Ax — b||. All processors exit with the same value.

W(1:N) — (Output) Assumed-size array of length N containing the dual vector, W = A" (b—Ax) Ata
solution exactly one of the following is true for each j|1 < j <n,

cq;=1xj= ,Bj, and w; arbitrary

.a?:x]"

ox; = ,6;', and w;j=z0

and w; < 0

oaj<xj<,6;',andwj=0

All processors exit with the same vector.

INDEX(1:N) — (Output) Assumed-size array of length N containing the NSETP indices of columns in the
solution interior to bounds, and the remainder that are at a constraint. All processors exit with the
same array.

= ROQUEWPVE PARALLEL_BOUNDED_LSQ Chapter 1: Linear Systems

101

IPART(1:2,1:max(1, MP_NPROCS)) — (Input) Assumed-size array containing the partitioning describing
the matrix A. The value MP_NPROCS is the number of processors in the communicator, except when
MPT has been finalized with a call to the routine MP_SETUP (‘Final '). This causes MP_NPROCS to be
assigned 0. Normally users will give the partitioning to processor of rank = MP_RANK by setting
IPART (1,MP_RANK+1) = first column index, and IPART (2, MP_RANK+1) = last column index. The
number of columns per node is typically based on their relative computing power. To avoid a node

with rank MP_RANK doing any work except communication, set IPART (1, MP_RANK+1) = 0and
IPART (2,MP_RANK+1)= -1.In this exceptional case there is no reference to the array A(:,:) at that
node.

NSETP— (Output) An INTEGER indicating the number of solution components not at constraints. The
column indices are output in the array INDEX (:).

NSETZ— (Output) An INTEGER indicating the solution components held at fixed values. The column
indices are output in the array INDEX (:).

Optional Argument

IOPT(:)— (Input) Assumed-size array of derived type S_OPTIONS or D_OPTIONS. This argument is used
to change internal parameters of the algorithm. Normally users will not be concerned about this argu-
ment, so they would not include it in the argument list for the routine.

Packaged Options for PARALLEL_BOUNDED_LSQ
Option Name Option Value
PBLSQ_SET_TOLERANCE 1
PBLSQ_SET_MAX_ITERATIONS 2
PBLSQ_SET_MIN_RESIDUAL 3

IOPT (I0)=?_OPTIONS (PBLSQ_SET TOLERANCE, TOLERANCE) Replaces the default rank toler-
ance for using a column, from EPSILON (TOLERANCE) to TOLERANCE. Increasing the value of
TOLERANCE will cause fewer columns to be increased from their constraints, and may cause the mini-
mum residual RNORM to increase.

IOPT (IO)=?_OPTIONS (PBLSQ_SET MIN_RESIDUAL, RESID) Replaces the default target for the
minimum residual vector length from 0 to RESID. Increasing the value of RESID can result in fewer
iterations and thus increased efficiency. The descent in the optimization will stop at the first point
where the minimum residual RNORM is smaller than RESID. Using this option may result in the dual
vector not satisfying its optimality conditions, as noted above.

IOPT(IO)= PBLSQ_SET_ MAX_ ITERATIONS

IOPT (IO+1)= NEW_MAX ITERATIONS Replaces the default maximum number of iterations from
3*N to NEW_MAX_ITERATIONS. Note that this option requires two entries in the derived type array.

FORTRAN 90 Interface

Generic: CALL PARALLEL_BOUNDED_LSQ (3, B, X [,...])

Specific: The specific interface names are S_ PARALLEL_BOUNDED_LSQ and
D_PARALLEL_BOUNDED_LSQ.

= ROQUEWFWE PARALLEL_BOUNDED_LSQ Chapter 1: Linear Systems 102

Description

Subroutine PARALLEL_BOUNDED_LSQ solves the least-squares linear system 4x = b,o < x < 3, using the
algorithm BVLS found in Lawson and Hanson, (1995), pages 279-283. The new steps involve updating the
dual vector and exchange of required data, using MPI. The optional changes to default tolerances, minimum
residual, and the number of iterations are new features.

Examples

Example 1: Distributed Equality and Inequality Constraint Solver

The program PBLSQ_EX1 illustrates the computation of the minimum Euclidean length solution of an
m' % n'system of linear inequality constraints , Gy > h. Additionally the first / > (of the constraints are
equalities. The solution algorithm is based on Algorithm LDP, page 165-166, loc. cit. By allowing the dual

variables to be free, the constraints become equalities. The rows of £ = [G:h] are partitioned and assigned
random values. When the minimum Euclidean length solution to the inequalities has been calculated, the
residuals 7 = Gy — h > 0 are computed, with the dual variables to the BVLS problem indicating the entries
of r that are exactly zero.

PROGRAM PBLSQ_EX1
! Use Parallel_bounded_LSQ to solve an inequality
! constraint problem, Gy >= h. Force F of the constraints
! to be equalities. This algorithm uses LDP of
! Solving Least Squares Problems, page 165.
! Forcing equality constraints by freeing the dual is
! new here. The constraints are allocated to the
! processors, by rows, in columns of the array A(:,:).
USE PBLSQ_ INT
USE MPI_SETUP_INT
USE RAND_INT
USE SHOW_INT

IMPLICIT NONE
INCLUDE "mpif.h"

INTEGER, PARAMETER :: MP=500, NP=400, M=NP+1l, &
N=MP, F=NP/10

REAL (KIND(1DO)), PARAMETER :: ZERO=0D0O, ONE=1DO0
REAL (KIND(1DO)), ALLOCATABLE :: &
A(:,:), B(:), BND(:,:), X(:), Y(:), &
W(:), ASAVE(:, :)
REAL (KIND(1D0O)) RNORM
INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:)

INTEGER K, L, DN, J, JSHIFT, IERROR, NSETP, NSETZ
LOGICAL :: PRINT=.false.

! Setup for MPI:
MP_NPROCS=MP_SETUP ()

= ROQUEWFIVE PARALLEL_BOUNDED_LSQ Chapter 1: Linear Systems

103

DN=N/max (1,max (1, MP_NPROCS))-1
ALLOCATE (IPART (2,max (1,MP_NPROCS)))

! Spread constraint rows evenly to the processors.
IPART(1,1)=1
DO L=2,MP_NPROCS
IPART(2,L-1)=IPART(1,L-1)+DN
IPART(1,L)=IPART(2,L-1)+1
END DO
IPART (2,MP_NPROCS) =N

! Define the constraints using random data.
K=max (0, IPART (2,MP_RANK+1)-IPART(1,MP_RANK+1)+1)
ALLOCATE(A(M,K), ASAVE(M,K), BND(2,N), &
X(N), W(N), B(M), Y(M), INDEX(N))

! The use of ASAVE can be replaced by regenerating the
! data for A(:,:) after the return from
! Parallel_ bounded_LSQ
A=rand (A); ASAVE=A
IF (MP_RANK == 0 .and. PRINT) &
call show (IPART, &
"Partition of the constraints to be solved")

! Set the right-hand side to be one in the last
! component, zero elsewhere.
B=ZERO; B (M) =ONE

! Solve the dual problem. Letting the dual variable
! have no constraint forces an equality constraint
! for the primal problem.
BND(1,1:F)=-HUGE (ONE); BND(1l,F+1:)=2ZERO
BND (2, :) =HUGE (ONE)
CALL Parallel_bounded_LSQ &
(A, B, BND, X, RNORM, W, INDEX, IPART, &
NSETP, NSETZ)

! Each processor multiplies its block times the part
! of the dual corresponding to that partition.
Y=ZERO
DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1)
JSHIFT=J-IPART (1,MP_RANK+1)+1
Y=Y+ASAVE (:,JSHIFT) *X (J)
END DO

! Accumulate the pieces from all the processors.
! Put sum into B(:) on rank 0 processor.
B=Y
IF (MP_NPROCS > 1) &
CALL MPI_REDUCE(Y, B, M, MPI_DOUBLE_PRECISION, &
MPI_SUM, 0, MP_LIBRARY_ WORLD, IERROR)
IF (MP_RANK == 0) THEN

! Compute constraint solution at the root.
! The constraints will have no solution if B(M) = ONE.

= ROQUEWFIUE PARALLEL_BOUNDED_LSQ Chapter 1: Linear Systems 104

! All of these example problems have solutions.
B (M) =B (M) -ONE; B=-B/B (M)
END IF

! Send the inequality constraint or primal solution to all nodes.

IF (MP_NPROCS > 1) &
CALL MPI_BCAST(B, M, MPI_DOUBLE_PRECISION, 0, &
MP_LIBRARY_WORLD, IERROR)

! For large problems this printing may need to be removed.
IF(MP_RANK == 0 .and. PRINT) &
call show(B(1:NP), &
"Minimal length solution of the constraints")

! Compute residuals of the individual constraints.
X=ZERO
DO J=IPART(1,MP_RANK+1),IPART (2,MP_RANK+1)
JSHIFT=J-IPART (1,MP_RANK+1)+1
X (J)=dot_product (B,ASAVE (:,JSHIFT))
END DO

! This cleans up residuals that are about rounding error
! unit (times) the size of the constraint equation and
! right-hand side. They are replaced by exact zero.
WHERE (W == ZERO) X=ZERO
w=X

! Each group of residuals is disjoint, per processor.
I We add all the pieces together for the total set of
! constraints.
IF (MP_NPROCS > 1) &
CALL MPI_REDUCE (X, W, N, MPI_DOUBLE_PRECISION, &
MPI_SUM, 0, MP_LIBRARY_ WORLD, IERROR)
IF (MP_RANK == 0 .and. PRINT) &
call show (W, "Residuals for the constraints")

I See to any errors and shut down MPI.
MP_NPROCS=MP_SETUP('Final"')

IF (MP_RANK == 0) THEN
IF (COUNT (W < ZERO) == 0 .and.&
COUNT (W == ZERO) >= F) WRITE(*,*)&
" Example 1 for PARALLEL_BOUNDED_LSQ is correct."
END TIF
END

Output

Example 1 for PARALLEL_BOUNDED_LSQ is correct.

EE Roguewvuve PARALLEL_BOUNDED_LSQ

Chapter 1: Linear Systems

105

Example 2: Distributed Newton-Raphson Method with Step Control

The program PBLSQ_EX2 illustrates the computation of the solution of a non-linear system of equations. We
use a constrained Newton-Raphson method.

This algorithm works with the problem chosen for illustration. The step-size control used here, employing
only simple bounds, may not work on other non-linear systems of equations. Therefore we do not recommend
the simple non-linear solving technique illustrated here for an arbitrary problem. The test case is Brown's
Almost Linear Problem, Moré, et al. (1982). The components are given by:

n
o fix)=x;+ lej—(n+l), i=1, ...,n—1
=

f,(X)=x ... x,—1

-\
The functions are zero at the point X = (5,-.-5,51 > , where ¢ > 1 is a particular root of the polynomial
n — T
equation 70 — (Vl +1)5 "+1=0.Toavoid convergence to the local minimum X = (O,.-.,Oﬂ +1) , we
start at the standard point x = (1/2,..1/2,1/2)T and develop the Newton method using the linear terms

f (X -y > =f (X> —J (x)y = 0, where J (X> is the Jacobian matrix. The update is constrained so that
the first n» — 1 components satisfy X, — ;> 1 /2,0ry =X 1/2. The last component is bounded from

both sides, 0 < x,, — Y, =< 1/ 2 orX, >V, 2 <xn —1/2) These bounds avoid the local minimum and allow

In(x;)=0
us to replace the last equation by 5 < /) , which is better scaled than the original. The positive lower
bound for X, ~), is replaced by the strict bound, EPSILON (1D0), the arithmetic precision, which restricts
the relative accuracy of X,,. The input for routine PARALLEL_BOUNDED_LSQ expects each processor to obtain

that part of J (x) it owns. Those columns of the Jacobian matrix correspond to the partition given in the
array IPART (:,:). Here the columns of the matrix are evaluated, in parallel, on the nodes where they are
required.

PROGRAM PBLSQ_EX2

Use Parallel_bounded_LSQ to solve a non-linear system
of equations. The example is an ACM-TOMS test problem,
except for the larger size. It is "Brown's Almost Linear
Function."

USE ERROR_OPTION_PACKET

USE PBLSQ_ INT

USE MPI_SETUP_INT

USE SHOW_INT

USE Numerical_ Libraries, ONLY : N1RTY

IMPLICIT NONE

INTEGER, PARAMETER :: N=200, MAXIT=5

REAL (KIND(1DO)), PARAMETER :: ZERO=0D0O, ONE=1DO, &
HALF=5D-1, TwWO=2DO0

REAL (KIND(1DO)), ALLOCATABLE :: &

A(:,:), B(:), BND(:,:), X(:), Y(:), W(:)

= ROQUEWFIVE PARALLEL_BOUNDED_LSQ Chapter 1: Linear Systems

106

REAL (KIND(1D0O)) RNORM
INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:)

INTEGER K, L, DN, J, JSHIFT, IERROR, NSETP, &
NSETZ, ITER

LOGICAL :: PRINT=.false.

TYPE (D_OPTIONS) IOPT(3)

Setup for MPI:
MP_NPROCS=MP_SETUP ()

DN=N/max (1,max (1, MP_NPROCS))-1
ALLOCATE (IPART (2 ,max (1,MP_NPROCS)))

Spread Jacobian matrix columns evenly to the processors.
IPART(1,1)=1
DO L=2,MP_NPROCS
IPART(2,L-1)=IPART(1,L-1)+DN
IPART(1,L)=IPART(2,L-1)+1
END DO
IPART (2,MP_NPROCS) =N

K=max (0, IPART (2, MP_RANK+1) -IPART (1, MP_RANK+1) +1)
ALLOCATE (A(N,K), BND(2,N), &
X(N), W(N), B(N), Y(N), INDEX(N))

This is Newton's method on "Brown's almost
linear function."

X=HALF

ITER=0

Turn off messages and stopping for FATAL class errors.
CALL ERSET (4, 0, 0)

NEWTON_METHOD: DO

Set bounds for the values after the step is taken.

All variables are positive and bounded below by HALF,

except for variable N, which has an upper bound of HALF.
BND(1,1:N-1)=-HUGE (ONE)

BND(2,1:N-1)=X(1:N-1)-HALF

BND(1,N)=X(N)-HALF

BND(2,N)=X(N)-EPSILON (ONE)

Compute the residual function.
B(1:N-1)=SUM(X)+X(1:N-1)-(N+1)
B (N) =LOG (PRODUCT (X))
if (mp_rank == 0 .and. PRINT) THEN
CALL SHOW(B, &
"Developing non-linear function residual")
END TIF
IF (MAXVAL (ABS(B(1:N-1))) <= SQRT(EPSILON(ONE)))&
EXIT NEWTON_METHOD

Compute the derivatives local to each processor.

EE Roguewvuve PARALLEL_BOUNDED_LSQ

Chapter 1: Linear Systems

107

A(l:N-1,:)=0ONE

DO J=1,N-1
IF(J < IPART(1,MP_RANK+1)) CYCLE
IF(J > IPART(2,MP_RANK+1)) CYCLE
JSHIFT=J-IPART (1,MP_RANK+1)+1
A(J,JSHIFT)=TWO

END DO

A(N, :)=ONE/X (IPART (1,MP_RANK+1) : IPART (2,MP_RANK+1))

! Reset the linear independence tolerance.
TIOPT (1)=D_OPTIONS (PBLSQ_ SET TOLERANCE, &
sqrt (EPSILON (ONE)))
IOPT (2)=PBLSQ SET MAX_ ITERATIONS

! If N iterations was not enough on a previous iteration,
IF(N1RTY (1) == 0) THEN
IOPT(3)=N
ELSE
IOPT (3)=2*N
CALL E1POP('MP_SETUP')
CALL E1PSH('MP_SETUP')
END IF

CALL parallel_bounded_ LSQ &
(A, B, BND, Y, RNORM, W, INDEX, IPART, NSETP, &

NSETZ, IOPT=IOPT)

! The array Y(:) contains the constrained Newton step.
! Update the variables.
X=X-Y

== 0 .and. PRINT) THEN
(BND, "Bounds for the moves")
CALL SHOW (X, "Developing Solution")
CALL SHOW((/RNORM/), &

"Linear problem residual norm")
END IF

IF (mp_rank
CALL show

! This is a safety measure for not taking too many steps.

ITER=ITER+1
IF(ITER > MAXIT) EXIT NEWTON_METHOD

END DO NEWTON_METHOD

IF (MP_RANK == 0) THEN
IF(ITER <= MAXIT) WRITE(*,*)&
" Example 2 for PARALLEL_BOUNDED_LSQ is correct."

END IF

! See to any errors and shut down MPI.
MP_NPROCS=MP_SETUP('Final')

END

reset to 2*N.

EE Roguewvuve PARALLEL_BOUNDED_LSQ

Chapter 1: Linear Systems

108

LSARG

;%': ErMPI
FE CE caPABLE

more. ..
more. ..

Solves a real general system of linear equations with iterative refinement.

Required Arguments
A — Nby N matrix containing the coefficients of the linear system. (Input)
B — Vector of length N containing the right-hand side of the linear system. (Input)
X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)
Default: N = size (3,2).
LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).
IPATH — Path indicator. (Input)

IPATH = 1 means the system AX = Bis solved.

T

IPATH = 2 means the system A" X = Bis solved.

Default: IPATH = 1.

FORTRAN 90 Interface

Generic: CALL LSARG (A, B, X [,...])
Specific: The specific interface names are S_LSARG and D_LSARG.

FORTRAN 77 Interface

Single: CALL LSARG (N, A, LDA, B, IPATH, X)
Double: The double precision name is DLSARG
ScaLAPACK Interface
Generic: CALL LSARG (A0, B0, X0 [, ...1)
Specific: The specific interface names are S_LSARG and D_LSARG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

= Rogygmﬂn\{q LSARG Chapter 1: Linear Systems 109

Description

Routine LSARG solves a system of linear algebraic equations having a real general coefficient matrix. It first
uses routine LFCRG to compute an LU factorization of the coefficient matrix and to estimate the condition
number of the matrix. The solution of the linear system is then found using the iterative refinement routine
LFIRG. The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon
which supporting libraries are used during linking. For a detailed explanation see Using ScaLAPACK,
LAPACK, LINPACK, and EISPACK in the Introduction section of this manual.

LSARG fails if U, the upper triangular part of the factorization, has a zero diagonal element or if the iterative
refinement algorithm fails to converge. These errors occur only if A is singular or very close to a singular
matrix.

If the estimated condition number is greater than 1/& (where € is machine precision), a warning error is
issued. This indicates that very small changes in A can cause very large changes in the solution x. Iterative
refinement can sometimes find the solution to such a system. LSARG solves the problem that is represented in
the computer; however, this problem may differ from the problem whose solution is desired.

Comments
1. Workspace may be explicitly provided, if desired, by use of L2ARG/DL2ARG. The reference is:

CALL L2ARG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK)
The additional arguments are as follows:

FACT — Work vector of length N? containing the LU factorization of A on output.

IPVT — Integer work vector of length N containing the pivoting information for the LU factoriza-
tion of A on output.

WK — Work vector of length N.

2 Informational errors

Type Code Description
3 1 The input matrix is too ill-conditioned. The solution might not be accurate.
4 2 The input matrix is singular.

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A. A contains
the coefficients of the linear system. (Input)

B0 — Local vector of length MXLDA containing the local portions of the distributed vector B. B contains the
right-hand side of the linear system. (Input)

X0 — Local vector of length MXLDA containing the local portions of the distributed vector X. X contains
the solution to the linear system. (Output)

= R{ngﬁ.lnewlg\{er LSARG Chapter 1: Linear Systems

110

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

Examples

Example

A system of three linear equations is solved. The coefficient matrix has real general form and the right-hand-
side vector b has three elements.

USE LSARG_INT
USE WRRRN_INT
IMPLICIT NONE
! Declare variables
INTEGER LDA, N
PARAMETER (LDA=3, N=3)

REAL A(LDA,N), B(N), X(N)
! Set values for A and B
A(l,:) = (/ 33.0, 16.0, 72.0/)
A(2,:) = (/-24.0, -10.0, -57.0/)
A(3,:) = (/ 18.0, -11.0, 7.0/)
1
B = (/129.0, -96.0, 8.5/)

! Solve the system of equations
CALL LSARG (A, B, X)

! Print results
CALL WRRRN (’X’, X, 1, N, 1)
END

Output

X
1 2 3
1.000 1.500 1.000

ScaLAPACK Example

The same system of three linear equations is solved as a distributed computing example. The coefficient
matrix has real general form and the right-hand-side vector b has three elements. SCALAPACK_MAP and
SCALAPACK_UNMAP are IMSL utility routines (see Utilities) used to map and unmap arrays to and from the
processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the
descriptors for the local arrays.

USE MPI_SETUP_INT
USE LSARG_INT
USE WRRRN_INT

= Rogygmﬂn\{q LSARG Chapter 1: Linear Systems 111

USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER N, DESCA(9), DESCX(9)

INTEGER INFO, MXLDA, MXCOL

REAL, ALLOCATABLE :: A(:,:), B(:), X(:)
REAL, ALLOCATABLE :: AO(:,:), BO(:), XO(:)

PARAMETER (N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(N,N), B(N), X(N))
! Set values for A and B

A(l,:) = (/ 33.0, 16.0, 72.0/)
A(2,:) = (/-24.0, -10.0, -57.0/)
A(3,:) = (/ 18.0, -11.0, 7.0/)
!
B = (/129.0, -96.0, 8.5/)
ENDIF

! Set up a 1D processor grid and define
! its context id, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! AND MXCOL
CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (AO (MXLDA,MXCOL), BO(MXLDA), X0 (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK_MAP (A, DESCA, AO0)
CALL SCALAPACK_MAP (B, DESCX, BO0)
! Solve the system of equations
CALL LSARG (A0, BO, X0)
! Unmap the results from the distributed
! arrays back to a non-distributed array.
! After the unmap, only Rank=0 has the full
! array.
CALL SCALAPACK_UNMAP (X0, DESCX, X)
1 Print results.
! Only Rank=0 has the solution, X.
IF (MP_RANK .EQ. 0) CALL WRRRN ('X’, X, 1, N, 1)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, B, X)
DEALLOCATE (A0, BO, X0)
! Exit ScalLAPACK usage
CALL SCALAPACK_EXIT (MP_ICTXT)
! Shut down MPI
MP_NPROCS = MP_SETUP (‘FINAL’)
END

= R{nggmq\{q LSARG Chapter 1: Linear Systems 112

Output

X
1 2 3
1.000 1.500 1.000

= RO gy?ﬂq\{q LSARG Chapter 1: Linear Systems 113

LSLRG

;%}' rMPI
PE CE cAPABLE

more. ..
more. ..

Solves a real general system of linear equations without iterative refinement.

Required Arguments

A — N by N matrix containing the coefficients of the linear system. (Input)
B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations

Optional Arguments
N — Number of equations. (Input)
Default: N = size (3,2).
LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).
IPATH — Path indicator. (Input)

IPATH = 1 means the system AX = Bis solved. IPATH = 2 means the system A
Default: TPATH = 1.

Tx = Bis solved.

FORTRAN 90 Interface

Generic: CALL LSLRG (A, B, X [,...])
Specific: The specific interface names are S_LSLRG and D_LSLRG.

FORTRAN 77 Interface

Single: CALL LSLRG (N, A, LDA, B, IPATH, X)
Double: The double precision name is DLSLRG.
ScalLAPACK Interface
Generic: CALL LSLRG(A0,B0,X0 [,...1)
Specific: The specific interface names are S_LSLRG and D_LSLRG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

= Rogygmﬂn\{q LSLRG Chapter 1: Linear Systems 114

Description

Routine LSLRG solves a system of linear algebraic equations having a real general coefficient matrix. The
underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon which sup-
porting libraries are used during linking. For a detailed explanation see Using ScaLAPACK, LAPACK,
LINPACK, and EISPACK in the Introduction section of this manual. LSLRG first uses the routine LFCRG to
compute an LU factorization of the coefficient matrix based on Gauss elimination with partial pivoting.
Experiments were analyzed to determine efficient implementations on several different computers. For some
supercomputers, particularly those with efficient vendor-supplied BLAS, versions that call Level 1,2 and 3
BLAS are used. The remaining computers use a factorization method provided to us by Dr. Leonard J. Hard-
ing of the University of Michigan. Harding’s work involves “loop unrolling and jamming” techniques that
achieve excellent performance on many computers. Using an option, LSLRG will estimate the condition num-
ber of the matrix. The solution of the linear system is then found using LFSRG.

The routine LSLRG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This
occurs only if A is close to a singular matrix.

If the estimated condition number is greater than 1/& (where € is machine precision), a warning error is
issued. This indicates that small changes in A can cause large changes in the solution x. If the coefficient
matrix is ill-conditioned or poorly scaled, it is recommended that either LIN_SOL_SVD or LSARG be used.

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LRG/DL2LRG. The reference is:
CALL L2LRG (N, A,LDA, B, IPATH, X, FACT, IPVT, WK)
The additional arguments are as follows:

FACT —N x N work array containing the LU factorization of A on output. If A is not needed, A and
FACT can share the same storage locations. See Item 3 below to avoid memory bank conflicts.

IPVT — Integer work vector of length N containing the pivoting information for the LU factoriza-
tion of A on output.

WK — Work vector of length N.
2. Informational errors

Type Code Description
3 1 The input matrix is too ill-conditioned. The solution might not be accurate.
4 2 The input matrix is singular.

3. Integer Options with Chapter 11, Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency) problems. In
routine L2LRG the leading dimension of FACT is increased by IVAL(3) when N is a multiple of
IVAL(4). The values IVAL(3) and IVAL(4) are temporarily replaced by IVAL(1) and IVAL(2);
respectively, in LSLRG. Additional memory allocation for FACT and option value restoration are
done automatically in LSLRG. Users directly calling L2LRG can allocate additional space for
FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no longer cause inefficiencies.
There is no requirement that users change existing applications that use LSLRG or L2LRG.
Default values for the option are
IVAL(*)=1,16,0,1.

= R{ngﬁ.lnewlg\{er LSLRG Chapter 1: Linear Systems

115

17 This option has two values that determine if the L; condition number is to be computed. Routine
LSLRG temporarily replaces IVAL(2) by IVAL(1). The routine L2CRG computes the condition
number if TVAL(2) = 2. Otherwise L2CRG skips this computation. LSLRG restores the option.
Default values for the option are
IVAL(*)=1,2.

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A. A contains
the coefficients of the linear system. (Input)

B0 — Local vector of length MXLDA containing the local portions of the distributed vector B. B contains
the right-hand side of the linear system. (Input)

X0 — Local vector of length MXLDA containing the local portions of the distributed vector X. X contains
the solution to the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

Examples

Example 1

A system of three linear equations is solved. The coefficient matrix has real general form and the right-hand-
side vector b has three elements.

USE LSLRG_INT
USE WRRRN_INT
IMPLICIT NONE
Declare variables
INTEGER LDA, N
PARAMETER (LDA=3, N=3)

REAL A(LDA,N), B(N), X(N)
! Set values for A and B

A(l,:) = (/ 33.0, 16.0, 72.0/)

A(2,:) = (/-24.0, -10.0, -57.0/)

A(3,:) = (/ 18.0, -11.0, 7.0/)
!

B = (/129.0 -96.0 8.5/)

Solve the system of equations
CALL LSLRG (A, B, X)
! Print results
CALL WRRRN (’X’, X, 1, N, 1)
END

= ROQQ?WQ\{E{ LSLRG Chapter 1: Linear Systems

116

Output

X
1 2 3
1.000 1.500 1.000

Example 2

A system of N = 16 linear equations is solved using the routine L2LRG. The option manager is used to elimi-
nate memory bank conflict inefficiencies that may occur when the matrix dimension is a multiple of 16. The
leading dimension of FACT=A is increased from N to N+IVAL (3) =17, since N=16=IVAL(4). The data used

for the test is a nonsymmetric Hadamard matrix and a right-hand side generated by a known solution, x; = ,

j=1,..,N.

USE L2LRG_INT
USE IUMAG_INT
USE WRRRN_INT
USE SGEMV_INT
IMPLICIT NONE
! Declare variables
INTEGER LDA, N
PARAMETER (LDA=17, N=16)
! SPECIFICATIONS FOR PARAMETERS

INTEGER ICHP, IPATH, IPUT, KBANK
REAL ONE, ZERO
PARAMETER (ICHP=1, IPATH=1, IPUT=2, KBANK=16, ONE=1.0E0, &
ZERO=0.0E0)
! SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER I, IPVT(N), J, K, NN
REAL A(LDA,N), B(N), WK(N), X(N)
! SPECIFICATIONS FOR SAVE VARIABLES
INTEGER IOPT (1), IVAL(4)
SAVE IVAL

! Data for option values.
DATA IVAL/1, 16, 1, 16/
! Set values for A and B:
A(1l,1) = ONE
NN =1
! Generate Hadamard matrix.
DO 20 K=1, 4
DO 10 J=1, NN
DO 10 1I=1, NN

A(NN+I,J) = -A(I,J)

A(I,NN+J) = A(I,Jd)

A(NN+I,NN+J) = A(I,J)
10 CONTINUE

NN = NN + NN
20 CONTINUE
! Generate right-hand-side.
DO 30 J=1, N
X(J) =3
30 CONTINUE
! Set B = A*X.
CALL SGEMV ('N’, N, N, ONE, A, LDA, X, 1, ZERO, B, 1)

= Rogygmq\{q LSLRG Chapter 1: Linear Systems 117

! Clear solution array.

X = ZERO

! Set option to avoid memory

! bank conflicts.
IOPT (1) = KBANK

CALL IUMAG ('MATH’, ICHP, IPUT, 1, IOPT, IVAL)

! Solve A*X = B.

CALL L2LRG (N, A, LDA, B, IPATH, X, A, IPVT, WK)

! Print results
CALL WRRRN (’'X’, X, 1, N, 1)

END

Output
X

1 2 3 4 5 6 7
1.00 2.00 3.00 4.00 5.00 6.00 7.00
11 12 13 14 15 16
11.00 12.00 13.00 14.00 15.00 16.00
ScaLAPACK Example

.00 9.

00 10.00

The same system of three linear equations is solved as a distributed computing example. The coefficient
matrix has real general form and the right-hand-side vector b has three elements. SCALAPACK_MAP and
SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Utilities”) used to map and unmap arrays to
and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK tools routine which

initializes the descriptors for the local arrays.

USE MPI_SETUP_INT
USE LSLRG_INT
USE WRRRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER N, DESCA(9), DESCX(9)

INTEGER INFO, MXCOL, MXLDA

REAL, ALLOCATABLE :: A(:,:), B(:), X(:
REAL, ALLOCATABLE AO(:,:), BO(:), XO(:
PARAMETER (N=3)

! Set up for MPI
MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(N,N), B(N), X(N))

! Set values for A and B

A(l,:) = (/ 33.0, 16.0, 72.0/)
A(2,:) = (/-24.0, -10.0, -57.0/)
A(3,:) = (/ 18.0, -11.0, 7.0/)
!
B = (/129.0, -96.0, 8.5/)
ENDIF

=RogueWave

LSLRG

Chapter 1: Linear Systems

118

! Set up a 1D processor grid and define
! its context id, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (A0 (MXLDA,MXCOL), BO(MXLDA), X0 (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK_MAP (A, DESCA, A0)
CALL SCALAPACK_MAP (B, DESCX, BO0)
! Solve the system of equations
CALL LSLRG (A0, BO, X0)
! Unmap the results from the distributed
! arrays back to a non-distributed array.
! After the unmap, only Rank=0 has the full
! array.
CALL SCALAPACK_UNMAP (X0, DESCX, X)
! Print results
! Only Rank=0 has the solution, X.
IF (MP_RANK .EQ. 0)CALL WRRRN (’'X’, X, 1, N, 1)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, B, X)
DEALLOCATE (A0, BO, XO0)
! Exit ScaLAPACK usage
CALL SCALAPACK_EXIT (MP_ICTXT)
! Shut down MPI
MP_NPROCS = MP_SETUP(‘FINAL’)
END

Output

X
1 2 3
1.000 1.500 1.000

= R{ng?mq\{q LSLRG Chapter 1: Linear Systems 119

LFCRG

;%}' rMPI
PE CE cAPABLE

more. ..
more. ..

Computes the LU factorization of a real general matrix and estimates its L condition number.

Required Arguments

A — N by N matrix to be factored. (Input)

FACT — N by N matrix containing the LU factorization of the matrix A. (Output)
If A is not needed, A and FACT can share the same storage locations.

IPVT — Vector of length N containing the pivoting information for the LU factorization. (Output)
RCOND — Scalar containing an estimate of the reciprocal of the L condition number of A. (Output)

Optional Arguments

N — Order of the matrix. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFCRG (A, FACT, IPVT, RCOND, [, ...])
Specific: The specific interface names are S_LFCRG and D_LFCRG.

FORTRAN 77 Interface

Single: CALL LFCRG (N, 2, LDA, FACT, LDFACT, IPVT, RCOND)
Double: The double precision name is DLFCRG.

ScalLAPACK Interface
Generic: CALL LFCRG (A0, FACTO, IPVTO0, RCOND [, ...1)
Specific: The specific interface names are S_LFCRG and D_LFCRG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

= Rogygmﬂn\{q LFCRG Chapter 1: Linear Systems 120

Description

Routine LFCRG performs an LU factorization of a real general coefficient matrix. It also estimates the condi-
tion number of the matrix. The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code
depending upon which supporting libraries are used during linking. For a detailed explanation see Using
ScaLAPACK, LAPACK, LINPACK, and EISPACK in the Introduction section of this manual. The LU factoriza-
tion is done using scaled partial pivoting. Scaled partial pivoting differs from partial pivoting in that the
pivoting strategy is the same as if each row were scaled to have the same co-norm. Otherwise, partial pivot-
ing is used.

The L, condition number of the matrix A is defined to be k(A) = [|All4 |A7L| 1- Since it is expensive to compute

A7 1, the condition number is only estimated. The estimation algorithm is the same as used by LINPACK
and is described in a paper by Cline et al. (1979).

If the estimated condition number is greater than 1/& (where € is machine precision), a warning error is
issued. This indicates that very small changes in A can cause very large changes in the solution x. Iterative
refinement can sometimes find the solution to such a system.

LFCRG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This can occur
only if A either is singular or is very close to a singular matrix.

The LU factors are returned in a form that is compatible with routines LFIRG, LFSRG and LFDRG. To solve
systems of equations with multiple right-hand-side vectors, use LFCRG followed by either LFIRG or LFSRG
called once for each right-hand side. The routine LFDRG can be called to compute the determinant of the coef-
ficient matrix after LFCRG has performed the factorization.

Let F be the matrix FACT and let p be the vector IPVT. The triangular matrix U is stored in the upper triangle
of F. The strict lower triangle of F contains the information needed to reconstruct L using

L_lz LN-le-l . Llpl

where P} is the identity matrix with rows k and pj interchanged and Ly is the identity with F;; for

i=k+1,..., Ninserted below the diagonal. The strict lower half of F can also be thought of as containing the
negative of the multipliers. LFCRG is based on the LINPACK routine SGECO; see Dongarra et al. (1979).
SGECO uses unscaled partial pivoting.

Comments
1. Workspace may be explicitly provided, if desired, by use of L2CRG/DL2CRG. The reference is:
CALL L2CRG (N, A, LDA, FACT, LDFACT, IPVT, RCOND, WK)
The additional argument is
WK — Work vector of length N.
2. Informational errors

Type Code Description
3 1 The input matrix is algorithmically singular.
4 2 The input matrix is singular.

= R{ngﬁ.lnewlg\{er LFCRG Chapter 1: Linear Systems 121

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A. A contains
the matrix to be factored. (Input)

FACT0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix FACT.
FACT contains the LU factorization of the matrix A. (Output)

IPVT0— Local vector of length MXLDA containing the local portions of the distributed vector IPVT. IPVT
contains the pivoting information for the LU factorization. (Output)

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

Examples

Example 1

The inverse of a 3 X 3 matrix is computed. LFCRG is called to factor the matrix and to check for singularity or
ill-conditioning. LFIRG is called to determine the columns of the inverse.
USE LFCRG_INT
USE UMACH_INT
USE LFIRG_INT
USE WRRRN_INT
! Declare variables
PARAMETER (LDA=3, LDFACT=3, N=3)
INTEGER IPVT(N), J, NOUT
REAL A(LDA,N), AINV(LDA,N), FACT(LDFACT,N), RCOND, &
RES(N) , RJ(N)
! Set values for A

A(l,:) = (/ 1.0, 3.0, 3.0/)

A(2,:) = (/ 1.0, 3.0, 4.0/)

A(3,:) = (/ 1.0, 4.0, 3.0/)!
CALL LFCRG (A, FACT, IPVT, RCOND)

! Print the reciprocal condition number
! and the L1 condition number
CALL UMACH (2, NOUT)
WRITE (NOUT,99998) RCOND, 1.0EO0/RCOND
! Set up the columns of the identity
! matrix one at a time in RJ

RJ = 0.0EO
DO 10 J=1, N
RJ(J) = 1.0
! RJ is the J-th column of the identity
! matrix so the following LFIRG
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
CALL LFIRG (A, FACT, IPVT, RJ, AINV(:,J), RES)
RJ(J) = 0.0

= Rogygmﬂn\{q LFCRG Chapter 1: Linear Systems 122

10 CONTINUE
! Print results
CALL WRRRN (’'AINV’, AINV)
|
99998 FORMAT (' RCOND = ’,F5.3,/,’ Ll Condition number = ’',F6.3)
END

Output

RCOND < .02
L1l Condition number < 100.0

AINV
1 2 3
1 7.000 -3.000 -3.000
2 -1.000 0.000 .000
3 -1.000 1.000 0.000

=

ScaLAPACK Example

The inverse of the same 3 X 3 matrix is computed as a distributed example. LFCRG is called to factor the
matrix and to check for singularity or ill-conditioning. LFIRG is called to determine the columns of the
inverse. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Utilities”) used
to map and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a
ScaLAPACK tools routine which initializes the descriptors for the local arrays.

USE MPI_SETUP_INT
USE LFCRG_INT
USE UMACH_INT
USE LFIRG_INT
USE WRRRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER J, LDA, N, DESCA(9), DESCL(9)

INTEGER INFO, MXCOL, MXLDA, NOUT

INTEGER, ALLOCATABLE :: IPVTO(:)

REAL, ALLOCATABLE :: A(:,:), AINV(:,:), X0(:), RJI(:)
REAL, ALLOCATABLE :: AO(:,:), FACTO(:,:), RESO(:), RJO(:)
REAL RCOND

PARAMETER (LDA=3, N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), AINV(LDA,N))
! Set values for A

A(l,:) = (/ 1.0, 3.0, 3.0/)

A(2,:) (/ 1.0, 3.0, 4.0/)

A(3,:) = (/ 1.0, 4.0, 3.0/)
ENDIF

! Set up a 1D processor grid and define
! its context id, MP_ICTXT

= Rogygmq\{q LFCRG Chapter 1: Linear Systems 123

10

99998

CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

Get the array descriptor entities MXLDA,

and MXCOL
CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)
Set up the array descriptors

CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
Allocate space for the local arrays
ALLOCATE (A0 (MXLDA, MXCOL) , X0 (MXLDA) ,FACTO (MXLDA,MXCOL), RJ(N), &
RJO (MXLDA), RESO(MXLDA), IPVTO (MXLDA))
Map input arrays to the processor grid
CALL SCALAPACK_MAP (A, DESCA, A0)
Call the factorization routine
CALL LFCRG (A0, FACTO, IPVTO, RCOND)
Print the reciprocal condition number
and the L1 condition number
IF (MP_RANK .EQ. 0) THEN
CALL UMACH (2, NOUT)
WRITE (NOUT,99998) RCOND, 1.0EO0/RCOND

ENDIF
Set up the columns of the identity
matrix one at a time in RJ
RJ = 0.0EO
DO 10 J=1, N
RJ(J) = 1.0

CALL SCALAPACK_MAP(RJ, DESCL, RJO)
RJ is the J-th column of the identity
matrix so the following LFIRG
reference computes the J-th column of
the inverse of A

CALL LFIRG (A0, FACTO, IPVTO, RJO, X0, RESO)

RJ(J) = 0.0
CALL SCALAPACK_UNMAP (X0, DESCL, AINV(:,J))
CONTINUE

Print results

Only Rank=0 has the solution, X.
IF (MP_RANK.EQ.0) CALL WRRRN (’'AINV’, AINV)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, AINV)
DEALLOCATE (A0, IPVTO, FACTO, RESO, RJ, RJO, XO0)

Exit ScaLAPACK usage
CALL SCALAPACK_EXIT (MP_ICTXT)

Shut down MPIT
MP_NPROCS = MP_SETUP (‘FINAL’)
FORMAT ('’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
END

Output

RCOND < .02
L1l Condition number < 100.0

1 7

AINV
1 2 3

.000 -3.000 -3.000

= R{nggmq\{q LFCRG Chapter 1: Linear Systems

124

2 -1.000 0.000 1.000
3 -1.000 1.000 0.000

= Rogygmqv‘e" LFCRG Chapter 1: Linear Systems 125

LFTRG

;%}' rMPI
PE CE cAPABLE

more. ..
more. ..

Computes the LU factorization of a real general matrix.

Required Arguments

A — N by N matrix to be factored. (Input)

FACT — N by N matrix containing the LU factorization of the matrix A. (Output)
If A is not needed, A and FACT can share the same storage locations.

IPVT — Vector of length N containing the pivoting information for the LU factorization. (Output)

Optional Arguments

N — Order of the matrix. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFTRG (A, FACT, IPVT [, ...])
Specific: The specific interface names are S_LFTRG and D_LFTRG.

FORTRAN 77 Interface

Single: CALL LFTRG (N, A, LDA, FACT, LDFACT, IPVT)
Double: The double precision name is DLFTRG.
ScalLAPACK Interface
Generic: CALL LFTRG (A0, FACTO, IPVTO [,...])
Specific: The specific interface names are S_LFTRG and D_LFTRG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

= Rogygmﬂn\{q LFTRG Chapter 1: Linear Systems 126

Description

Routine LFTRG performs an LU factorization of a real general coefficient matrix. The underlying code is
based on either LINPACK , LAPACK, or ScaLAPACK code depending upon which supporting libraries are
used during linking. For a detailed explanation see Using ScaLAPACK, LAPACK, LINPACK, and EISPACK in
the Introduction section of this manual. The LU factorization is done using scaled partial pivoting. Scaled
partial pivoting differs from partial pivoting in that the pivoting strategy is the same as if each row were
scaled to have the same norm. Otherwise, partial pivoting is used.

The routine LFTRG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This
can occur only if A is singular or very close to a singular matrix.

The LU factors are returned in a form that is compatible with routines LFIRG, LF SRG and LFDRG. To solve
systems of equations with multiple right-hand-side vectors, use LFTRG followed by either LFIRG or LFSRG
called once for each right-hand side. The routine LFDRG can be called to compute the determinant of the coef-
ficient matrix after LFTRG has performed the factorization. Let F be the matrix FACT and let p be the vector
IPVT. The triangular matrix U is stored in the upper triangle of F. The strict lower triangle of F contains the

information needed to reconstruct L1 using
-1
L :LN_le_1...L1P1

where Py is the identity matrix with rows k and p; interchanged and Ly is the identity with Fj fori=k + 1,

... N inserted below the diagonal. The strict lower half of F can also be thought of as containing the negative
of the multipliers.

Routine LFTRG is based on the LINPACK routine SGEFA. See Dongarra et al. (1979). The routine SGEFA uses
partial pivoting.

Comments
1. Workspace may be explicitly provided, if desired, by use of L2TRG/ DL2TRG. The reference is:
CALL L2TRG (N, A, LDA, FACT, LDFACT, IPVT, WK)
The additional argument is:
WK — Work vector of length N used for scaling.
2. Informational error

Type Code Description

4 2 The input matrix is singular.

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:
A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A. A contains
the matrix to be factored. (Input)

FACT0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix FACT.
FACT contains the LU factorization of the matrix A. (Output)

= R{ngﬁ.lnewlg\{er LFTRG Chapter 1: Linear Systems 127

IPVT0 — Local vector of length MXLDA containing the local portions of the distributed vector IPVT. IPVT
contains the pivoting information for the LU factorization. (Output)

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

Examples

Example 1

A linear system with multiple right-hand sides is solved. Routine LFTRG is called to factor the coefficient
matrix. The routine LFSRG is called to compute the two solutions for the two right-hand sides. In this case,
the coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be better to
call LFCRG to perform the factorization, and LFIRG to compute the solutions.

USE LFTRG_INT
USE LFSRG_INT
USE WRRRN_INT
! Declare variables
PARAMETER (LDA=3, LDFACT=3, N=3)
INTEGER IPVT(N), J
REAL A(LDA,LDA), B(N,2), FACT(LDFACT,LDFACT), X(N,2)

Set values for A and B

|

|

|

! A= (1.0 3.0 3.0)
! (1.0 3.0 4.0)
! (1.0 4.0 3.0)
|

! B=(1.0 10.0)

| (4.0 14.0)

| (-1.0 9.0)

1

DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/
DATA B/1.0, 4.0, -1.0, 10.0, 14.0, 9.0/

CALL LFTRG (A, FACT, IPVT)

! Solve for the two right-hand sides
DO 10 J=1, 2

CALL LFSRG (FACT, IPVT, B(:,J), X(:,J))
10 CONTINUE

! Print results
CALL WRRRN (’'X’, X)
END

Output

= Rogygmﬂn\{q LFTRG Chapter 1: Linear Systems 128

1 -2.000 1.000
2 -2.000 -1.000
3 3.000 4.000

ScaLAPACK Example

A linear system with multiple right-hand sides is solved. Routine LFTRG is called to factor the coefficient
matrix. The routine LFSRG is called to compute the two solutions for the two right-hand sides. In this case,
the coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be better to
call LFCRG to perform the factorization, and LFIRG to compute the solutions. SCALAPACK_MAP and
SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Utilities”) used to map and unmap arrays to
and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK tools routine which
initializes the descriptors for the local arrays.

USE MPI_SETUP_INT
USE LFTRG_INT
USE LFSRG_INT
USE WRRRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER J, LDA, N, DESCA(9), DESCL(9)

INTEGER INFO, MXCOL, MXLDA

INTEGER, ALLOCATABLE :: IPVTO(:)

REAL, ALLOCATABLE :: A(:,:), B(:,:), X(:,:), X0(:)
REAL, ALLOCATABLE :: AO(:,:), FACTO(:,:), BO(:)

PARAMETER (LDA=3, N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), B(N,2), X(N,2))
! Set values for A and B

A(l,:) = (/ 1.0, 3.0, 3.0/)
A(2,:) = (/ 1.0, 3.0, 4.0/)
A(3,:) = (/ 1.0, 4.0, 3.0/)
I
B(1,:) = (/ 1.0, 10.0/)
B(2,:) = (/ 4.0, 14.0/)
B(3,:) = (/-1.0, 9.0/)
ENDIF
! Set up a 1D processor grid and define
! its context id, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL

CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors
CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays
ALLOCATE (A0 (MXLDA,MXCOL) , X0 (MXLDA) ,FACTO (MXLDA,MXCOL), BO(MXLDA), &

IPVTO (MXLDA))
! Map input arrays to the processor grid

= Rogygmq\{q LFTRG Chapter 1: Linear Systems 129

CALL SCALAPACK_MAP (A, DESCA, AQ0)
! Call the factorization routine
CALL LFTRG (A0, FACTO, IPVTO)
! Set up the columns of the B
! matrix one at a time in X0
DO 10 J=1, 2
CALL SCALAPACK MAP(B(:,j), DESCL, BO)
! Solve for the J-th column of X
CALL LFSRG (FACTO, IPVTO, BO, XO0)
CALL SCALAPACK_UNMAP (X0, DESCL, X(:,dJ))
10 CONTINUE
1 Print results.
! Only Rank=0 has the solution, X.
IF (MP_RANK.EQ.0) CALL WRRRN (’'X’, X)
IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X)
DEALLOCATE (AO, BO, IPVTO, FACTO, XO0)
! Exit ScalLAPACK usage
CALL SCALAPACK_EXIT (MP_ICTXT)
! Shut down MPI
MP_NPROCS = MP_SETUP(‘'FINAL’)
END

Output

1 2
1 -2.000 1.000
-2.000 -1.000
3 3.000 4.000

N

= Rogypmq\{q LFTRG Chapter 1: Linear Systems 130

LFSRG

;%': ErMPI
FE CE caPABLE

more. ..
more. ..

Solves a real general system of linear equations given the LU factorization of the coefficient matrix.

Required Arguments

FACT — N by N matrix containing the LU factorization of the coefficient matrix A as output from routine

LFCRG or LFTRG. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization of A as output from

subroutine LFCRG or LFTRG. (Input).

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)
Default: N = size (FACT, 2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of the calling pro-

gram. (Input)
Default: LDFACT = size (FACT, 1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.

TPATH = 2 means the system ATX = B is solved.
Default: IPATH = 1.

FORTRAN 90 Interface

Generic: CALL LFSRG (FACT, IPVT, B, X [,...])

Specific: The specific interface names are S_LFSRG and D_LFSRG.

FORTRAN 77 Interface

Single: CALL LFSRG (N, FACT, LDFACT, IPVT, B, IPATH, X)

Double: The double precision name is DLFSRG.
ScalLAPACK Interface

Generic: CALL LFSRG (FACTO, IPVTO, B0, X0 [,...])

=RogueWave

Chapter 1: Linear Systems

131

Specific: The specific interface names are S_LFSRG and D_LFSRG.
See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

Description

Routine LFSRG computes the solution of a system of linear algebraic equations having a real general coeffi-
cient matrix. To compute the solution, the coefficient matrix must first undergo an LU factorization. This may
be done by calling either LFCRG or LFTRG. The solution to Ax = b is found by solving the triangular systems
Ly = b and Ux = y. The forward elimination step consists of solving the system Ly = b by applying the same
permutations and elimination operations to b that were applied to the columns of A in the factorization rou-
tine. The backward substitution step consists of solving the triangular system Ux = y for x.

LFSRG and LFIRG both solve a linear system given its LU factorization. LFIRG generally takes more time
and produces a more accurate answer than LFSRG. Each iteration of the iterative refinement algorithm used
by LFIRG calls LFSRG. The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code
depending upon which supporting libraries are used during linking. For a detailed explanation see Using
ScaLAPACK, LAPACK, LINPACK, and EISPACK in the Introduction section of this manual.

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

FACT0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix FACT as
output from routine LFCRG. FACT contains the LU factorization of the matrix A. (Input)

IPVT0 — Local vector of length MXLDA containing the local portions of the distributed vector IPVT. IPVT
contains the pivoting information for the LU factorization as output from subroutine LFCRG or
LFTRG/DLFTRG. (Input)

B0 — Local vector of length MXLDA containing the local portions of the distributed vector B. B contains
the right-hand side of the linear system. (Input)

X0 — Local vector of length MXLDA containing the local portions of the distributed vector X. X contains

the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

Examples

Example

The inverse is computed for a real general 3 X 3 matrix. The input matrix is assumed to be well-conditioned,
hence, LFTRG is used rather than LFCRG.

USE LFSRG_INT
USE LFTRG_INT
USE WRRRN_INT

= ROQQ?WQ\{EF LFSRG Chapter 1: Linear Systems 132

PARAMETER (LDA=3, LDFACT=3,

INTEGER I, IPVT(N)
REAL A(LDA,LDA)
|
1
A(l,:) = (/ 1.0,
A(2,:) = (/ 1.0,
A(3,:) = (/ 1.0,

CALL LFTRG (A, FACT,

RJ = 0.0EO
DO 10 J=1, N
RJ(J) = 1.0

CALL LFSRG (FACT,
RJ(J) = 0.0
10 CONTINUE

CALL WRRRN (’'AINV’, A
END
Output
ATINV
1 2 3

1 7.000 -3.000 -3.000
2 -1.000 0.000 1.000
3 -1.000 1.000 0.000

ScaLAPACK Example

The inverse of the same 3 X 3 matrix is computed as a distributed example. The input matrix is assumed to
be well-conditioned, hence, LFTRG is used rather than LFCRG. LFSRG is called to determine the columns of
the inverse. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Ultilities”)
used to map and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a

, J

Declare variables
N=3)

, AINV(LDA,LDA), FACT(LDFACT,LDFACT), RJ(N)

s w W
o O O

IPVT)

Set values for A
3.0/)
4.0/)
3.0/)

Set up the columns of the identity
matrix one at a time in RJ

RJ is the J-th column of the identity
matrix so the following LFSRG
reference places the J-th column of
the inverse of A in the J-th column
of AINV

IPVT, RJ, AINV(:,J))

INV)

Print results

ScaLAPACK tools routine which initializes the descriptors for the local arrays.

USE MPI_SETUP_INT

USE LFTRG_INT

USE UMACH_INT

USE LFSRG_INT

USE WRRRN_INT

USE SCALAPACK_SUPPORT
IMPLICIT NONE

INCLUDE ‘mpif.h’

Declare variables

=RogueWave

LFSRG Chapter 1: Linear Systems

133

INTEGER J, LDA, N, DESCA(9), DESCL(9)

INTEGER INFO, MXCOL, MXLDA

INTEGER, ALLOCATABLE :: IPVTO(:)

REAL, ALLOCATABLE :: A(:,:), AINV(:,:), X0(:), RJI(:)
REAL, ALLOCATABLE :: AO(:,:), FACTO(:,:), RJO(:)

PARAMETER (LDA=3, N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), AINV(LDA,N))
! Set values for A

A(l,:) = (/ 1.0, 3.0, 3.0/)
A(2,:) = (/ 1.0, 3.0, 4.0/)
A(3,:) = (/ 1.0, 4.0, 3.0/)
ENDIF
! Set up a 1D processor grid and define
! its context id, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL

CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (A0 (MXLDA, MXCOL) , X0 (MXLDA) ,FACTO (MXLDA,MXCOL), RJ(N), &
RJO (MXLDA), IPVTO (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK_MAP (A, DESCA, A0)
! Call the factorization routine
CALL LFTRG (A0, FACTO, IPVTO)
! Set up the columns of the identity
! matrix one at a time in RJ
RJ = 0.0EO
DO 10 J=1, N
RJ(J) = 1.0
CALL SCALAPACK_MAP(RJ, DESCL, RJO)
! RJ is the J-th column of the identity
! matrix so the following LFIRG
! reference computes the J-th column of
! the inverse of A
CALL LFSRG (FACTO, IPVTO, RJO, XO0)
RJ(J) = 0.0
CALL SCALAPACK_UNMAP (X0, DESCL, AINV(:,J))
10 CONTINUE
! Print results
! Only Rank=0 has the solution, AINV.
IF (MP_RANK.EQ.0) CALL WRRRN (’'AINV’, AINV)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, AINV)
DEALLOCATE (A0, IPVTO, FACTO, RJ, RJO, XO0)
! Exit ScalLAPACK usage
CALL SCALAPACK_EXIT (MP_ICTXT)

! Shut down MPI
MP_NPROCS = MP_SETUP (‘FINAL’)

= R{ng?mq\{q LFSRG Chapter 1: Linear Systems 134

END

Output

AINV

1 2 3
1 7.000 -3.000 -3.000
2 -1.000 0.000 1.000
3 -1.000 1.000 0.000

= R‘Dgygmq\{eg LFSRG Chapter 1: Linear Systems 135

LFIRG

;%}' rMPI
PE CE cAPABLE

more. ..
more. ..

Uses iterative refinement to improve the solution of a real general system of linear equations.

Required Arguments

A — N by N matrix containing the coefficient matrix of the linear system. (Input)

FACT — N by N matrix containing the LU factorization of the coefficient matrix A as output from routine
LFCRG/DLFCRG or LFTRG/DLFTRG. (Input).

IPVT — Vector of length N containing the pivoting information for the LU factorization of A as output from
routine LFCRG/DLFCRG or LFTRG/DLFTRG. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input).
X — Vector of length N containing the solution to the linear system. (Output)

RES — Vector of length N containing the final correction at the improved solution. (Output)

Optional Arguments

N — Number of equations. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDFACT = size (FACT,1).
IPATH — Path indicator. (Input)
IPATH = 1 means the system A * X = Bis solved.
IPATH = 2 means the system ATx = Bis solved.
Default: TPATH = 1.

FORTRAN 90 Interface

Generic: CALL LFIRG (A, FACT, IPVT, B, X, RES [,...])
Specific: The specific interface names are S_LFIRG and D_LFIRG.

FORTRAN 77 Interface

Single: CALL LFIRG (N, A, LDA, FACT, LDFACT, IPVT, B, IPATH, X, RES)
Double: The double precision name is DLFIRG.

= Rogygmﬂn\{q LFIRG Chapter 1: Linear Systems

136

ScalLAPACK Interface

Generic: CALL LFIRG (A0, FACTO, IPVTO, BO,X0,RESO [,...])
Specific: The specific interface names are S_LFIRG and D_LFIRG.
See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

Description

Routine LFIRG computes the solution of a system of linear algebraic equations having a real general coeffi-
cient matrix. Iterative refinement is performed on the solution vector to improve the accuracy. Usually
almost all of the digits in the solution are accurate, even if the matrix is somewhat ill-conditioned. The under-
lying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon which supporting
libraries are used during linking. For a detailed explanation see “Using ScaLAPACK, LAPACK, LINPACK, and
EISPACK” in the Introduction section of this manual.

To compute the solution, the coefficient matrix must first undergo an LU factorization. This may be done by
calling either LFCRG or LFTRG.

Iterative refinement fails only if the matrix is very ill-conditioned.

Routines LFIRG and LFSRG both solve a linear system given its LU factorization. LFIRG generally takes
more time and produces a more accurate answer than LFSRG. Each iteration of the iterative refinement algo-
rithm used by LFIRG calls LFSRG.

Comments

Informational error

Type Code Description

3 2 The input matrix is too ill-conditioned for iterative refinement to be effective.

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A. A contains
the coefficient matrix of the linear system. (Input)
FACT0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix FACT as
output from routine LFCRG or LFTRG. FACT contains the LU factorization of the matrix A. (Input)
IPVT0— Local vector of length MXLDA containing the local portions of the distributed vector IPVT. IPVT
contains the pivoting information for the LU factorization as output from subroutine LFCRG or LFTRG.
(Input)

B0 — Local vector of length MXLDA containing the local portions of the distributed vector B. B contains
the right-hand side of the linear system. (Input)

X0 — Local vector of length MXLDA containing the local portions of the distributed vector X. X contains
the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

RESO — Local vector of length MXLDA containing the local portions of the distributed vector RES. RES
contains the final correction at the improved solution to the linear system. (Output)

= Rog':lgwgﬂ\\:er LFIRG Chapter 1: Linear Systems 137

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

Examples

Example

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving the sys-
tem each of the first two times by adding 0.5 to the second element.

USE LFIRG_INT
USE LFCRG_INT
USE UMACH_INT
USE WRRRN_INT
! Declare variables
PARAMETER (LDA=3, LDFACT=3, N=3)
INTEGER IPVT(N), NOUT
REAL A(LDA,LDA), B(N), FACT(LDFACT,LDFACT), RCOND, RES(N), X(N)

! Set values for A and B

! A= (1.0 3.0 3.0)
! (1.0 3.0 4.0)
! (1.0 4.0 3.0)
1

! B=(-0.5 -1.0 1.5)

DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/
DATA B/-0.5, -1.0, 1.5/

CALL LFCRG (A, FACT, IPVT, RCOND)
! Print the reciprocal condition number
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0EO0/RCOND
! Solve the three systems
DO 10 J=1, 3
CALL LFIRG (A, FACT, IPVT, B, X, RES)
! Print results
CALL WRRRN (’'X’, X, 1, N, 1)
! Perturb B by adding 0.5 to B(2)
B(2) = B(2) + 0.5

10 CONTINUE

1

99999 FORMAT ('’ RCOND = ’',F5.3,/,’ L1 Condition number = ’,F6.3)
END

Output

RCOND < 0.02

= Rogygmq\{q LFIRG Chapter 1: Linear Systems

138

L1l Condition number < 100.0

-5.000

-6.500

1
-8.000

X
2 3
2.000 -0.500
X
2 3
2.000 0.000
X
2 3

2.000 0.500

ScaLAPACK Example

The same set of linear systems is solved successively as a distributed example. The right-hand side vector is

perturbed after solving the system each of the first two times by adding 0.5 to the second element.

SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Ultilities”) used to map
and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK

tools routine which initializes the descriptors for the local arrays.

USE MPI_SETUP_INT
USE LFIRG_INT
USE UMACH_INT
USE LFCRG_INT
USE WRRRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
Declare variables

INTEGER J, LDA, N, DESCA(9), DESCL(9)

INTEGER INFO, MXCOL, MXLDA, NOUT

INTEGER, ALLOCATABLE :: IPVTO(:)

REAL, ALLOCATABLE :: A(:,:), B(:), X(:), XO0(:), AINV(:,:)
REAL, ALLOCATABLE :: AO(:,:), FACTO(:,:), RESO(:), BO(:)
REAL RCOND

PARAMETER (LDA=3, N=3)
Set up for MPI
MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), AINV(LDA,N), B(N), X(N))
Set values for A and B

A(l,:) = (/ 1.0, 3.0, 3.0/)

A(2,:) = (/ 1.0, 3.0, 4.0/)

A(3,:) = (/ 1.0, 4.0, 3.0/)

B(:) = (/-0.5, -1.0, 1.5/)
ENDIF

Set up a 1D processor grid and define
its context id, MP_ICTXT

CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
Get the array descriptor entities MXLDA,
and MXCOL

CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)
Set up the array descriptors

= Rogygmq\{q LFIRG Chapter 1: Linear Systems

139

10

99998

Outpu

RCOND

CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
Allocate space for the local arrays
ALLOCATE (A0 (MXLDA, MXCOL) , X0 (MXLDA) ,FACTO (MXLDA,MXCOL), &
BO (MXLDA), RESO(MXLDA), IPVTO (MXLDA))
Map input arrays to the processor grid
CALL SCALAPACK_MAP (A, DESCA, A0)
Call the factorization routine
CALL LFCRG (A0, FACTO, IPVTO, RCOND)
Print the reciprocal condition number
and the L1 condition number
IF (MP_RANK .EQ. 0) THEN
CALL UMACH (2, NOUT)
WRITE (NOUT,99998) RCOND, 1.0EO0/RCOND
ENDIF
Solve the three systems
one at a time in X
Do 10 J=1, 3
CALL SCALAPACK_MAP (B, DESCL, BO)
CALL LFIRG (A0, FACTO, IPVTO, BO, X0, RESO0)
CALL SCALAPACK_UNMAP (X0, DESCL, X)
Print results
Only Rank=0 has the solution, X.
IF (MP_RANK.EQ.0) CALL WRRRN ('X’, X, 1, N, 1)
IF(MP_RANK.EQ.0) B(2) = B(2) + 0.5
CONTINUE
IF (MP_RANK .EQ. 0) DEALLOCATE (A, AINV, B)
DEALLOCATE (AO, BO, IPVTO, FACTO, RESO, XO0)
Exit ScalLAPACK usage
CALL SCALAPACK_EXIT (MP_ICTXT)
Shut down MPI
MP_NPROCS = MP_SETUP(‘FINAL’)
FORMAT ('’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
END

t

< 0.02

L1l Condition number < 100.0

-5.000

-6.500

-8.000

X
2 3
2.000 -0.500
X
2 3
2.000 0.000
X
2 3

2.000 0.500

= R{nggmq\{q LFIRG Chapter 1: Linear Systems

140

LFDRG

Computes the determinant of a real general matrix given the LU factorization of the matrix.

Required Arguments
FACT — N by N matrix containing the LU factorization of the matrix A as output from routine
LFTRG/DLFTRG or LFCRG/DLFCRG. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization as output from
routine LFTRG/DLFTRG or LFCRG/DLFCRG. (Input).

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 < |DET1 | < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = DET1 * 10PF72.

Optional Arguments

N — Order of the matrix. (Input)
Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFDRG (FACT, IPVT, DET1, DET2 [,...])
Specific: The specific interface names are S_LFDRG and D_LFDRG.

FORTRAN 77 Interface

Single: CALL LFDRG (N, FACT, LDFACT, IPVT, DET1, DET2)
Double: The double precision name is DLFDRG.
Description

Routine LFDRG computes the determinant of a real general coefficient matrix. To compute the determinant,
the coefficient matrix must first undergo an LU factorization. This may be done by calling either LFCRG or
LFTRG. The formula det A = det L det U is used to compute the determinant. Since the determinant of a trian-
gular matrix is the product of the diagonal elements

detU = HN Uii
=1

(The matrix U is stored in the upper triangle of FACT.) Since L is the product of triangular matrices with unit

diagonals and of permutation matrices, det L = (—1)* where k is the number of pivoting interchanges.

= R{ngﬁ.lnewlg\{er LFDRG Chapter 1: Linear Systems

141

Routine LFDRG is based on the LINPACK routine SGEDI; see Dongarra et al. (1979)

Example
The determinant is computed for a real general 3 X 3 matrix.

USE LFDRG_INT
USE LFTRG_INT
USE UMACH_INT
! Declare variables
PARAMETER (LDA=3, LDFACT=3, N=3)

INTEGER IPVT(N), NOUT
REAL A(LDA,LDA), DET1, DET2, FACT(LDFACT,LDFACT)
1
! Set values for A
! A = (33.0 16.0 72.0)
! (-24.0 -10.0 -57.0)
! (18.0 -11.0 7.0)

DATA A/33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/

CALL LFTRG (A, FACT, IPVT)
! Compute the determinant
CALL LFDRG (FACT, IPVT, DET1, DET2)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) DET1, DET2
1
99999 FORMAT ('’ The determinant of A is ', F6.3, ' * 10**’, F2.0)
END

Output

The determinant of A is -4.761 * 10**3.

= R{nggmq\{q LFDRG Chapter 1: Linear Systems 142

LINRG

% ErMPI
FE CE caPABLE

more. ..
more. ..

Computes the inverse of a real general matrix.

Required Arguments

A — N by N matrix containing the matrix to be inverted. (Input)

AINV — N by N matrix containing the inverse of A. (Output)
If A is not needed, A and AINV can share the same storage locations.

Optional Arguments

N — Order of the matrix A. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDAINV = size (AINV,1).

FORTRAN 90 Interface

Generic: CALL LINRG (&, AINV [,...])
Specific: The specific interface names are S_LINRG and D_LINRG.

FORTRAN 77 Interface

Single: CALL LINRG (N, A, LDA, AINV, LDAINV)
Double: The double precision name is DLINRG.

ScalLAPACK Interface

Generic: CALL LINRG (A0, AINVO [,...])
Specific: The specific interface names are S_LINRG and D_LINRG.
See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

= Rogygmq\{q LINRG Chapter 1: Linear Systems 143

Description

Routine LINRG computes the inverse of a real general matrix. The underlying code is based on either LIN-
PACK, LAPACK, or ScaLAPACK code depending upon which supporting libraries are used during linking.
For a detailed explanation see “Using ScaLAPACK, LAPACK, LINPACK, and EISPACK” in the Introduction sec-
tion of this manual. LINRG first uses the routine LFCRG to compute an LU factorization of the coefficient
matrix and to estimate the condition number of the matrix. Routine LFCRG computes U and the information

needed to compute L. ,TNRT is then used to compute U™ Finally, A is computed using Al=ulrl

The routine LINRG fails if U, the upper triangular part of the factorization, has a zero diagonal element or if
the iterative refinement algorithm fails to converge. This error occurs only if A is singular or very close to a
singular matrix.

If the estimated condition number is greater than 1/& (where € is machine precision), a warning error is

issued. This indicates that very small changes in A can cause very large changes in AL,

Comments
1. Workspace may be explicitly provided, if desired, by use of L2NRG/DL2NRG. The reference is:
CALL L2NRG (N, A, LDA, AINV, LDAINV, WK, IWK)
The additional arguments are as follows:
WK — Work vector of length N + N(N — 1)/2.
IWK — Integer work vector of length N.
2. Informational errors

Type Code Description
3 1 The input matrix is too ill-conditioned. The inverse might not be accurate.
4 2 The input matrix is singular.

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A. A contains
the matrix to be inverted. (Input)

AINV0O — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix ATNV.
AINV contains the inverse of the matrix A. (Output)
If A is not needed, A and AINV can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

= R{ngﬁ.lnewlg\{er LINRG Chapter 1: Linear Systems 144

Examples

Example

The inverse is computed for a real general 3 X 3 matrix.

USE LINRG_INT
USE WRRRN_INT

! Declare variables
PARAMETER (LDA=3, LDAINV=3)

INTEGER I, J, NOUT

REAL A (LDA,LDA), AINV(LDAINV,LDAINV)
1
! Set values for A
! A= (1.0 3.0
! (1.0 3.0
! (1.0 4.0

DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0,

CALL LINRG (A, AINV)

! Print results
CALL WRRRN (’AINV’, AINV)
END

Output

ATINV
1 2 3
1 7.000 -3.000 -3.000
2 -1.000 0.000 1.000
3 -1.000 1.000 0.000

ScaLAPACK Example

'S

3.

The inverse of the same 3 X 3 matrix is computed as a distributed example. SCALAPACK_MAP and

SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Utilities”) used to map and unmap arrays to
and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK tools routine which

initializes the descriptors for the local arrays.

USE MPI_SETUP_INT
USE LINRG_INT
USE WRRRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER LDA, LDAINV, N, DESCA(9)

INTEGER INFO, MXCOL, MXLDA
REAL, ALLOCATABLE :: A(:,:), AINV(:,:)
REAL, ALLOCATABLE :: AO(:,:), AINVO(:,:)

PARAMETER (LDA=3, LDAINV=3, N=3)

=RogueWave

LINRG

Chapter 1: Linear Systems

145

! Set up for MPI
MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), AINV(LDAINV,N))
! Set values for A

A(l,:) = (/ 1.0, 3.0, 3.0/)
A(2,:) = (/ 1.0, 3.0, 4.0/)
A(3,:) = (/ 1.0, 4.0, 3.0/)
ENDIF
! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL

CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (AQ0 (MXLDA, MXCOL) , AINVO (MXLDA,MXCOL))
! Map input arrays to the processor grid
CALL SCALAPACK_MAP (A, DESCA, A0)
! Get the inverse
CALL LINRG (A0, AINVO)
! Unmap the results from the distributed
! arrays back to a non-distributed array.
! After the unmap, only Rank=0 has the full
! array.
CALL SCALAPACK_UNMAP (AINVO, DESCA, AINV)
! Print results
! Only Rank=0 has the solution, AINV.
IF (MP_RANK.EQ.0) CALL WRRRN (’'AINV’, AINV)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, AINV)
DEALLOCATE (A0, AINVO)
! Exit ScaLAPACK usage
CALL SCALAPACK_EXIT (MP_ICTXT)
! Shut down MPIT
MP_NPROCS = MP_SETUP (‘FINAL’)
END

Output

AINV
1 2 3
1 7.000 -3.000 -3.000
-1.000 0.000 1.000
3 -1.000 1.000 0.000

[\S)

= R{nggmq\{q LINRG Chapter 1: Linear Systems

146

LSACG

;%': ErMPI
FE CE caPABLE

more. ..
more. ..

Solves a complex general system of linear equations with iterative refinement.

Required Arguments

A — Complex N by N matrix containing the coefficients of the linear system. (Input)
B — Complex vector of length N containing the right-hand side of the linear system. (Input)
X — Complex vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system AFX = B is solved.
Default: IPATH =1

FORTRAN 90 Interface

Generic: CALL LSACG (A, B, X [,...1)
Specific: The specific interface names are S_LSACG and D_LSACG.

FORTRAN 77 Interface

Single: CALL LSACG (N, A, LDA, B, IPATH, X)
Double: The double precision name is DLSACG.
ScalLAPACK Interface
Generic: CALL LSACG(A0,B0,X0 [,...1)
Specific: The specific interface names are S_LSACG and D_LSACG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

= Rogygmﬂn\{q LSACG Chapter 1: Linear Systems

147

Description

Routine L'SACG solves a system of linear algebraic equations with a complex general coefficient matrix. The
underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon which sup-
porting libraries are used during linking. For a detailed explanation see Using ScaLAPACK, LAPACK,
LINPACK, and EISPACK in the Introduction section of this manual. LSACG first uses the routine LFCCG to
compute an LU factorization of the coefficient matrix and to estimate the condition number of the matrix. The
solution of the linear system is then found using the iterative refinement routine LFICG.

LSACG fails if U, the upper triangular part of the factorization, has a zero diagonal element or if the iterative
refinement algorithm fails to converge. These errors occur only if A is singular or very close to a singular
matrix.

If the estimated condition number is greater than 1/& (where € is machine precision), a warning error is
issued. This indicates that very small changes in A can cause very large changes in the solution x. Iterative
refinement can sometimes find the solution to such a system. LSACG solves the problem that is represented in
the computer; however, this problem may differ from the problem whose solution is desired.

Comments
1. Workspace may be explicitly provided, if desired, by use of L2ACG/DL2ACG. The reference is:

CALL L2ACG (N, A,LDA, B, IPATH, X, FACT, IPVT, WK)
The additional arguments are as follows:

FACT — Complex work vector of length N?containing the LU factorization of A on output.

IPVT — Integer work vector of length N containing the pivoting information for the LU factoriza-
tion of A on output.

WK — Complex work vector of length N.
2. Informational errors

Type Code Description
3 1 The input matrix is too ill-conditioned. The solution might not be accurate.
4 2 The input matrix is singular.

3. Integer Options with Chapter 11, Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency) problems. In
routine L2ACG the leading dimension of FACT is increased by IVAL(3) when N is a multiple of
IVAL(4). The values IVAL(3) and IVAL(4) are temporarily replaced by IVAL(1) and IVAL(2);
respectively, in LSACG. Additional memory allocation for FACT and option value restoration are
done automatically in LSACG. Users directly calling L2ACG can allocate additional space for
FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no longer cause inefficiencies.
There is no requirement that users change existing applications that use LSACG or L2ACG.
Default values for the option are
IVAaL(*)=1,16,0,1.

17 This option has two values that determine if the L;condition number is to be computed. Routine

LSACG temporarily replaces IVAL(2) by IVAL(1). The routine L2CCG computes the condition
number if TVAL(2) = 2. Otherwise L2CCG skips this computation. LSACG restores the option.
Default values for the option are IVAL(*) =1, 2.

= Rog':lgwgﬂ\\:er LSACG Chapter 1: Linear Systems 148

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL complex local matrix containing the local portions of the distributed matrix A. A

contains the coefficients of the linear system. (Input)

B0 — Complex local vector of length MXLDA containing the local portions of the distributed vector B. B

contains the right-hand side of the linear system. (Input)
X0 — Complex local vector of length MXLDA containing the local portions of the distributed vector X. X

contains the solution to the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the routine. In the

argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example

below.

Examples

Example 1

A system of three linear equations is solved. The coefficient matrix has complex general form and the right-

hand-side vector b has three elements.

USE LSACG_INT
USE WRCRN_INT

! Declare variables

PARAMETER (LDA=3, N=3)

COMPLEX A(LDA,LDA), B(N), X(N)
! Set values for A and B
1
! A= (3.0-2.01i 2.0+4.01
! (1.0+1.01i 2.0-6.01
! (4.0+0.01i -5.0+1.01
I
! B = (10.0+5.01i 6.0-7.01
1

DATA A/(3.0,-2.0), (1.0,1.0), (4.0,0.0), (2.0,4.0),

(-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/

DATA B/(10.0,5.0), (6.0,-7.0), (-1.0,2.0)/
! Solve AX = B (IPATH

CALL LSACG (A, B, X)
! Print results

CALL WRCRN (’'X’, X, 1, N, 1)

END
Output

X
1 2 3

(1.000,-1.000) (2.000, 1.000) (0.000, 3.000)

.01)
.01)
.01)

.01)

(2.0,-6.0), &

1)

=RogueWave

LSACG

Chapter 1: Linear Systems

149

ScaLAPACK Example

The same system of three linear equations is solved as a distributed computing example. The coefficient

matrix has complex general form and the right-hand-side vector b has three elements. SCALAPACK_MAP and
SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Utilities”) used to map and unmap arrays to
and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK tools routine which

initializes the descriptors for the local arrays.

USE MPI_SETUP_INT
USE LSACG_INT
USE WRCRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER LDA, N, DESCA(9), DESCX(9)

INTEGER INFO, MXCOL, MXLDA

COMPLEX, ALLOCATABLE :: A(:,:), B(:), X(:)
COMPLEX, ALLOCATABLE :: AO(:,:), BO(:), XO(:)

PARAMETER (LDA=3, N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), B(N), X(N))
! Set values for A and B

A(l,:) = (/ (3.0, -2.0), (2.0, 4.0), (0.0, -3.0)/)
A(2,:) = (/ (1.0, 1.0), (2.0, -6.0), (1.0, 2.0)/)
A(3,:) = (/ (4.0, 0.0), (5.0, 1.0), (3.0, -2.0)/)
!
B = (/(10.0, 5.0), (6.0, -7.0), (-1.0, 2.0)/)
ENDIF

! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (A0 (MXLDA,MXCOL), BO(MXLDA), X0 (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK_MAP (A, DESCA, A0)
CALL SCALAPACK_MAP (B, DESCX, BO0)
! Solve the system of equations
CALL LSACG (A0, BO, X0)
! Unmap the results from the distributed
! arrays back to a non-distributed array.
! After the unmap, only Rank=0 has the full
! array.
CALL SCALAPACK_UNMAP (X0, DESCX, X)
1 Print results
! Only Rank=0 has the solution, X.
IF (MP_RANK .EQ. 0)CALL WRCRN (’'X’', X, 1, N, 1)

= Rogygmq\{q LSACG Chapter 1: Linear Systems

150

IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X)

DEALLOCATE (A0, BO, XO0)
! Exit ScaLAPACK usage

CALL SCALAPACK_EXIT (MP_ICTXT)
! Shut down MPI

MP_NPROCS = MP_SETUP(‘FINAL’)
END

Output
X

1 2 3
(1.000,-1.000) (2.000, 1.000) (0.000, 3.000)

= R{ng?mq\{q LSACG Chapter 1: Linear Systems 151

LSLCG

;%}' rMPI
PE CE cAPABLE

more. ..
more. ..

Solves a complex general system of linear equations without iterative refinement.

Required Arguments
A — Complex N by N matrix containing the coefficients of the linear system. (Input)
B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations)

Optional Arguments

N — Number of equations. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).
IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = Bis solved.
IPATH = 2 means the system A”X = Bis solved.
Default: TPATH = 1

FORTRAN 90 Interface

Generic: CALL LSLCG (A, B, X [,...1)
Specific: The specific interface names are S_LSLCG and D_LSLCG.

FORTRAN 77 Interface

Single: CALL LSLCG (N, A, LDA, B, IPATH, X)
Double: The double precision name is DLSLCG.
ScalLAPACK Interface
Generic: CALL LSLCG (A0,B0,X0 [,...1)
Specific: The specific interface names are S_LSLCG and D_LSLCG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

= Rogygmﬂn\{q LSLCG Chapter 1: Linear Systems

152

Description

Routine LSLCG solves a system of linear algebraic equations with a complex general coefficient matrix. The
underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon which sup-
porting libraries are used during linking. For a detailed explanation see Using ScaLAPACK, LAPACK,
LINPACK, and EISPACK in the Introduction section of this manual. LSLCG first uses the routine LFCCG to
compute an LU factorization of the coefficient matrix and to estimate the condition number of the matrix. The
solution of the linear system is then found using LFSCG.

LSLCG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This occurs only
if A either is a singular matrix or is very close to a singular matrix.

If the estimated condition number is greater than 1/€ (where € is machine precision), a warning error is
issued. This indicates that very small changes in A can cause very large changes in the solution x. If the coef-
ficient matrix is ill-conditioned or poorly scaled, it is recommended that LSACG be used.

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LCG/DL2LCG. The reference is:
CALL L2LCG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK)
The additional arguments are as follows:

FACT —N X N work array containing the LU factorization of A on output. If A is not needed, A and
FACT can share the same storage locations.

IPVT — Integer work vector of length N containing the pivoting information for the LU factoriza-
tion of A on output.

WK — Complex work vector of length N.
2. Informational errors

Type Code Description
3 1 The input matrix is too ill-conditioned. The solution might not be accurate.
4 2 The input matrix is singular.

3. Integer Options with Chapter 11, Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency) problems. In
routine L2LCG the leading dimension of FACT is increased by IVAL(3) when N is a multiple of
IVAL(4). The values IVAL(3) and IVAL(4) are temporarily replaced by IVAL(1) and IVAL(2);
respectively, in LSLCG. Additional memory allocation for FACT and option value restoration are
done automatically in LSLCG. Users directly calling L2LCG can allocate additional space for
FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no longer cause inefficiencies.
There is no requirement that users change existing applications that use LSLCG or L2LCG.
Default values for the option are IVAL(*) =1, 16, 0, 1.

17 This option has two values that determine if the L; condition number is to be computed. Routine
LSLCG temporarily replaces IVAL(2) by IVAL(1). The routine L2CCG computes the condition

number if TVAL(2) = 2. Otherwise L2CCG skips this computation. LSLCG restores the option.
Default values for the option are IVAL(*) =1, 2.

= Rog':lgwgﬂ\\:er LSLCG Chapter 1: Linear Systems 153

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL complex local matrix containing the local portions of the distributed matrix A. A

contains the coefficients of the linear system. (Input)

B0 — Complex local vector of length MXLDA containing the local portions of the distributed vector B. B

contains the right-hand side of the linear system. (Input)
X0 — Complex local vector of length MXLDA containing the local portions of the distributed vector X. X

contains the solution to the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the routine. In the

argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example

below.

Examples

Example 1

A system of three linear equations is solved. The coefficient matrix has complex general form and the right-

hand-side vector b has three elements.

USE LSLCG_INT
USE WRCRN_INT

! Declare variables

PARAMETER (LDA=3, N=3)

COMPLEX A(LDA,LDA), B(N), X(N)
! Set values for A and B
!
! A= (3.0-2.01 2.0+4.01 0.0-3.01)
! (1.0+1.0i 2.0-6.01i 1.0+2.01)
! (4.0+0.01i -5.0+1.01i 3.0-2.01)
I
! B = (10.0+5.01 6.0-7.01i -1.0+2.01)
!

DATA A/(3.0,-2.0), (1.0,1.0), (4.0,0.0), (2.0,4.0), (2.0,-6.0),&

(-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/

DATA B/(10.0,5.0), (6.0,-7.0), (-1.0,2.0)/
! Solve AX = B (IPATH 1)

CALL LSLCG (A, B, X)
! Print results

CALL WRCRN ('X’, X, 1, N, 1)

END
Output

X
1 2 3
(1.000,-1.000) (2.000, 1.000) (0.000, 3.000)
= Rogygmﬂn\{q LSLCG Chapter 1: Linear Systems 154

ScaLAPACK Example

The same system of three linear equations is solved as a distributed computing example. The coefficient
matrix has complex general form and the right-hand-side vector b has three elements. SCALAPACK_MAP and
SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Utilities”) used to map and unmap arrays to
and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK tools routine which
initializes the descriptors for the local arrays.

USE MPI_SETUP_INT
USE LSLCG_INT
USE WRCRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER LDA, N, DESCA(9), DESCX(9)

INTEGER INFO, MXCOL, MXLDA

COMPLEX, ALLOCATABLE :: A(:,:), B(:), X(:)
COMPLEX, ALLOCATABLE :: AO(:,:), BO(:), XO0(:)

PARAMETER (LDA=3, N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), B(N), X(N))
! Set values for A and B

A(l,:) = (/ (3.0, -2.0), (2.0, 4.0), (0.0, =-3.0)/)
A(2,:) = (/ (1.0, 1.0), (2.0, -6.0), (1.0, 2.0)/)
A(3,:) = (/ (4.0, 0.0), (-5.0, 1.0), (3.0, -2.0)/)
!
B = (/(10.0, 5.0), (6.0, -7.0), (-1.0, 2.0)/)
ENDIF

! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (A0 (MXLDA,MXCOL), BO(MXLDA), XO0(MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK_MAP (A, DESCA, A0)
CALL SCALAPACK_MAP (B, DESCX, BO0)
! Solve the system of equations
CALL LSLCG (A0, BO, X0)
! Unmap the results from the distributed
! arrays back to a non-distributed array.
! After the unmap, only Rank=0 has the full
! array.
CALL SCALAPACK_UNMAP (X0, DESCX, X)
! Print results.
! Only Rank=0 has the solution, X.

= Rogygmq\{q LSLCG Chapter 1: Linear Systems 155

IF(MP_RANK .EQ. 0)CALL WRCRN (’'X’, X, 1, N, 1)
IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X)
DEALLOCATE (A0, BO, XO0)

! Exit ScaLAPACK usage
CALL SCALAPACK_EXIT (MP_ICTXT)

! Shut down MPI
MP_NPROCS = MP_SETUP (‘FINAL’)
END

Output

X
1 2 3
(1.000,-1.000) (2.000, 1.000) (0.000, 3.000)

= R{ng?mq\{q LSLCG Chapter 1: Linear Systems 156

LFCCG

;%': ErMPI
FE CE caPABLE

more. ..
more. ..

Computes the LU factorization of a complex general matrix and estimate its L1 condition number.

Required Arguments

A — Complex N by N matrix to be factored. (Input)

FACT — Complex N X N matrix containing the LU factorization of the matrix A (Output)
If A is not needed, A and FACT can share the same storage locations

IPVT — Vector of length N containing the pivoting information for the LU factorization. (Output)
RCOND — Scalar containing an estimate of the reciprocal of the L condition number of A. (Output)

Optional Arguments

N — Order of the matrix. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFCCG (A, FACT, IPVT, RCOND [, ...])
Specific: The specific interface names are S_LFCCG and D_LFCCG.

FORTRAN 77 Interface

Single: CALL LFCCG (N, A, LDA, FACT, LDFACT, IPVT, RCOND)
Double: The double precision name is DLFCCG.

ScalLAPACK Interface
Generic: CALL LFCCG (A0, FACTO, IPVTO0, RCOND [, ...1)
Specific: The specific interface names are S_LFCCG and D_LFCCG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

= Rogygmﬂn\{q LFCCG Chapter 1: Linear Systems 157

Description

Routine LFCCG performs an LU factorization of a complex general coefficient matrix. It also estimates the
condition number of the matrix. The underlying code is based on either LINPACK, LAPACK, or ScaLAPACK
code depending upon which supporting libraries are used during linking. For a detailed explanation see
Using ScaLAPACK, LAPACK, LINPACK, and EISPACK in the Introduction section of this manual. The LU fac-
torization is done using scaled partial pivoting. Scaled partial pivoting differs from partial pivoting in that
the pivoting strategy is the same as if each row were scaled to have the same co-norm.

The L; condition number of the matrix A is defined to be k(A) = [|All4 A7l 1- Since it is expensive to compute

A7) 1, the condition number is only estimated. The estimation algorithm is the same as used by LINPACK
and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/& (where € is machine precision), a warning error is
issued. This indicates that very small changes in A can cause very large changes in the solution x. Iterative
refinement can sometimes find the solution to such a system.

LFCCG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This can occur
only if A either is singular or is very close to a singular matrix.

The LU factors are returned in a form that is compatible with routines LFICG, LFSCG and LFDCG. To solve
systems of equations with multiple right-hand-side vectors, use LFCCG followed by either LFICG or LFSCG
called once for each right-hand side. The routine LFDCG can be called to compute the determinant of the coef-
ficient matrix after LFCCG has performed the factorization.

Let F be the matrix FACT and let p be the vector IPVT. The triangular matrix U is stored in the upper triangle
of F. The strict lower triangle of F contains the information needed to reconstruct L using

L= LyaPna - LaPy

where Py is the identity matrix with rows k and pj interchanged and Ly is the identity with Fj for

i=k+1, ..., Ninserted below the diagonal. The strict lower half of F can also be thought of as containing the
negative of the multipliers.

Comments
1. Workspace may be explicitly provided, if desired, by use of L2CCG/DL2CCG. The reference is:
CALL L2CCG (N, A, LDA, FACT, LDFACT, IPVT, RCOND, WK)
The additional argument is:
WK — Complex work vector of length N.
2. Informational errors

Type Code Description
3 1 The input matrix is algorithmically singular.
4 2 The input matrix is singular.

= Rog':lgwgﬂ\\:er LFCCG Chapter 1: Linear Systems 158

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL complex local matrix containing the local portions of the distributed matrix A. A
contains the matrix to be factored. (Input)

FACT0 — MXLDA by MXCOL complex local matrix containing the local portions of the distributed matrix
FACT. FACT contains the LU factorization of the matrix A. (Output)

IPVT0— Local vector of length MXLDA containing the local portions of the distributed vector IPVT. IPVT
contains the pivoting information for the LU factorization. (Output)

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

Examples

Example 1

The inverse of a 3 X 3 matrix is computed. LFCCG is called to factor the matrix and to check for singularity or
ill-conditioning. LFICG is called to determine the columns of the inverse.

USE IMSL_LIBRARIES

! Declare variables
PARAMETER (LDA=3, LDFACT=3, N=3)

INTEGER IPVT(N), NOUT

REAL RCOND, THIRD

COMPLEX A(LDA,N), AINV(LDA,N), RJ(N), FACT(LDFACT,N), RES(N)
! Declare functions

COMPLEX CMPLX
! Set values for A
I
! A= (1.0+1.01 2.0+3.01i 3.0+3.01)
! (2.0+1.01 5.0+3.01 7.0+4.01)
! (-2.0+1.01 -4.0+4.01 -5.0+3.01)
1

DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),&

(-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/

! Scale A by dividing by three
THIRD = 1.0/3.0
DO 10 I=1, N

CALL CSSCAL (N, THIRD, A(:,I), 1)
10 CONTINUE

! Factor A
CALL LFCCG (A, FACT, IPVT, RCOND)

! Print the L1 condition number
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0EO0/RCOND

! Set up the columns of the identity

= Rogygmﬂn\{q LFCCG Chapter 1: Linear Systems

159

! matrix one at a time in RJ
CALL CSET (N, (0.0,0.0), RJ, 1)
DO 20 J=1, N
RJ(J) = CMPLX(1.0,0.0)
! RJ is the J-th column of the identity
! matrix so the following LFIRG
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
CALL LFICG (A, FACT, IPVT, RJ, AINV(:,J), RES)
RJ(J) = CMPLX(0.0,0.0)
20 CONTINUE
1 Print results
CALL WRCRN (’'AINV’, AINV)
1
99999 FORMAT ('’ RCOND = ’',F5.3,/,’ Ll Condition number = ’,F6.3)
END

Output

RCOND < .02
L1 Condition number < 100.0

AINV
1 2 3
1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)
2 (-1.600,-1.800) (0.200, 0.600) (0.400,-0.800)
3 (-0.600, 2.200) (1.200,-1.400) (0.400, 0.200)

ScaLAPACK Example

The inverse of the same 3 X 3 matrix is computed as a distributed example. LFCCG is called to factor the
matrix and to check for singularity or ill-conditioning. LFICG is called to determine the columns of the
inverse. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Utilities”) used
to map and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a
ScaLAPACK tools routine which initializes the descriptors for the local arrays.

USE MPI_SETUP_INT
USE LFCCG_INT
USE UMACH_INT
USE LFICG_INT
USE WRCRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER J, LDA, N, DESCA(9), DESCL(9)

INTEGER INFO, MXCOL, MXLDA, NOUT

INTEGER, ALLOCATABLE :: IPVTO(:)

COMPLEX, ALLOCATABLE :: A(:,:), AINV(:,:), X0(:), RJ(:)
COMPLEX, ALLOCATABLE :: AO(:,:), FACTO(:,:), RESO(:), RJO(:)
REAL RCOND, THIRD

PARAMETER (LDA=3, N=3)

= Rogygmq\{q LFCCG Chapter 1: Linear Systems 160

! Set up for MPI

N))

values for A

0, 3.0), (3.0, 3.0)/)
0, 3.0), (7.0, 4.0)/)
0, 4.0), (-5.0, 3.0)/)

up a 1D processor grid and define
context id, MP_ICTXT

, .TRUE.)

the array descriptor entities MXLDA,

MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), AINV(LDA,
! Set
A(l,:) = (/ (1.0, 1.0), (2.
A(2,:) = (/ (2.0, 1.0), (5.
A(3,:) = (/ (-2.0, 1.0), (-4.
! Scale A by dividing by three
THIRD = 1.0/3.0
A = A * THIRD
ENDIF
! Set
! its
CALL SCALAPACK_SETUP(N, N, .TRUE.
! Get
! and

MXCOL

10

CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)
Set up the array descriptors
CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
Allocate space for the local arrays
X0 (MXLDA) , FACTO (MXLDA,MXCOL), RJ(N), &
RESO (MXLDA), IPVTO (MXLDA))
Map input array to the processor grid

CALL SCALAPACK_MAP (A, DESCA, A0)

Factor A
IPVTO, RCOND)

Print the reciprocal condition number

and the L1 condition number

ALLOCATE (A0 (MXLDA, MXCOL) ,
RJO (MXLDA) ,

CALL LFCCG (A0, FACTO,

IF (MP_RANK .EQ. 0) THEN
CALL UMACH (2, NOUT)
WRITE (NOUT,99998) RCOND, 1.0EO0/RCOND
ENDIF
Set up the columns of the identity
matrix one at a time in RJ
RJ = (0.0, 0.0)
DO 10 J=1, N
RJ(J) = (1.0, 0.0)
CALL SCALAPACK_MAP(RJ, DESCL, RJO)
RJ is the J-th column of the identity
matrix so the following LFICG
reference computes the J-th column of
the inverse of A
CALL LFICG (A0, FACTO, IPVTO, RJO, X0, RESO)
RJ(J) = (0.0, 0.0)
CALL SCALAPACK_UNMAP (X0, DESCL, AINV(:,J))
CONTINUE

Print results
Only Rank=0 has the solution, AINV.
("AINV’, AINV)
DEALLOCATE (A, AINV)
FACTO, IPVTO, RJ, RJO, RESO, XO0)
Exit ScaLAPACK usage
CALL SCALAPACK_EXIT (MP_ICTXT)

IF (MP_RANK.EQ.O) CALL WRCRN
IF (MP_RANK .EQ. 0)
DEALLOCATE (AQ,

=RogueWave

LFCCG Chapter 1: Linear Systems

161

! Shut down MPI

MP_NPROCS = MP_SETUP(‘FINAL’)
99998 FORMAT ('’ RCOND = ’,F5.3,/,’ Ll Condition number = ’',F6.3)

END

Output

RCOND < .02
L1l Condition number < 100.0

AINV
1 2 3
1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)
2 (-1.600,-1.800) (0.200, 0.600) (0.400,-0.800)
3 (-0.600, 2.200) (1.200,-1.400) (0.400, 0.200)

= R{ng?mq\{q LFCCG Chapter 1: Linear Systems 162

LFTCG

;%': ErMPI
FE CE caPABLE

more. ..
more. ..

Computes the LU factorization of a complex general matrix.

Required Arguments

A — Complex N by N matrix to be factored. (Input)

FACT — Complex N X N matrix containing the LU factorization of the matrix A. (Output)
If A is not needed, A and FACT can share the same storage locations.

IPVT — Vector of length N containing the pivoting information for the LU factorization. (Output)

Optional Arguments

N — Order of the matrix. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFTCG (A, FACT, IPVT [,...])
Specific: The specific interface names are S_LFTCG and D_LFTCG.

FORTRAN 77 Interface

Single: CALL LFTCG (N, A, LDA, FACT, LDFACT, IPVT)
Double: The double precision name is DLFTCG.
ScalLAPACK Interface
Generic: CALL LFTCG (A0, FACTO, IPVTO [,...])
Specific: The specific interface names are S_LFTCG and D_LFTCG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

= Rogygmﬂn\{q LFTCG Chapter 1: Linear Systems 163

Description

Routine LFTCG performs an LU factorization of a complex general coefficient matrix. The LU factorization is
done using scaled partial pivoting. Scaled partial pivoting differs from partial pivoting in that the pivoting
strategy is the same as if each row were scaled to have the same co — norm.

LFTCG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This can occur
only if A either is singular or is very close to a singular matrix.

The LU factors are returned in a form that is compatible with routines LFICG, LFSCG and LFDCG. To solve
systems of equations with multiple right-hand-side vectors, use LFTCG followed by either LFICG or LFSCG
called once for each right-hand side. The routine LFDCG can be called to compute the determinant of the coef-
ficient matrix after LFCCG has performed the factorization.

Let F be the matrix FACT and let p be the vector IPVT. The triangular matrix U is stored in the upper triangle
of F. The strict lower triangle of F contains the information needed to reconstruct L using

L = LN—le-l Llpl

where P} is the identity matrix with rows k and Py interchanged and Ly is the identity with F;; for

i=k+1, ..., Ninserted below the diagonal. The strict lower half of F can also be thought of as containing the
negative of the multipliers.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon which
supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK, LAPACK,
LINPACK, and EISPACK” in the Introduction section of this manual.

Comments
1. Workspace may be explicitly provided, if desired, by use of L2TCG/DL2TCG. The reference is:
CALL L2TCG (N, A, LDA, FACT, LDFACT, IPVT, WK)
The additional argument is:
WK — Complex work vector of length N.
2. Informational error

Type Code Description

4 2 The input matrix is singular.

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:
A0 — MXLDA by MXCOL complex local matrix containing the local portions of the distributed matrix A. A
contains the matrix to be factored. (Input)

FACT0 — MXLDA by MXCOL complex local matrix containing the local portions of the distributed matrix
FACT. FACT contains the LU factorization of the matrix A. (Output)
If A is not needed, A and FACT can share the same storage locations.

IPVT0 — Local vector of length MXLDA containing the local portions of the distributed vector IPVT. IPVT
contains the pivoting information for the LU factorization. (Output)

= Rog':lgwgﬂ\\:er LFTCG Chapter 1: Linear Systems 164

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

Examples

Example

A linear system with multiple right-hand sides is solved. LFTCG is called to factor the coefficient matrix.
LFSCG is called to compute the two solutions for the two right-hand sides. In this case the coefficient matrix
is assumed to be well-conditioned and correctly scaled. Otherwise, it would be better to call LFCCG to per-
form the factorization, and LFICG to compute the solutions.

USE LFTCG_INT
USE LFSCG_INT
USE WRCRN_INT
! Declare variables
PARAMETER (LDA=3, LDFACT=3, N=3)

INTEGER IPVT (N)

COMPLEX A(LDA,LDA), B(N,2), X(N,2), FACT(LDFACT,LDFACT)
! Set values for A
! A= (1.0+1.01i 2.0+43.01 3.0-3.01)
! (2.0+1.01i 5.0+3.01i 7.0-5.01)
! (-2.0+1.0i -4.0+4.01 5.0+3.01)
!

DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),&

(-4.0,4.0), (3.0,-3.0), (7.0,-5.0), (5.0,3.0)/

! Set the right-hand sides, B

! B = (3.0+ 5.0i 9.0+ 0.01)
! (22.0+10.01 13.0+ 9.01)
! (-10.0+ 4.01 6.0+10.01)

DATA B/(3.0,5.0), (22.0,10.0), (-10.0,4.0), (9.0,0.0),&
(13.0,9.0), (6.0,10.0)/

! Factor A
CALL LFTCG (A, FACT, IPVT)

! Solve for the two right-hand sides
DO 10 J=1, 2

CALL LFSCG (FACT, IPVT, B(:,J), X(:,J))
10 CONTINUE

! Print results
CALL WRCRN ('X’, X)
END

Output

= Rogygmq\{q LFTCG Chapter 1: Linear Systems 165

1 (1.000,-1.000) (0.000, 2.000)

2 (2.000, 4.000) (-2.000,-1.000)
3 (3.000, 0.000) (1.000, 3.000)
ScaLAPACK Example

The same linear system with multiple right-hand sides is solved as a distributed example. LFTCG is called to
factor the matrix. LFSCG is called to compute the two solutions for the two right-hand sides.
SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Ultilities”) used to map
and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK
tools routine which initializes the descriptors for the local arrays.

USE MPI_SETUP_INT
USE LFTCG_INT
USE LFSCG_INT
USE WRCRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER J, LDA, N, DESCA(9), DESCL(9)

INTEGER INFO, MXCOL, MXLDA

INTEGER, ALLOCATABLE :: IPVTO(:)

COMPLEX, ALLOCATABLE :: A(:,:), B(:,:), X(:,:), X0(:)
COMPLEX, ALLOCATABLE :: AO(:,:), FACTO(:,:), BO(:)

PARAMETER (LDA=3, N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), B(N,2), X(N,2))

! Set values for A and B
A(l,:) = (/ (1.0, 1.0), (2.0, 3.0), (3.0,-3.0)/)
A(2,:) = (/ (2.0, 2.0), (5.0, 3.0), (7.0,-5.0)/)
A(3,:) = (/ (-2.0, 1.0), (-4.0, 4.0), (5.0, 3.0)/)
1
B(1,:) = (/ (3.0, 5.0), (9.0, 0.0)/)
B(2,:) = (/ (22.0, 10.0), (13.0, 9.0)/)
B(3,:) = (/ (-10.0, 4.0), (6.0, 10.0)/)
ENDIF
! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL

CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

! Set up the array descriptors
CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays
ALLOCATE (AQ0 (MXLDA, MXCOL) , X0 (MXLDA) ,FACTO (MXLDA,MXCOL), &

BO (MXLDA), IPVTO (MXLDA))

! Map input array to the processor grid
CALL SCALAPACK_MAP (A, DESCA, A0)

! Factor A

= Rogygmq\{q LFTCG Chapter 1: Linear Systems 166

CALL LFTCG (A0, FACTO, IPVTO)
! Solve for the two right-hand sides
DO 10 J=1, 2
CALL SCALAPACK_MAP(B(:,J), DESCL, BO)
CALL LFSCG (FACTO, IPVTO, BO, XO0)
CALL SCALAPACK_UNMAP (X0, DESCL, X(:,dJ))
10 CONTINUE
! Print results.
! Only Rank=0 has the solution, X.
IF (MP_RANK.EQ.0) CALL WRCRN (’'X’, X)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, B, X)
DEALLOCATE (AO, BO, FACTO, IPVTO, XO0)
! Exit ScaLAPACK usage
CALL SCALAPACK_EXIT (MP_ICTXT)
! Shut down MPI
MP_NPROCS = MP_SETUP(‘'FINAL’)

END
Output
X
1 2
1 (1.000,-1.000) (0.000, 2.000)
2 (2.000, 4.000) (-2.000,-1.000)
))

3 (3.000, 0.000 (1.000, 3.000

= Rogypmq\{q LFTCG Chapter 1: Linear Systems 167

LFSCG

% rMPI
PE CE cAPABLE

more. ..
more. ..

Solves a complex general system of linear equations given the LU factorization of the coefficient matrix.

Required Arguments

FACT — Complex N by N matrix containing the LU factorization of the coefficient matrix A as output from

routine LFCCG/DLFCCG or LFTCG/DLFTCG. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization of A as output from

routine LFCCG/DLFCCG or LFTCG/DLFTCG. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)
Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of the calling pro-

gram. (Input)
Default: LDFACT = size (FACT,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.

TPATH = 2 means the system A/x = B is solved.
Default: IPATH = 1.

FORTRAN 90 Interface

Generic: CALL LFSCG (FACT, IPVT,B, X [,...])

Specific: The specific interface names are S_LFSCG and D_LFSCG.

FORTRAN 77 Interface

Single: CALL LFSCG (N, FACT, LDFACT, IPVT, B, IPATH, X)
Double: The double precision name is DLFSCG.

=RogueWave

Chapter 1: Linear Systems

168

ScalLAPACK Interface

Generic: CALL LFSCG (FACTO, IPVTO,BO0,X0 [,...])
Specific: The specific interface names are S_LFSCG and D_LFSCG.
See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

Description

Routine LFSCG computes the solution of a system of linear algebraic equations having a complex general
coefficient matrix. To compute the solution, the coefficient matrix must first undergo an LU factorization.
This may be done by calling either LFCCG or LFTCG. The solution to Ax = b is found by solving the triangular
systems Ly = b and Ux = y. The forward elimination step consists of solving the system Ly = b by applying the
same permutations and elimination operations to b that were applied to the columns of A in the factorization
routine. The backward substitution step consists of solving the triangular system Ux = y for x.

Routines LFSCG and LFICG both solve a linear system given its LU factorization. LFICG generally takes
more time and produces a more accurate answer than LFSCG. Each iteration of the iterative refinement algo-
rithm used by LFICG calls LFSCG.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon which
supporting libraries are used during linking. For a detailed explanation see Using ScaLAPACK, LAPACK, LIN-
PACK, and EISPACK in the Introduction section of this manual.

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

FACT0 — MXLDA by MXCOL complex local matrix containing the local portions of the distributed matrix
FACT as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG. FACT contains the LU factorization
of the matrix A. (Input)

IPVT0— Local vector of length MXLDA containing the local portions of the distributed vector IPVT. IPVT
contains the pivoting information for the LU factorization as output from subroutine LFCCG/DLFCCG
or LFTCG/DLFTCG. (Input)

B0 — Complex local vector of length MXLDA containing the local portions of the distributed vector B. B
contains the right-hand side of the linear system. (Input)

X0 — Complex local vector of length MXLDA containing the local portions of the distributed vector X. X
contains the solution to the linear system. (Output)

If B is not needed, B and X can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

= Rog':lgwgﬂ\\:er LFSCG Chapter 1: Linear Systems 169

Examples

Example

The inverse is computed for a complex general 3 X 3 matrix. The input matrix is assumed to be well-condi-
tioned, hence LFTCG is used rather than LFCCG.

USE IMSL_LIBRARIES
! Declare variables
PARAMETER (LDA=3, LDFACT=3, N=3)

INTEGER IPVT (N)

REAL THIRD

COMPLEX A(LDA,LDA), AINV(LDA,LDA), RJ(N), FACT(LDFACT,LDFACT)
! Declare functions

COMPLEX CMPLX
! Set values for A
1
! A= (1.0+41.0i 2.0+3.0i 3.0+3.01)
! (2.0+1.0i 5.0+43.01i 7.0+4.01)
! (-2.0+1.01i -4.0+4.01i -5.0+43.01)
1

DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),&

(-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/

! Scale A by dividing by three
THIRD = 1.0/3.0
DO 10 I=1, N
CALL CSSCAL (N, THIRD, A(:,I), 1)
10 CONTINUE
! Factor A
CALL LFTCG (A, FACT, IPVT)
! Set up the columns of the identity
! matrix one at a time in RJ
CALL CSET (N, (0.0,0.0), RJ, 1)
DO 20 J=1, N
RJ(J) = CMPLX(1.0,0.0)
! RJ is the J-th column of the identity
! matrix so the following LFSCG
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
CALL LFSCG (FACT, IPVT, RJ, AINV(:,Jd))
RJ(J) = CMPLX(0.0,0.0)
20 CONTINUE
1 Print results
CALL WRCRN (’'AINV’, AINV)
END

Output

AINV
1 2 3
1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)

= Rogygmq\{q LFSCG Chapter 1: Linear Systems 170

0.400,-0.800)

2 (-1.600,-1.800) (0.200, 0.600) (
(-0 (1. 0.400, 0.200)

3 .600, 2.200) 200,-1.400) (

ScaLAPACK Example

The inverse of the same 3 X 3 matrix is computed as a distributed example. The input matrix is assumed to
be well-conditioned, hence LFTCG is used rather than LFCCG. LFSCG is called to determine the columns of
the inverse. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Ultilities”)
used to map and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a
ScaLAPACK tools routine which initializes the descriptors for the local arrays.

USE
USE
USE

MPI_SETUP_INT
LFTCG_INT
LFSCG_INT
USE WRCRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER J, LDA, N, DESCA(9), DESCL(9)
INTEGER INFO, MXCOL, MXLDA
INTEGER, ALLOCATABLE IPVTO(:)
COMPLEX, ALLOCATABLE :: A(:,:), AINV(:,:), X0(:)
COMPLEX, ALLOCATABLE AO(:,:), FACTO(:,:), RJ(:), RJO(:)
REAL THIRD
PARAMETER (LDA=3, N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), AINV(LDA,N))
! Set values for A
A(l,:) = (/ (1.0, 1.0), (2.0, 3.0), (3.0, 3.0)/)
A(2,:) = (/ (2.0, 1.0), (5.0, 3.0), (7.0, 4.0)/)
A(3,:) = (/ (-2.0, 1.0), (-4.0, 4.0), (-5.0, 3.0)/)
! Scale A by dividing by three
THIRD = 1.0/3.0
A = A * THIRD
ENDIF

Set up a 1D processor grid and define

I its

CALL SCALAPACK_SETUP (N,
! Get
! and

N, .TRUE.

context ID, MP_ICTXT

, .TRUE.)

the array descriptor entities MXLDA,
MXCOL

CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

CALL DESCINI
CALL DESCINI

ALLOCATE (A0 (MXLDA, MXCOL) ,

RJO

CALL SCALAPA!

CALL LFTCG

(A0,

Set up the array descriptors

T(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
T(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

Allocate space for the local arrays
X0 (MXLDA) , FACTO (MXLDA,MXCOL), RJ(N), &
IPVTO (MXLDA))

Map input array to the processor grid
CK_MAP (A, DESCA, A0)
Factor A

IPVTO)

(MXLDA) ,

FACTO,

=RogueWave

LFSCG Chapter 1: Linear Systems

171

! Set up the columns of the identity
! matrix one at a time in RJ
RJ = (0.0, 0.0)
DO 10 J=1, N
RJ(J) = (1.0, 0.0)
CALL SCALAPACK_MAP(RJ, DESCL, RJO)
! RJ is the J-th column of the identity
! matrix so the following LFICG
! reference computes the J-th column of
! the inverse of A
CALL LFSCG (FACTO, IPVTO, RJO, XO0)
RJ(J) = (0.0, 0.0)
CALL SCALAPACK_UNMAP (X0, DESCL, AINV(:,J))
10 CONTINUE
! Print results.
! Only Rank=0 has the solution, AINV.
IF (MP_RANK.EQ.0) CALL WRCRN ('AINV’, AINV)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, AINV)
DEALLOCATE (A0, FACTO, IPVTO, RJ, RJO, XO0)
! Exit ScaLAPACK usage
CALL SCALAPACK_EXIT (MP_ICTXT)
! Shut down MPI
MP_NPROCS = MP_SETUP(‘'FINAL’)
END

Output

AINV
1 2 3
1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)
2 (-1.600,-1.800) (0.200, 0.600) (0.400,-0.800)
3 (-0.600, 2.200) (1.200,-1.400) (0.400, 0.200)

= R{nggmq\{q LFSCG Chapter 1: Linear Systems 172

LFICG

;%': ErMPI
FE CE caPABLE

more. ..
more. ..

Uses iterative refinement to improve the solution of a complex general system of linear equations.

Required Arguments

A — Complex N by N matrix containing the coefficient matrix of the linear system. (Input)

FACT — Complex N by N matrix containing the LU factorization of the coefficient matrix A as output from
routine LFCCG/DLFCCG or LFTCG/DLFTCG. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization of A as output from
routine LFCCG/DLFCCG or LFTCG/DLFTCG. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)
X — Complex vector of length N containing the solution to the linear system. (Output)

RES — Complex vector of length N containing the residual vector at the improved solution. (Output)

Optional Arguments

N — Number of equations. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDFACT = size (FACT,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = Bis solved.

TPATH = 2 means the system Afx = Bis solved.
Default: IPATH = 1.

FORTRAN 90 Interface

Generic: CALL LFICG (A, FACT,IPVT,B,X,RES [,...])
Specific: The specific interface names are S_LFICG and D_LFICG.

FORTRAN 77 Interface

Single: CALL LFICG (N, A, LDA, FACT, LDFACT, IPVT, B, IPATH, X, RES)
Double: The double precision name is DLFICG.

= Rogygmﬂn\{q LFICG Chapter 1: Linear Systems

173

ScaLAPACK Interface

Generic: CALL LFICG (A0, FACTO, IPVTO, BO,X0,RESO [,...])
Specific: The specific interface names are S_LFICG and D_LFICG.
See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

Description

Routine LFICG computes the solution of a system of linear algebraic equations having a complex general
coefficient matrix. Iterative refinement is performed on the solution vector to improve the accuracy. Usually
almost all of the digits in the solution are accurate, even if the matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an LU factorization. This may be done by
calling either LFCCG, or LFTCG.

Iterative refinement fails only if the matrix is very ill-conditioned. Routines LFICG and LFSCG both solve a
linear system given its LU factorization. LFICG generally takes more time and produces a more accurate
answer than LFSCG. Each iteration of the iterative refinement algorithm used by LFICG calls LFSCG.

Comments

Informational error

Type Code Description

3 2 The input matrix is too ill-conditioned for iterative refinement to be effective

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL complex local matrix containing the local portions of the distributed matrix A. A
contains the coefficient matrix of the linear system. (Input)

FACT0 — MXLDA by MXCOL complex local matrix containing the local portions of the distributed matrix
FACT as output from routineLFCCG, or LFTCG. FACT contains the LU factorization of the matrix A.
(Input)

IPVT0 — Local vector of length MXLDA containing the local portions of the distributed vector IPVT. IPVT
contains the pivoting information for the LU factorization as output from subroutine LFCCG, or
LFTCG. (Input)

B0 — Complex local vector of length MXLDA containing the local portions of the distributed vector B. B
contains the right-hand side of the linear system. (Input)

X0 — Complex local vector of length MXLDA containing the local portions of the distributed vector X. X
contains the solution to the linear system. (Output)

RESO — Complex local vector of length MXLDA containing the local portions of the distributed vector
RES. RES contains the final correction at the improved solution to the linear system. (Output)

= R{ngﬁ.lnewlg\{er LFICG Chapter 1: Linear Systems 174

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

Examples

Example

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving the sys-
tem each of the first two times by adding 0.5 + 0.5i to the second element.

USE LFICG_INT
USE LFCCG_INT
USE WRCRN_INT
USE UMACH_INT
! Declare variables
PARAMETER (LDA=3, LDFACT=3, N=3)

INTEGER IPVT(N), NOUT

REAL RCOND

COMPLEX A(LDA,LDA), B(N), X(N), FACT(LDFACT,LDFACT), RES(N)
! Declare functions

COMPLEX CMPLX
! Set values for A
!
! A= (1.0+1.0i 2.0+3.01i 3.0-3.01)
! (2.0+1.01 5.0+3.01 7.0-5.01)
! (-2.0+1.01i -4.0+4.0i 5.0+43.01)
I

DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0), &

(-4.0,4.0), (3.0,-3.0), (7.0,-5.0), (5.0,3.0)/

1
! Set values for B
! B = (3.0+5.01 22.0+10.01i -10.0+4.01)
I

DATA B/(3.0,5.0), (22.0,10.0), (-10.0,4.0)/

! Factor A
CALL LFCCG (A, FACT, IPVT, RCOND)
! Print the L1 condition number
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
! Solve the three systems
DO 10 J=1, 3
CALL LFICG (A, FACT, IPVT, B, X, RES)
! Print results
CALL WRCRN ('X’, X, 1, N, 1)
! Perturb B by adding 0.5+0.5i to B(2)
B(2) = B(2) + CMPLX(0.5,0.5)
10 CONTINUE

99999 FORMAT (' RCOND = ',F5.3,/,’ Ll Condition number = ’,F6.3)
END

= Rogygmq\{q LFICG Chapter 1: Linear Systems

175

Output

RCOND < 0.025
L1l Condition number < 75.0

X

1 2

(1.000,-1.000) (2.000, 4.000)
X

1 2

(0.910,-1.061) (1.986, 4.175)
X

1 2

(0.821,-1.123) (11.972, 4.349)

ScaLAPACK Example

The same set of linear systems is solved successively as a distributed example. The right-hand-side vector is

3
(3.000, 0.000)
3
(3.123, 0.071)
3
(3.245, 0.142)

perturbed after solving the system each of the first two times by adding 0.5 + 0.57 to the second element.

SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Utilities”) used to map
and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK
tools routine which initializes the descriptors for the local arrays.

USE MPI_SETUP_INT
USE LFICG_INT

USE LFCCG_INT

USE WRCRN_INT

USE UMACH_INT

USE SCALAPACK_SUPPORT
IMPLICIT NONE

INCLUDE ‘mpif.h’

Declare variables

INTEGER J, LDA, N, DESCA(9), DESCL(9)
INTEGER INFO, MXCOL, MXLDA, NOUT
INTEGER, ALLOCATABLE IPVTO(:)
COMPLEX, ALLOCATABLE A(:,:), B(:), X(:), X0(:), RES(:)
COMPLEX, ALLOCATABLE AO(:,:), FACTO(:,:), BO(:), RESO(:)
REAL RCOND
PARAMETER (LDA=3, N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), B(N), X(N), RES(N))
! Set values for A and B
A(l,:) = (/ (1.0, 2.0), (2.0, 3.0), (3. 3.0)/)
A(2,:) = (/ (2.0, 1.0), (5.0, 3.0), (7. 4.0)/)
A(3,:) = (/ (-2.0, 1.0), (-4.0, 4.0), (-5. 3.0)/)
1
B = (/ (3.0, 5.0), (22.0, 10.0), (-10.0, 4.0)/)
ENDIF

CALL SCALAPACK_SETUP(N, N,

Set up a 1D processor grid and define

.TRUE., .TRUE.)

context ID, MP_ICTXT

=RogueWave

LFICG Chapter 1: Linear Systems

176

Get the array descriptor entities MXLDA,
and MXCOL
CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)
Set up the array descriptors
CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
Allocate space for the local arrays
ALLOCATE (A0 (MXLDA,MXCOL) , X0 (MXLDA) ,FACTO (MXLDA,MXCOL), &
BO (MXLDA), IPVTO(MXLDA), RESO(MXLDA))
Map input array to the processor grid
CALL SCALAPACK_MAP (A, DESCA, A0)
Factor A
CALL LFCCG (A0, FACTO, IPVTO, RCOND)
Print the L1 condition number
IF (MP_RANK .EQ. 0) THEN
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
ENDIF
Solve the three systems
DO 10 J=1, 3
CALL SCALAPACK_MAP (B, DESCL, BO)
CALL LFICG (A0, FACTO, IPVTO, BO, X0, RESO0)
CALL SCALAPACK_UNMAP (X0, DESCL, X)
Print results
Only Rank=0 has the solution, X.
IF (MP_RANK .EQ. 0) CALL WRCRN ('X’, X, 1, N, 1)
Perturb B by adding 0.5+0.5i to B(2)

IF(MP_RANK .EQ. 0) B(2) = B(2) + (0.5,0.5)
10 CONTINUE

IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X, RES)
DEALLOCATE (A0, BO, FACTO, IPVTO, X0, RESO0)

! Exit Scalapack usage
CALL SCALAPACK_EXIT (MP_ICTXT)

! Shut down MPI
MP_NPROCS = MP_SETUP(‘FINAL’)

99999 FORMAT (' RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
END

Output

RCOND < 0.025
L1l Condition number < 75.0

X

1 2 3

(1.000,-1.000) (2.000, 4.000) (3.000, 0.000)
X

1 2 3

(0.910,-1.061) (1.986, 4.175) (3.123, 0.071)
X

1 2 3

(0.821,-1.123) (1.972, 4.349) (3.245, 0.142)

= R{nggmq\{q LFICG Chapter 1: Linear Systems

177

LFDCG

Computes the determinant of a complex general matrix given the LU factorization of the matrix.

Required Arguments

FACT — Complex N by N matrix containing the LU factorization of the coefficient matrix A as output from
routine LFCCG/DLFCCG or LFTCG/DLFTCG. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization of A as output from
routine LFCCG/DLFCCG or LFTCG/DLFTCG. (Input)

DET1 — Complex scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 < [DET1 | < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = DET1 * 10PFT.

Optional Arguments

N — Number of equations. (Input)
Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFDCG (FACT, IPVT,DET1,DET2 [,...])
Specific: The specific interface names are S_LFDCG and D_LFDCG.

FORTRAN 77 Interface

Single: CALL LFDCG (N, FACT, LDFACT, IPVT, DET1, DET2)
Double: The double precision name is DLFDCG.
Description

Routine LFDCG computes the determinant of a complex general coefficient matrix. To compute the determi-
nant the coefficient matrix must first undergo an LU factorization. This may be done by calling either LFCCG
or LFTCG. The formula det A = det L det U is used to compute the determinant. Since the determinant of a
triangular matrix is the product of the diagonal elements,

detU: HN Uii
i=1

(The matrix U is stored in the upper triangle of FACT.) Since L is the product of triangular matrices with unit

diagonals and of permutation matrices, det L = (—1)F where k is the number of pivoting interchanges.

LFDCG is based on the LINPACK routine CGEDI; see Dongarra et al. (1979).

= R{ngﬁ.lnewlg\{er LFDCG Chapter 1: Linear Systems

178

Example

The determinant is computed for a complex general 3 X 3 matrix.

USE LFDCG_INT
USE LFTCG_INT
USE UMACH_INT

PARAMETER
INTEGER
REAL
COMPLEX

DATA A/(3.0,-2.0),
(-5.0,1.0),

CALL LFTCG

CALL LFDCG

CALL UMACH
WRITE

99999 FORMAT ('’

")
END

Output

The determinant of A is (

(NOUT, 99999)

Declare variables

(LDA=3, LDFACT=3, N=3)

IPVT(N), NOUT

DET2

A(LDA,LDA), FACT(LDFACT,LDFACT), DET1

Set values for A

b
1l
w

.0-2.01
.0+1.01

ISR

(1.0,1.0), (4
(0.0,-3.0), (1

Factor A

(A, FACT, IPVT)

.0,0.0), (2.0,4.0),
.0,2.0), (3.0,-2.0)/

2.0+4.01 0.0-3.01)
2.0-6.01 1.0+2.01)
.0+0.01i -5.0+1.01 3.0-2.01)

(2.0,-6.0),&

Compute the determinant for the

factored matrix
IPVT, DET1, DET2)
Print results

(FACT,

(2, NOUT)

DET1, DET2

0.700, 1.100) * 10**1.

The determinant of A is’,3X,’(’',F6.3,',’',F6.3,&
* 10**’ ,F2.0)

=RogueWave

LFDCG Chapter 1: Linear Systems

179

LINCG

% rMPI
PE CE cAPABLE

more. ..
more. ..

Computes the inverse of a complex general matrix.

Required Arguments

A — Complex N by N matrix containing the matrix to be inverted. (Input)

AINV — Complex N by N matrix containing the inverse of A. (Output)
If A is not needed, A and AINV can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDAINV = size (AINV,1).

FORTRAN 90 Interface

Generic: CALL LINCG (A,AINV [,...])
Specific: The specific interface names are S_LINCG and D_LINCG.

FORTRAN 77 Interface

Single: CALL LINCG (N, A,LDA, AINV, LDAINV)
Double: The double precision name is DLINCG.

ScaLAPACK Interface

Generic: CALL LINCG (A0, AINVO [,...1)
Specific: The specific interface names are S_LINCG and D_LINCG.
See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

= Rogygmq\{q LINCG Chapter 1: Linear Systems 180

Description

Routine LINCG computes the inverse of a complex general matrix. The underlying code is based on either
LINPACK, LAPACK, or ScaLAPACK code depending upon which supporting libraries are used during link-
ing. For a detailed explanation see Using ScaLAPACK, LAPACK, LINPACK, and EISPACK in the Introduction
section of this manual.

LINCG first uses the routine LFCCG to compute an LU factorization of the coefficient matrix and to estimate
the condition number of the matrix. LFCCG computes U and the information needed to compute L. LINCT is

then used to compute U™}, i.e. use the inverse of U. Finally A™ is computed using a1 = 'L,

LINCG fails if U, the upper triangular part of the factorization, has a zero diagonal element or if the iterative
refinement algorithm fails to converge. This errors occurs only if A is singular or very close to a singular
matrix.

If the estimated condition number is greater than 1/& (where € is machine precision), a warning error is

issued. This indicates that very small changes in A can cause very large changes in A™.

Comments
1. Workspace may be explicitly provided, if desired, by use of L2NCG/DL2NCG. The reference is:
CALL L2NCG (N, A, LDA, AINV, LDAINV, WK, IWK)
The additional arguments are as follows:
WK — Complex work vector of length N + N(N — 1)/2.
IWK — Integer work vector of length N.
2. Informational errors

Type Code Description
3 1 The input matrix is too ill-conditioned. The inverse might not be accurate.
4 2 The input matrix is singular.

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL complex local matrix containing the local portions of the distributed matrix A. A
contains the matrix to be inverted. (Input)

AINV0 — MXLDA by MXCOL complex local matrix containing the local portions of the distributed matrix
AINV. AINV contains the inverse of the matrix A. (Output)
If A is not needed, A and AINV can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

= ROQQ?WQ\{EF LINCG Chapter 1: Linear Systems 181

Examples

Example

The inverse is computed for a complex general 3 X 3 matrix.

USE LINCG_INT
USE WRCRN_INT
USE CSSCAL_INT

! Declare variables

3.0+3.01)
7.0+4.01)

(5.0,3.0),&

PARAMETER (LDA=3, LDAINV=3, N=3)

REAL THIRD

COMPLEX A(LDA,LDA), AINV(LDAINV,LDAINV)
! Set values for A
!
! A = 1.0+1.0i 2.0+43.01
! 2.0+1.01 5.0+3.01
! -2.0+1.01i -4.0+4.0i -5.0+3.01)
1

DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0),

(-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/

! Scale A by dividing by three

THIRD = 1.0/3.0
DO 10 I=1, N
CALL CSSCAL
10 CONTINUE

(N, THIRD, A(:,I),

1)

! Calculate the inverse of A

(-2.600,

(

3
1.200)

0.400,-0.800)

CALL LINCG (A, AINV)
! Print results
CALL WRCRN (’'AINV’, AINV)
END
Output
ATINV
1 2
1 (6.400,-2.800) (-3.800, 2.600)
2 (-1.600,-1.800) (0.200, 0.600)
))

3 (-0.600, 2.200 (1.200,-1.400

ScaLAPACK Example

(

0.400,

0.200)

The inverse of the same 3 X 3 matrix is computed as a distributed example. SCALAPACK_MAP and
SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Utilities”) used to map and unmap arrays to

and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK tools routine which

initializes the descriptors for the local arrays.

USE MPI_SETUP_INT
USE LINCG_INT
USE WRCRN_INT
USE SCALAPACK_SUPPORT

=RogueWave

LINCG

Chapter 1: Linear Systems

182

IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER J, LDA, N, DESCA(9)

INTEGER INFO, MXCOL, MXLDA, NPROW, NPCOL
COMPLEX, ALLOCATABLE :: A(:,:), AINV(:,:)
COMPLEX, ALLOCATABLE :: AO(:,:), AINVO(:,:)
REAL THIRD

PARAMETER (LDA=3, N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), AINV(LDA,N))

! Set values for A
A(1,:) = (/ (1.0, 1.0), (2.0, 3.0), (3.0, 3.0)/)
A(2,:) = (/ (2.0, 1.0), (5.0, 3.0), (7.0, 4.0)/)
A(3,:) = (/ (-2.0, 1.0), (-4.0, 4.0), (-5.0, 3.0)/)

! Scale A by dividing by three
THIRD = 1.0/3.0
A = A * THIRD

ENDIF
! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL

CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (AQO (MXLDA, MXCOL) , AINVO (MXLDA,MXCOL))
! Map input array to the processor grid
CALL SCALAPACK_MAP (A, DESCA, A0)
! Factor A
CALL LINCG (A0, AINVO)
! Unmap the results from the distributed
! arrays back to a non-distributed array.
! After the unmap, only Rank=0 has the full
! array.
CALL SCALAPACK_UNMAP (AINVO, DESCA, AINV)
! Print results.
! Only Rank=0 has the solution, X.
IF (MP_RANK.EQ.O) CALL WRCRN (’AINV’, AINV)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, AINV)
DEALLOCATE (A0, AINVO)
! Exit ScaLAPACK usage
CALL SCALAPACK_EXIT (MP_ICTXT)
! Shut down MPI
MP_NPROCS = MP_SETUP (‘FINAL’)
END

Output

ATINV

= R{nggmq\{q LINCG Chapter 1: Linear Systems

183

3

1 2

1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)
))

))

2 (-1.600,-1.800
3 (-0.600, 2.200

(0.200, 0.600 (0.400,-0.800)
(1.200,-1.400 (0.400, 0.200)

= R‘Dgygmq\{eg LINCG Chapter 1: Linear Systems 184

LSLRT

;%': ErMPI
FE CE caPABLE

more. ..
more. ..

Solves a real triangular system of linear equations.

Required Arguments

A — N by N matrix containing the coefficient matrix for the triangular linear system. (Input)
For a lower triangular system, only the lower triangular part and diagonal of A are referenced. For an
upper triangular system, only the upper triangular part and diagonal of A are referenced.

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

IPATH — Path indicator. (Input)
IPATH = 1 means solve AX = B, A lower triangular.

IPATH = 2 means solve AX = B, A upper triangular.

T

IPATH = 3 means solve A’ X = B, A lower triangular.

TPATH = 4 means solve ATX = B, A upper triangular.
Default: TPATH = 1.

FORTRAN 90 Interface

Generic: CALL LSLRT (A, B, X [,...1)
Specific: The specific interface names are S_LSLRT and D_LSLRT.

FORTRAN 77 Interface

Single: CALL LSLRT (N, A, LDA, B, IPATH, X)

Double: The double precision name is DLSLRT.
ScaLAPACK Interface

Generic: CALL LSLRT (A0,B0,X0 [,...])

= Rogygmﬂn\{q LSLRT Chapter 1: Linear Systems

185

Specific: The specific interface names are S_LSLRT and D_LSLRT.
See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

Description

Routine LSLRT solves a system of linear algebraic equations with a real triangular coefficient matrix. LSLRT
fails if the matrix A has a zero diagonal element, in which case 2 is singular. The underlying code is based on
either LINPACK , LAPACK, or ScaLAPACK code depending upon which supporting libraries are used
during linking. For a detailed explanation see Using ScaLAPACK, LAPACK, LINPACK, and EISPACK in the
Introduction section of this manual.

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A. A contains
the coefficients of the linear system. (Input)
For a lower triangular system, only the lower triangular part and diagonal of A are referenced. For an
upper triangular system, only the upper triangular part and diagonal of A are referenced.

B0 — Local vector of length MXLDA containing the local portions of the distributed vector B. B contains
the right-hand side of the linear system. (Input)
X0 — Local vector of length MXLDA containing the local portions of the distributed vector X. X contains

the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

Examples

Example

A system of three linear equations is solved. The coefficient matrix has lower triangular form and the right-
hand-side vector, b, has three elements.

USE LSLRT_INT
USE WRRRN_INT
! Declare variables
PARAMETER (LDA=3)
REAL A(LDA,LDA), B(LDA), X(LDA)
Set values for A and B

1
1
! A= (2.0)
| (2.0 -1.0)
! (-4.0 2.0 5.0)
1
| B=(2.0 5.0 0.0)

= ROQQ?WQ\{EF LSLRT Chapter 1: Linear Systems 186

DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/
DATA B/2.0, 5.0, 0.0/

! Solve AX = B (IPATH = 1)
CALL LSLRT (A, B, X)

! Print results
CALL WRRRN (’'X’', X, 1, 3, 1)
END

Output

X
1 2 3
1.000 -3.000 2.000

ScaLAPACK Example

The same system of three linear equations is solved as a distributed computing example. The coefficient
matrix has lower triangular form and the right-hand-side vector b has three elements. SCALAPACK_MAP and
SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Utilities”) used to map and unmap arrays to
and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK tools routine which
initializes the descriptors for the local arrays.

USE MPI_SETUP_INT
USE LSLRT_INT
USE WRRRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER LDA, N, DESCA(9), DESCX(9)

INTEGER INFO, MXCOL, MXLDA

REAL, ALLOCATABLE :: A(:,:), B(:), X(:)
REAL, ALLOCATABLE :: AO(:,:), BO(:), XO(:)

PARAMETER (LDA=3, N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), B(N), X(N))
! Set values for A and B

A(l,:) = (/ 2.0, 0.0, 0.0/)
A(2,:) = (/ 2.0, -1.0, 0.0/)
A(3,:) = (/-4.0, 2.0, 5.0/)
1
B = (/ 2.0, 5.0, 0.0/)
ENDIF
! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL

CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

= Rogygmq\{q LSLRT Chapter 1: Linear Systems

187

! Set up the array descriptors
CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (A0 (MXLDA,MXCOL), BO(MXLDA), X0 (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK_MAP (A, DESCA, A0)
CALL SCALAPACK_MAP (B, DESCX, BO0)
! Solve AX = B (IPATH = 1)
CALL LSLRT (A0, BO, X0)
! Unmap the results from the distributed
! arrays back to a non-distributed array.
! After the unmap, only Rank=0 has the full
! array.
CALL SCALAPACK_UNMAP (X0, DESCX, X)
! Print results.
! Only Rank=0 has the solution, X.
IF (MP_RANK .EQ. 0)CALL WRRRN ('X’, X, 1, N, 1)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, B, X)
DEALLOCATE (A0, BO, XO0)
! Exit Scalapack usage
CALL SCALAPACK_EXIT (MP_ICTXT)
! Shut down MPI
MP_NPROCS = MP_SETUP (‘FINAL’)
END

Output

X
1 2 3
1.000 -3.000 2.000

= R{ng?mq\{q LSLRT Chapter 1: Linear Systems 188

LFCRT

;%': ErMPI
FE CE caPABLE

more. ..
more. ..

Estimates the condition number of a real triangular matrix.

Required Arguments

A — N by N matrix containing the coefficient matrix for the triangular linear system. (Input)
For a lower triangular system, only the lower triangular part and diagonal of A are referenced. For an
upper triangular system, only the upper triangular part and diagonal of A are referenced.

RCOND — Scalar containing an estimate of the reciprocal of the L condition number of A. (Output)

Optional Arguments
N — Number of equations. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

IPATH — Path indicator. (Input)
IPATH = 1 means A is lower triangular. IPATH = 2 means A is upper triangular.
Default: IPATH =1.

FORTRAN 90 Interface

Generic: CALL LFCRT (&, RCOND [, ...]1)
Specific: The specific interface names are S_LFCRT and D_LFCRT.

FORTRAN 77 Interface

Single: CALL LFCRT (N, A, LDA, IPATH, RCOND)
Double: The double precision name is DLFCRT.
ScalLAPACK Interface
Generic: CALL LFCRT (A0, RCOND [, ...])
Specific: The specific interface names are S_LFCRT and D_LFCRT.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

= Rogygmﬂn\{q LFCRT Chapter 1: Linear Systems 189

Description

Routine LFCRT estimates the condition number of a real triangular matrix. The L; condition number of the

matrix A is defined to be k(A) = [|All; A7) 1- Since it is expensive to compute A 1, the condition number is
only estimated. The estimation algorithm is the same as used by LINPACK and is described by Cline et al.
(1979).

If the estimated condition number is greater than 1/& (where € is machine precision), a warning error is
issued. This indicates that very small changes in A can cause very large changes in the solution x.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon which
supporting libraries are used during linking. For a detailed explanation see Using ScaLAPACK, LAPACK, LIN-
PACK, and EISPACK in the Introduction section of this manual.

Comments
1. Workspace may be explicitly provided, if desired, by use of L2CRT/ DL2CRT. The reference is:
CALL L2CRT (N, A, LDA, IPATH, RCOND, WK)
The additional argument is:
WK — Work vector of length N.
2. Informational error

Type Code Description

3 1 The input triangular matrix is algorithmically singular.

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A. A contains
the coefficient matrix for the triangular linear system. (Input)
For a lower triangular system, only the lower triangular part and diagonal of A are referenced. For an
upper triangular system, only the upper triangular part and diagonal of A are referenced.

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

Examples

Example

An estimate of the reciprocal condition number is computed for a 3 X 3 lower triangular coefficient matrix.

USE LFCRT_INT
USE UMACH_INT
! Declare variables

= ROQQ?WQ\{EF LFCRT Chapter 1: Linear Systems 190

PARAMETER (LDA=3)
REAL A(LDA,LDA),
INTEGER NOUT

DATA A/2.0, 2.

CALL LFCRT (A, RCOND)

CALL UMACH (2

, NOUT)

WRITE (NOUT,99999) RCOND,

99999 FORMAT ('
END

Output

RCOND < 0.1
L1l Condition number

RCOND = ’',F5.3,/,"'

< 15.0

ScaLAPACK Example

The same lower triangular matrix as in the example above is used in this distributed computing example. An

0, -4.0, 0.0,

RCOND

Set values for A and B

A= (2.0)
(2.0 -1.0)
(-4.0 2.0 5.0)

-1.0, 2.0, 0.0, 0.0, 5.0/

Compute the reciprocal condition

number (IPATH=1)

Print results

1.0E0/RCOND
L1l Condition number = ’,F6.3)

estimate of the reciprocal condition number is computed for the 3 X 3 lower triangular coefficient matrix.

SCALAPACK_MAP is an IMSL utility routine (see Chapter 11, “Ultilities”) used to map an array to the processor
grid. It is used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for

the local arrays.

USE MPI_SETUP_INT

USE LFCRT_INT

USE SCALAPACK_SUPPORT

IMPLICIT NONE
INCLUDE ‘mpif

INTEGER
INTEGER
REAL

.h'

Declare variables

LDA, N, NOUT, DESCA(9)

INFO, MXCOL, MXLDA

RCOND

REAL, ALLOCATABLE
REAL, ALLOCATABLE

PARAMETER

(LDA=3, N=3)

MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN

ALLOCATE

>
=
I

w
w
|

(A(LDA,N))

Set up for MPI

Set values for A
0.0/)
0.0/)
5.0/)

=RogueWave

LFCRT

Chapter 1: Linear Systems

191

! Set
! its

CALL SCALAPACK_SETUP (N,
! Get
! and

N, .TRUE.

up a 1D processor grid and define
context ID, MP_ICTXT

, .TRUE.)

the array descriptor entities MXLDA,
MXCOL

CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)
Set up the array descriptor

CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA,
Allocate space for the local arrays

INFO)
ALLOCATE (AO (MXLDA,MXCOL))
Map input array to the processor grid
CALL SCALAPACK_MAP (A, DESCA, A0)
Compute the reciprocal condition

! number (IPATH=1)
CALL LFCRT (A0, RCOND)
! Print results.
! Only Rank=0 has the solution, RCOND.
IF (MP_RANK .EQ. 0) THEN
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0EO0/RCOND
ENDIF
IF (MP_RANK .EQ. 0) DEALLOCATE (A)
DEALLOCATE (AOQ)
! Exit Scalapack usage
CALL SCALAPACK_EXIT (MP_ICTXT)
! Shut down MPI
MP_NPROCS = MP_SETUP(‘FINAL’)
99999 FORMAT ('’ RCOND = ’',F5.3,/,’ Ll Condition number = ’',F6.3)
END
Output
RCOND < 0.1
L1l Condition number < 15.0
= R{nggmq\{q LFCRT Chapter 1: Linear Systems 192

LFDRT

Computes the determinant of a real triangular matrix.

Required Arguments

A — N by N matrix containing the triangular matrix. (Input)
The matrix can be either upper or lower triangular.

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 < IDET1 | < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(a) = DET1 * 10°%T2,

Optional Arguments

N — Number of equations. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

FORTRAN 90 Interface

Generic: CALL LFDRT (A, DET1,DET2 [,...])
Specific: The specific interface names are S_LFDRT and D_LFDRT.

FORTRAN 77 Interface

Single: CALL LFDRT (N, A, LDA, DET1, DET2)
Double: The double precision name is DLFDRT.
Description

Routine LFDRT computes the determinant of a real triangular coefficient matrix. The determinant of a trian-
gular matrix is the product of the diagonal elements

detA = HN Aii
i=1

LFDRT is based on the LINPACK routine STRDI; see Dongarra et al. (1979).

= Rog':lgwgﬂ\\:er LFDRT Chapter 1: Linear Systems 193

Comments

Informational error

Type Code Description
3 1 The input triangular matrix is singular.
Example

The determinant is computed for a 3 X 3 lower triangular matrix.

USE LFDRT_INT
USE UMACH_INT

! Declare variables
PARAMETER (LDA=3)

REAL A(LDA,LDA), DET1l, DET2

INTEGER NOouT
! Set values for A
! A= (2.0)
! (2.0 -1.0)
! (-4.0 2.0 5.0)

DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/

! Compute the determinant of A
CALL LFDRT (A, DET1, DET2)

1 Print results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) DET1, DET2

99999 FORMAT ('’ The determinant of A is ', F6.3, ' * 10**’, F2.0)
END

Output

The determinant of A is -1.000 * 10**1.

= Rogygmq\{q LFDRT Chapter 1: Linear Systems 194

LINRT

Computes the inverse of a real triangular matrix.

Required Arguments

A — N by N matrix containing the triangular matrix to be inverted. (Input)
For a lower triangular matrix, only the lower triangular part and diagonal of A are referenced. For an
upper triangular matrix, only the upper triangular part and diagonal of A are referenced.

AINV —N by N matrix containing the inverse of A. (Output)
If A is lower triangular, AINV is also lower triangular. If A is upper triangular, AINV is also upper trian-
gular. If A is not needed, A and AINV can share the same storage locations.

Optional Arguments
N — Number of equations. (Input)
Default: N = size (3,2).
LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

IPATH — Path indicator. (Input)
IPATH = 1 means A is lower triangular. IPATH = 2 means A is upper triangular.
Default: TPATH = 1.

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDAINV = size (AINV,1).

FORTRAN 90 Interface

Generic: CALL LINRT (&, AINV [,...])
Specific: The specific interface names are S_LINRT and D_LINRT.

FORTRAN 77 Interface

Single: CALL LINRT (N, A,LDA, IPATH, AINV, LDAINV)
Double: The double precision name is DLINRT.
Description

Routine LINRT computes the inverse of a real triangular matrix. It fails if A has a zero diagonal element.

Example

The inverse is computed for a 3 X 3 lower triangular matrix.

USE LINRT_INT
USE WRRRN_INT

= R{ngﬁ.lnewlg\{er LINRT Chapter 1: Linear Systems

195

! Declare variables

PARAMETER (LDA=3)
REAL A(LDA,LDA), AINV(LDA,LDA)

! Set values for

! A= (2.0
! (2.0
! (-4.0

DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, O.

! Compute the inverse of A

CALL LINRT (A, AINV)

1 Print results
CALL WRRRN (’'AINV’, AINV)
END

Output

ATINV

1 0.500 0.000 0.000
2 1.000 -1.000 0.000
3 0.000 0.400 0.200

.0)

=RogueWave

LINRT

Chapter 1: Linear Systems

196

LSLCT

;%': ErMPI
FE CE caPABLE

more. ..
more. ..

Solves a complex triangular system of linear equations.

Required Arguments

A — Complex N by N matrix containing the coefficient matrix of the triangular linear system. (Input)
For a lower triangular system, only the lower triangle of A is referenced. For an upper triangular sys-
tem, only the upper triangle of A is referenced.

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Optional Arguments
N — Number of equations. (Input)
Default: N = size (3,2).
LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

IPATH — Path indicator. (Input)
IPATH = 1 means solve AX = B, A lower triangular
IPATH = 2 means solve AX = B, A upper triangular
TPATH = 3 means solve Al'x = B, A lower triangular

TPATH = 4 means solve A''X = B, A upper triangular
Default: TPATH = 1.

FORTRAN 90 Interface

Generic: CALL LSLCT (A, B, X [,...1)
Specific: The specific interface names are S_LSLCT and D_LSLCT.

FORTRAN 77 Interface
Single: CALL LSLCT (N, A, LDA, B, IPATH, X)
Double: The double precision name is DLSLCT.

= Rogygmﬂn\{q LSLCT Chapter 1: Linear Systems 197

ScalAPACK Interface
Generic: CALL LSLCT (A0,B0,X0 [,...1)
Specific: The specific interface names are S_LSLCT and D_LSLCT.
See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

Description

Routine LSLCT solves a system of linear algebraic equations with a complex triangular coefficient matrix.

LSLCT fails if the matrix A has a zero diagonal element, in which case A is singular. The underlying code is
based on either LINPACK , LAPACK, or ScaLAPACK code depending upon which supporting libraries are
used during linking. For a detailed explanation see Using ScaLAPACK, LAPACK, LINPACK, and EISPACK in

the Introduction section of this manual.

Comments

Informational error

Type Code Description
4 1 The input triangular matrix is singular. Some of its diagonal elements are
near zero.

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL complex local matrix containing the local portions of the distributed matrix A. A
contains the coefficient matrix of the triangular linear system. (Input)
For a lower triangular system, only the lower triangular part and diagonal of A are referenced. For an
upper triangular system, only the upper triangular part and diagonal of A are referenced.

B0 — Local complex vector of length MXLDA containing the local portions of the distributed vector B. B
contains the right-hand side of the linear system. (Input)

X0 — Local complex vector of length MXLDA containing the local portions of the distributed vector X. X
contains the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

Examples

Example

A system of three linear equations is solved. The coefficient matrix has lower triangular form and the right-
hand-side vector, b, has three elements.

= Rog':lgwgﬂ\\:er LSLCT Chapter 1: Linear Systems 198

USE LSLCT_ INT
USE WRCRN_INT
! Declare variables

INTEGER LDA

PARAMETER (LDA=3)

COMPLEX A(LDA,LDA), B(LDA), X(LDA)
! Set values for A and B
1
! A = (-3.0+2.01)
! (-2.0-1.01 0.0+6.01)
! (-1.0+3.01 1.0-5.0i -4.0+0.01i)
1
! B = (-13.0+0.0i -10.0-1.0i -11.0+3.01)
1

DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),&

(.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/
DATA B/ (-13.0,0.0), (-10.0,-1.0), (-11.0,3.0)/

1 Solve AX = B
CALL LSLCT (A, B, X)

! Print results
CALL WRCRN ('X’, X, 1, 3, 1)

END
Output
X
1 2 3
(3.000, 2.000) (1.000, 1.000) (2.000, 0.000)

ScaLAPACK Example

The same lower triangular matrix as in the example above is used in this distributed computing example.
The system of three linear equations is solved. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility
routines (see Chapter 11, “Utilities”) used to map and unmap arrays to and from the processor grid. They are
used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local
arrays.

USE MPI_SETUP_INT
USE LSLCT_INT
USE WRCRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables
INTEGER LDA, N, DESCA(9), DESCX(9)

INTEGER INFO, MXCOL, MXLDA
COMPLEX, ALLOCATABLE :: A(:,:), B(:), X(:)
COMPLEX, ALLOCATABLE :: AO(:,:), BO(:), X0(:)

PARAMETER (LDA=3, N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP ()

= Rogygmq\{q LSLCT Chapter 1: Linear Systems 199

IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), B(N), X(N))

Set values for A
A(l,:) = (/ (-3.0, 2.0), (0.0, 0.0), (0.0, 0.0)/)
A(2,:) = (/ (-2.0, -1.0), (0.0, 6.0), (0.0, 0.0)/)
A(3,:) = (/ (-1.0, 3.0), (1.0, -5.0), (-4.0, 0.0)/)
B = (/ (-13.0, 0.0), (-10.0, -1.0), (-11.0, 3.0)
ENDIF
Set up a 1D processor grid and define
its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
Get the array descriptor entities MXLDA,
and MXCOL

CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)
Set up the array descriptor
CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
Allocate space for the local arrays
ALLOCATE (A0 (MXLDA,MXCOL), BO(MXLDA), X0 (MXLDA))
Map input arrays to the processor grid
CALL SCALAPACK_MAP (A, DESCA, AO0)
CALL SCALAPACK_MAP (B, DESCX, BO0)
Solve AX = B
CALL LSLCT (A0, BO, XO0)
Unmap the results from the distributed
arrays back to a non-distributed array.
After the unmap, only Rank=0 has the full
array.
CALL SCALAPACK_UNMAP (X0, DESCX, X)
Print results.
Only Rank=0 has the solution, X.
IF (MP_RANK .EQ. 0) CALL WRCRN (‘'X’, X, 1, 3, 1)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, B, X)
DEALLOCATE (A0, BO, XO0)
Exit ScalLAPACK usage
CALL SCALAPACK_EXIT (MP_ICTXT)
Shut down MPI
MP_NPROCS = MP_SETUP(‘FINAL’)
END

Output

X
1 2 3

3.000, 2.000) (1.000, 1.000) (2.000, 0.000)

= R{nggmq\{q LSLCT Chapter 1: Linear Systems

200

LFCCT

;%': ErMPI
FE CE caPABLE

more. ..
more. ..

Estimates the condition number of a complex triangular matrix.

Required Arguments

A — Complex N by N matrix containing the triangular matrix. (Input)
For a lower triangular system, only the lower triangle of A is referenced. For an upper triangular sys-
tem, only the upper triangle of A is referenced.

RCOND — Scalar containing an estimate of the reciprocal of the L condition number of A. (Output)

Optional Arguments

N — Number of equations. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

IPATH — Path indicator. (Input)
IPATH = 1 means A is lower triangular.
IPATH = 2 means A is upper triangular.
Default: ITPATH =1.

FORTRAN 90 Interface

Generic: CALL LFCCT (A, RCOND [,...])
Specific: The specific interface names are S_LFCCT and D_LFCCT.

FORTRAN 77 Interface

Single: CALL LFCCT (N, A, LDA, IPATH, RCOND)
Double: The double precision name is DLFCCT.
ScalLAPACK Interface
Generic: CALL LFCCT (A0, RCOND [,...1)
Specific: The specific interface names are S_LFCCT and D_LFCCT.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

= Rogygmﬂn\{q LFCCT Chapter 1: Linear Systems

201

Description

Routine LFCCT estimates the condition number of a complex triangular matrix. The Licondition number of

the matrix A is defined to be k(A) = [|All4 AT 1- Since it is expensive to compute AT |l1, the condition num-

ber is only estimated. The estimation algorithm is the same as used by LINPACK and is described by Cline et
al. (1979). If the estimated condition number is greater than 1/¢& (where € is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the solution x. The
underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon which sup-
porting libraries are used during linking. For a detailed explanation see Using ScaLAPACK, LAPACK,
LINPACK, and EISPACK in the Introduction section of this manual.

Comments
1. Workspace may be explicitly provided, if desired, by use of L2CCT/DL2CCT. The reference is:
CALL L2CCT (N, A, LDA, IPATH, RCOND, CWK)
The additional argument is:
CWK — Complex work vector of length N.

2. Informational error

Type Code Description

3 1 The input triangular matrix is algorithmically singular.

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL complex local matrix containing the local portions of the distributed matrix A. A
contains the coefficient matrix of the triangular linear system. (Input)
For a lower triangular system, only the lower triangular part and diagonal of A are referenced. For an
upper triangular system, only the upper triangular part and diagonal of A are referenced.

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

Examples

Example

An estimate of the reciprocal condition number is computed for a 3 X 3 lower triangular coefficient matrix.

USE LFCCT_INT
USE UMACH_INT
! Declare variables
INTEGER LDA, N
PARAMETER (LDA=3)
INTEGER NOouT

= Rog':lgwgﬂ\\:er LFCCT Chapter 1: Linear Systems 202

REAL
COMPLEX

RCOND
A (LDA,LDA)

Set values for A

! A = (-3.0+2.01)
! (-2.0-1.01i 0.0+6.01)
! (-1.0+3.0i 1.0-5.01i -4.0+0.01)
1
DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),&
(1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/
|
! Compute the reciprocal condition
! number
CALL LFCCT (A, RCOND)
! Print results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
99999 FORMAT (' RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
END
Output

RCOND < 0.2

L1l Condition number < 10.0

ScaLAPACK Example

The same lower triangular matrix as in the example above is used in this distributed computing example. An
estimate of the reciprocal condition number is computed for a 3 X 3 lower triangular coefficient matrix.
SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Ultilities”) used to map
and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK
tools routine which initializes the descriptors for the local arrays.

USE MPI_SETUP_INT

USE LFCCT_INT
USE UMACH_INT

USE SCALAPACK_SUPPORT

IMPLICIT NONE

INCLUDE ‘mpif.h’

INTEGER
INTEGER
REAL

Declare

LDA, N, NOUT, DESCA(9)

INFO, MXCOL, MXLDA
RCOND

variables

COMPLEX, ALLOCATABLE A(:,:)
COMPLEX, ALLOCATABLE AO(:,:)
PARAMETER (LDA=3, N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N))
! Set values for A
A(l,:) = (/ (3.0, 2.0), (0.0, ©0.0), (0.0, 0.0)/)
A(2,:) = (/ (-2.0, -1.0), (0.0, 6.0), (0.0, 0.0)/)
= Rogygmq\{q LFCCT Chapter 1: Linear Systems 203

A(3,:) = (/ (1.0, 3.0), (1.0, -5.0), (-4.0, 0.0)/)

ENDIF
! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL

CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)
! Set up the array descriptor
CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (A0 (MXLDA,MXCOL))
! Map input arrays to the processor grid
CALL SCALAPACK_MAP (A, DESCA, A0)
! Compute the reciprocal condition
! number
CALL LFCCT (A0, RCOND)
1 Print results.
! Only Rank=0 has the solution, RCOND.
IF (MP_RANK .EQ. 0) THEN
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0EO0/RCOND
ENDIF
IF (MP_RANK .EQ. 0) DEALLOCATE (A)
DEALLOCATE (AO0)
! Exit ScalAPACK usage
CALL SCALAPACK_EXIT (MP_ICTXT)
! Shut down MPI
MP_NPROCS = MP_SETUP(‘'FINAL’)
99999 FORMAT ('’ RCOND = ’',F5.3,/,’ L1 Condition number = ’,F6.3)
END

Output

RCOND < 0.2
L1l Condition number < 10.0

= R{nggmq\{q LFCCT Chapter 1: Linear Systems

204

LFDCT

Computes the determinant of a complex triangular matrix.

Required Arguments

A — Complex N by N matrix containing the triangular matrix.(Input)

DET1 — Complex scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 < |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(a) = DET1 * 10PET2,

Optional Arguments

N — Number of equations. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

FORTRAN 90 Interface

Generic: CALL LFDCT (A, DET1, DET2 [,...])
Specific: The specific interface names are S_LFDCT and D_LFDCT.

FORTRAN 77 Interface

Single: CALL LFDCT (N, A, LDA, DET1, DET2)
Double: The double precision name is DLFDCT.
Description

Routine LFDCT computes the determinant of a complex triangular coefficient matrix. The determinant of a
triangular matrix is the product of the diagonal elements

detA = HN Aii
i=1

LFDCT is based on the LINPACK routine CTRDI; see Dongarra et al. (1979).

Comments

Informational error

Type Code Description

3 1 The input triangular matrix is singular.

= R{ngﬁ.lnewlg\{er LFDCT Chapter 1: Linear Systems

205

Example

The determinant is computed for a 3 X 3 complex lower triangular matrix.

USE LFDCT_INT
USE UMACH_INT

INTEGER
PARAMETER
INTEGER
REAL
COMPLEX

DATA A/ (-3.
(1.0,

CALL LFDCT

CALL UMACH

Declare variables

LDA, N
(LDA=3, N=3)
NOUT
DET2
A(LDA,LDA), DET1
Set values for A
A = (-3.0+2.01
(-2.0-1.01i 0.0+6.01
(-1.0+3.0i 1.0-5.01i -4.0+0.01)
0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,
-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)
Compute the determinant of A
(A, DET1, DET2)
Print results
(2, NOUT)

WRITE (NOUT,99999) DET1, DET2
99999 FORMAT ('’ The determinant of A is (’,F4.1,’,’,F4.1,") * 10**',&
F2.0)
END
Output
The determinant of A is (0.5, 0.7) * 10**2.
= R{ng?mq\{q LFDCT Chapter 1: Linear Systems 206

LINCT

Computes the inverse of a complex triangular matrixs.

Required Arguments

A — Complex N by N matrix containing the triangular matrix to be inverted. (Input)
For a lower triangular matrix, only the lower triangle of A is referenced. For an upper triangular
matrix, only the upper triangle of 2 is referenced.

AINV — Complex N by N matrix containing the inverse of A. (Output)
If A is lower triangular, AINV is also lower triangular. If A is upper triangular, AINV is also upper trian-
gular. If A is not needed, A and AINV can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

IPATH — Path indicator. (Input)
IPATH = 1 means A is lower triangular.

IPATH = 2 means A is upper triangular.
Default: TPATH = 1.

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDAINV = size (AINV,1).

FORTRAN 90 Interface

Generic: CALL LINCT (&, AINV [,...]1)
Specific: The specific interface names are S_LINCT and D_LINCT.

FORTRAN 77 Interface

Single: CALL LINCT (N, A,LDA, IPATH, AINV, LDAINV)
Double: The double precision name is DLINCT.
Description

Routine LINCT computes the inverse of a complex triangular matrix. It fails if A has a zero diagonal element.

= Rog':lgwgﬂ\\:er LINCT Chapter 1: Linear Systems 207

Comments

Informational error

Description

close to zero.

Type Code
4 1
Example

The inverse is computed for a 3 X 3 lower triangular matrix.

USE LINCT_INT
USE WRCRN_INT

INTEGER LDA
PARAMETER (LDA=3)
COMPLEX A (LDA,LDA),

Declare variables

AINV (LDA,LDA)

Set values for A

The input triangular matrix is singular. Some of its diagonal elements are

! A = (-3.0+2.01)
! (-2.0-1.01i 0.0+6.01)
! (-1.0+3.0i 1.0-5.0i -4.0+0.01)
1
DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),&
(1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/
1
! Compute the inverse of A
CALL LINCT (A, AINV)
! Print results
CALL WRCRN (’'AINV’, AINV)
END
Output
ATNV
1 2 3
1 (-0.2308,-0.1538) (0.0000, 0.0000) (0.0000, 0.0000)
2 (-0.0897, 0.0513) (0.0000,-0.1667) (0.0000, 0.0000)
3 (0.2147,-0.0096) (-0.2083,-0.0417) (-0.2500, 0.0000)
= Rogygmq\{q LINCT Chapter 1: Linear Systems 208

LSADS

;%': ErMPI
FE CE caPABLE

more. ..
more. ..

Solves a real symmetric positive definite system of linear equations with iterative refinement.

Required Arguments

A — N by N matrix containing the coefficient matrix of the symmetric positive definite linear system.
(Input)
Only the upper triangle of 2 is referenced.

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

FORTRAN 90 Interface

Generic: CALL LSADS (A,B,X [,...1)
Specific: The specific interface names are S_LSADS and D_LSADS.

FORTRAN 77 Interface
Single: CALL LSADS (N, A, LDA, B, X)
Double: The double precision name is DLSADS.

ScalLAPACK Interface

Generic: CALL LSADS (A0,B0,X0 [,...1)
Specific: The specific interface names are S_LSADS and D_LSADS.
See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

= Rogygmﬂn\{q LSADS Chapter 1: Linear Systems

209

Description

Routine LSADS solves a system of linear algebraic equations having a real symmetric positive definite coeffi-
cient matrix. The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending
upon which supporting libraries are used during linking. For a detailed explanation see Using ScaLAPACK,
LAPACK, LINPACK, and EISPACK in the Introduction section of this manual. LSADS first uses the routine

LFCDS to compute an RTR Cholesky factorization of the coefficient matrix and to estimate the condition
number of the matrix. The matrix R is upper triangular. The solution of the linear system is then found using
the iterative refinement routine LFIDS. LSADS fails if any submatrix of R is not positive definite, if R has a
zero diagonal element or if the iterative refinement algorithm fails to converge. These errors occur only if A is
either very close to a singular matrix or a matrix which is not positive definite. If the estimated condition
number is greater than 1/& (where € is machine precision), a warning error is issued. This indicates that very
small changes in A can cause very large changes in the solution x. Iterative refinement can sometimes find
the solution to such a system. LSADS solves the problem that is represented in the computer; however, this
problem may differ from the problem whose solution is desired.

Comments
1. Workspace may be explicitly provided, if desired, by use of L2ADS/DL2ADS. The reference is:
CALL L2ADS (N, A, LDA, B, X, FACT, WK)
The additional arguments are as follows:
FACT— Work vector of length N? containing the RTR factorization of A on output.
WK — Work vector of length N.

2. Informational errors

Type Code Description
3 1 The input matrix is too ill-conditioned. The solution might not be accurate.
4 2 The input matrix is not positive definite.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency) problems. In
routine L2ADS the leading dimension of FACT is increased by IVAL(3) when N is a multiple of
IVAL(4). The values IVAL(3) and IVAL(4) are temporarily replaced by IVAL(1) and IVAL(2),
respectively, in LSADS. Additional memory allocation for FACT and option value restoration are
done automatically in LSADS. Users directly calling L2ADS can allocate additional space for
FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no longer cause inefficiencies.
There is no requirement that users change existing applications that use LSADS or L2ADS.
Default values for the option are IVAL(*) =1, 16,0, 1.

17 This option has two values that determine if the L; condition number is to be computed. Rou-

tine LSADS temporarily replaces TVAL(2) by IVAL(1). The routine L2CDS computes the
condition number if IVAL(2) = 2. Otherwise L2CDS skips this computation. LSADS restores the
option. Default values for the option are IVAL(*) =1, 2.

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

= Rog':lgwgﬂ\\:er LSADS Chapter 1: Linear Systems 210

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A. A contains

the coefficient matrix of the symmetric positive definite linear system. (Input)

B0 — Local vector of length MXLDA containing the local portions of the distributed vector B. B contains

the right-hand side of the linear system. (Input)

X0 — Local vector of length MXLDA containing the local portions of the distributed vector X. X contains

the solution to the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the routine. In the

argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example

below.
Examples

Example

A system of three linear equations is solved. The coefficient matrix has real positive definite form and the

right-hand-side vector b has three elements.

USE LSADS_INT
USE WRRRN_INT
! Declare variables

INTEGER LDA, N

PARAMETER (LDA=3, N=3)

REAL A(LDA,LDA), B(N), X(N)
i
! Set values for A and B
|
! A= (1.0 -3.0 2.0)
! (-3.0 10.0 -5.0)
! (2.0 -5.0 6.0)
i
! B = (27.0 -78.0 64.0)
|

DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/

DATA B/27.0, -78.0, 64.0/
i

CALL LSADS (A, B, X)
! Print results

CALL WRRRN ('X’, X, 1, N, 1)
!

END
Output

X
1 2 3
1.000 -4.000 7.000
= Rogygmﬂn\{q LSADS Chapter 1: Linear Systems 211

ScaLAPACK Example

The same system of three linear equations is solved as a distributed computing example. The coefficient
matrix has real positive definite form and the right-hand-side vector b has three elements. SCALAPACK_MAP
and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Utilities”) used to map and unmap arrays
to and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK tools routine
which initializes the descriptors for the local arrays.

USE MPI_SETUP_INT
USE LSADS_INT
USE WRRRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER LDA, N, DESCA(9), DESCX(9)

INTEGER INFO, MXCOL, MXLDA

REAL, ALLOCATABLE :: A(:,:), B(:), X(:)
REAL, ALLOCATABLE :: AO(:,:), BO(:), XO(:)

PARAMETER (LDA=3, N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), B(N), X(N))
! Set values for A and B

A(l,:) = (/ 1.0, =3.0, 2.0/)
A(2,:) = (/ -3.0, 10.0, -5.0/)
A(3,:) = (/ 2.0, -5.0, 6.0/)
!
B = (/27.0, -78.0, 64.0/)
ENDIF

! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (A0 (MXLDA,MXCOL), BO(MXLDA), X0 (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK_MAP (A, DESCA, A0)
CALL SCALAPACK_MAP (B, DESCX, BO0)
! Solve the system of equations
CALL LSADS (A0, BO, X0)
! Unmap the results from the distributed
! arrays back to a non-distributed array.
! After the unmap, only Rank=0 has the full
! array.
CALL SCALAPACK_UNMAP (X0, DESCX, X)
1 Print results.
! Only Rank=0 has the solution, X.
IF (MP_RANK .EQ. 0)CALL WRRRN (’'X’', X, 1, N, 1)

= Rogygmq\{q LSADS Chapter 1: Linear Systems

212

IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X)

DEALLOCATE (A0, BO, XO0)
! Exit ScaLAPACK usage

CALL SCALAPACK_EXIT (MP_ICTXT)
! Shut down MPI

MP_NPROCS = MP_SETUP(‘FINAL’)
END

Output

X
1 2 3
1.000 -4.000 7.000

= R{ng?mq\{q LSADS Chapter 1: Linear Systems 213

LSLDS

% rMPI
PE CE cAPABLE

more. ..
more. ..

Solves a real symmetric positive definite system of linear equations without iterative refinement .

Required Arguments

A — N by N matrix containing the coefficient matrix of the symmetric positive definite linear system.
(Input)
Only the upper triangle of A is referenced.

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

FORTRAN 90 Interface

Generic: CALL LSLDS (A,B,X [,...]1)
Specific: The specific interface names are S_LSLDS and D_LSLDS.

FORTRAN 77 Interface
Single: CALL LSLDS (N, A, LDA, B, X)
Double: The double precision name is DLSLDS.

ScaLAPACK Interface

Generic: CALL LSLDS (A0,B0,X0 [,...1)
Specific: The specific interface names are S_LSLDS and D_LSLDS.
See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

= Rogygmq\{q LSLDS Chapter 1: Linear Systems

214

Description

Routine LSLDS solves a system of linear algebraic equations having a real symmetric positive definite coeffi-
cient matrix. The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending
upon which supporting libraries are used during linking. For a detailed explanation see Using ScaLAPACK,
LAPACK, LINPACK, and EISPACK in the Introduction section of this manual. LSLDS first uses the routine
LFCDS to compute an R'R Cholesky factorization of the coefficient matrix and to estimate the condition
number of the matrix. The matrix R is upper triangular. The solution of the linear system is then found using
the routine LFSDS. LSLDS fails if any submatrix of R is not positive definite or if R has a zero diagonal ele-
ment. These errors occur only if A either is very close to a singular matrix or to a matrix which is not positive
definite. If the estimated condition number is greater than 1/¢& (where € is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the solution x. If
the coefficient matrix is ill-conditioned, it is recommended that LSADS be used.

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LDS/DL2LDS. The reference is:
CALL L2LDS (N, A, LDA, B, X, FACT, WK)

The additional arguments are as follows:

FACT —N x N work array containing the RTR factorization of A on output. If Aisnot needed, A can
share the same storage locations as FACT.
WK — Work vector of length N.
2. Informational errors

Type Code Description
3 1 The input matrix is too ill-conditioned. The solution might not be accurate.
4 2 The input matrix is not positive definite.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency) problems. In
routine L2LDS the leading dimension of FACT is increased by IVAL(3) when N is a multiple of
IVAL(4). The values IVAL(3) and IVAL(4) are temporarily replaced by IVAL(1) and IVAL(2),
respectively, in LSLDS. Additional memory allocation for FACT and option value restoration are
done automatically in LSLDS. Users directly calling L2LDS can allocate additional space for
FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no longer cause inefficiencies.
There is no requirement that users change existing applications that use LSLDS or L2LDS.
Default values for the option are IVAL(*) =1, 16, 0, 1.

17 This option has two values that determine if the L; condition number is to be computed. Routine

LSLDS temporarily replaces IVAL(2) by IVAL(1). The routine L2CDS computes the condition
number if TVAL(2) = 2. Otherwise L2CDS skips this computation. LSLDS restores the option.
Default values for the option are IVAL(*) =1, 2.

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

= Rog':lgwgﬂ\\:er LSLDS Chapter 1: Linear Systems 215

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A. A contains

the coefficient matrix of the symmetric positive definite linear system. (Input)

B0 — Local vector of length MXLDA containing the local portions of the distributed vector B. B contains

the right-hand side of the linear system. (Input)

X0 — Local vector of length MXLDA containing the local portions of the distributed vector X. X contains

the solution to the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the routine. In the

argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example

below.
Examples

Example

A system of three linear equations is solved. The coefficient matrix has real positive definite form and the

right-hand-side vector b has three elements.

USE LSLDS_INT
USE WRRRN_INT
! Declare variables

INTEGER LDA, N

PARAMETER (LDA=3, N=3)

REAL A(LDA,LDA), B(N), X(N)
I
! Set values for A and B
!
! A= (1.0 -3.0 2.0)
! (-3.0 10.0 -5.0)
! (2.0 -5.0 6.0)
I
! B = (27.0-78.0 64.0)
!

DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/

DATA B/27.0, -78.0, 64.0/
1

CALL LSLDS (A, B, X)
! Print results

CALL WRRRN ('X’, X, 1, N, 1)
1

END
Output

X
1 2 3
1.000 -4.000 7.000
= Rogygmﬂn\{q LSLDS Chapter 1: Linear Systems 216

ScaLAPACK Example

The same system of three linear equations is solved as a distributed computing example. The coefficient
matrix has real positive definite form and the right-hand-side vector b has three elements. SCALAPACK_MAP
and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Utilities”) used to map and unmap arrays
to and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK tools routine
which initializes the descriptors for the local arrays.

USE MPI_SETUP_INT
USE LSLDS_INT
USE WRRRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER LDA, N, DESCA(9), DESCX(9)

INTEGER INFO, MXCOL, MXLDA

REAL, ALLOCATABLE :: A(:,:), B(:), X(:)
REAL, ALLOCATABLE :: AO(:,:), BO(:), XO(:)

PARAMETER (LDA=3, N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), B(N), X(N))
! Set values for A and B

A(l,:) = (/ 1.0, =-3.0, 2.0/)
A(2,:) = (/ -3.0, 10.0, -5.0/)
A(3,:) = (/ 2.0, -5.0, 6.0/)

B = (/27.0, -78.0, 64.0/)

ENDIF
! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL

CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCX, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (A0 (MXLDA,MXCOL), BO(MXLDA), XO0(MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK_MAP (A, DESCA, A0)
CALL SCALAPACK_MAP (B, DESCX, BO0)
! Solve the system of equations
CALL LSLDS (A0, BO, X0)
! Unmap the results from the distributed
! arrays back to a non-distributed array.
! After the unmap, only Rank=0 has the full
! array.
CALL SCALAPACK_UNMAP (X0, DESCX, X)
! Print results.
! Only Rank=0 has the solution, X.

= Rogygmq\{q LSLDS Chapter 1: Linear Systems

217

IF (MP_RANK .EQ. 0)CALL WRRRN (’'X’', X, 1, N, 1)
! Exit ScalAPACK usage

CALL SCALAPACK_EXIT (MP_ICTXT)
! Shut down MPI

MP_NPROCS = MP_SETUP (‘FINAL’)

END
Output
X
1 2 3
1.000 -4.000 7.000

= R{ng?mg\{q LSLDS Chapter 1: Linear Systems 218

LFCDS

% ErMPI
FE CE caPABLE

more. ..
more. ..

Computes the RTR Cholesky factorization of a real symmetric positive definite matrix and estimate its L;
condition number.

Required Arguments
A — N by N symmetric positive definite matrix to be factored. (Input)
Only the upper triangle of 2 is referenced.

FACT — N by N matrix containing the upper triangular matrix R of the factorization of A in the upper trian-
gular part. (Output)
Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share the same stor-
age locations.

RCOND — Scalar containing an estimate of the reciprocal of the L condition number of A. (Output)

Optional Arguments

N — Order of the matrix. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFCDS (A, FACT,RCOND [, ...])
Specific: The specific interface names are S_LFCDS and D_LFCDS.

FORTRAN 77 Interface

Single: CALL LFCDS (N, A, LDA, FACT, LDFACT, RCOND)
Double: The double precision name is DLFCDS.

= Rogygmq\{q LFCDS Chapter 1: Linear Systems 219

ScaLAPACK Interface

Generic: CALL LFCDS (A0, FACTO, RCOND [, ...1)
Specific: The specific interface names are S_LFCDS and D_LFCDS.
See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

Description

Routine LFCDS computes an R'R Cholesky factorization and estimates the condition number of a real sym-
metric positive definite coefficient matrix. The matrix R is upper triangular.

The Lcondition number of the matrix A is defined to be k(A) = [|All; A 1 Since it is expensive to compute

A7) 1, the condition number is only estimated. The estimation algorithm is the same as used by LINPACK
and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/& (where € is machine precision), a warning error is
issued. This indicates that very small changes in A can cause very large changes in the solution x. Iterative
refinement can sometimes find the solution to such a system.

LFCDS fails if any submatrix of R is not positive definite or if R has a zero diagonal element. These errors
occur only if A is very close to a singular matrix or to a matrix which is not positive definite.

The RTR factors are returned in a form that is compatible with routines LFTDS, LFSDS and LFDDS. To solve
systems of equations with multiple right-hand-side vectors, use LFCDS followed by either LFIDS or LFSDS
called once for each right-hand side. The routine LFDDS can be called to compute the determinant of the coef-
ficient matrix after LFCDS has performed the factorization.

Comments
1. Workspace may be explicitly provided, if desired, by use of L2CDS/DL2CDS. The reference is:
CALL L2CDS (N, A, LDA, FACT, LDFACT, RCOND, WK)
The additional argument is:
WK — Work vector of length N.
2. Informational errors

Type Code Description
3 1 The input matrix is algorithmically singular.
4 2 The input matrix is not positive definite.

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A. A contains
the symmetric positive definite matrix to be factored. (Input)

= Rog':lgwgﬂ\\:er LFCDS Chapter 1: Linear Systems 220

FACT0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix FACT.
FACT contains the upper triangular matrix R of the factorization of A in the upper triangular part.
(Output)

Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share the same stor-
age locations.

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

Examples

Example

The inverse of a 3 X 3 matrix is computed. LFCDS is called to factor the matrix and to check for nonpositive
definiteness or ill-conditioning. LFIDS is called to determine the columns of the inverse.

USE LFCDS_INT
USE UMACH_INT
USE WRRRN_INT
USE LFIDS_INT
! Declare variables

INTEGER LDA, LDFACT, N, NOUT
PARAMETER (LDA=3, LDFACT=3, N=3)
REAL A(LDA,LDA), AINV(LDA,LDA), RCOND, FACT(LDFACT,LDFACT), &

RES(N), RJ(N)

! Set values for A

! A= (1.0 -=-3.0 2.0)
! (-3.0 10.0 -5.0)
! (2.0 =-5.0 6.0)

DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
! Factor the matrix A

CALL LFCDS (A, FACT, RCOND)
! Set up the columns of the identity
! matrix one at a time in RJ

RJ = 0.0EO

DO 10 J=1, N

RJ(J) = 1.0E0
! RJ is the J-th column of the identity
! matrix so the following LFIDS
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
CALL LFIDS (A, FACT, RJ, AINV(:,J), RES)
RJ(J) = 0.0EO

10 CONTINUE
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0EO0/RCOND

= Rogygmq\{q LFCDS Chapter 1: Linear Systems 221

CALL WRRRN (’AINV’, AINV)
99999 FORMAT (' RCOND = ’,F5.
END
Output

RCOND < 0.005
L1l Condition number < 875.0

AINV
1 2 3
1 35.00 8.00 -5.00
2 8.00 2.00 -1.00
3 -5.00 -1.00 1.00
ScaLAPACK Example

3.7.7

L1 Condition number = ’,F9.3)

The inverse of the same 3 X 3 matrix is computed as a distributed example. LFCDS is called to factor the
matrix and to check for singularity or ill-conditioning. LFIDS is called to determine the columns of the

inverse. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Ultilities”) used

to map and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a
ScaLAPACK tools routine which initializes the descriptors for the local arrays.

USE MPI_SETUP_INT
USE LFCDS_INT

USE UMACH_INT

USE LFIDS_INT

USE WRRRN_INT

USE SCALAPACK_SUPPORT
IMPLICIT NONE

INCLUDE ‘mpif.h’

Declare variables

INTEGER J, LDA, N, NOUT, DESCA(9), DESCL(9)

INTEGER INFO, MXCOL, MXLDA

REAL, ALLOCATABLE A(:,:), AINV(:,:), X0(:), RJI(:)
REAL, ALLOCATABLE AO(:,:), FACTO(:,:), RESO(:), RJO(:)

REAL
PARAMETER

RCOND

(LDA=3, N=3)

MP_NPROCS = MP_SETUP ()

Set up for MPI

IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), AINV(LDA,N))
! Set values for A
A(l,:) = (/ 1.0, -3.0, 2.0/)
A(2,:) = (/ -3.0, 10.0, -5.0/)
A(3,:) = (/ 2.0, -5.0, 6.0/)
ENDIF

CALL SCALAPACK_SETUP(N, N,

Set up a 1D processor grid and define

its context ID, MP_ICTXT

.TRUE., .TRUE.)
Get the array descriptor entities MXLDA,
and MXCOL

=RogueWave

LFCDS Chapter 1: Linear Systems

222

CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)
Set up the array descriptors

CALL DESCINIT (DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
Allocate space for the local arrays
ALLOCATE (AQO (MXLDA, MXCOL) , X0 (MXLDA) ,FACTO (MXLDA,MXCOL), RJ(N), &
RJO (MXLDA), RESO (MXLDA))
Map input array to the processor grid
CALL SCALAPACK_MAP (A, DESCA, A0)
Call the factorization routine
CALL LFCDS (A0, FACTO, RCOND)
Print the reciprocal condition number
and the L1 condition number
IF (MP_RANK .EQ. 0) THEN
CALL UMACH (2, NOUT)
WRITE (NOUT,99998) RCOND, 1.0EO0/RCOND
ENDIF
Set up the columns of the identity
matrix one at a time in RJ

RJ = 0.0EO
DO 10 J=1, N

RJ(J) = 1.0
! Map input
CALL SCALAPACK_MAP(RJ, DESCL, RJO)
! RJ is the
! matrix so

! reference

array to the processor grid

J-th column of the identity
the following LFIDS
computes the J-th column of

! the inverse of A
CALL LFIDS (A0, FACTO, RJO, X0, RESO)

RJ(J) = 0.0

CALL SCALAPACK_UNMAP (X0, DESCL, AINV(:,J))

10 CONTINUE

! Print results.
! Only Rank=0 has the solution, AINV.

IF (MP_RANK.EQ.0) CALL WRRRN (’AINV’,

AINV)

IF (MP_RANK .EQ. 0) DEALLOCATE (A, AINV)

DEALLOCATE (A0, FACTO, RJ, RJO, RESO,

X0)

! Exit ScalAPACK usage

CALL SCALAPACK_EXIT (MP_ICTXT)

! Shut down MPI

MP_NPROCS = MP_SETUP(‘FINAL’)
99998 FORMAT ('’ RCOND = ',F5.3,/,'
END

Output

RCOND < 0.005
L1l Condition number < 875.0

AINV
1 2 3
1 35.00 8.00 -5.00
2 8.00 2.00 -1.00
3 -5.00 -1.00 1.00

L1l Condition number = ’,F9.3)

=RogueWave

LFCDS Chapter 1: Linear Systems

223

LFTDS

;%}' rMPI
PE CE cAPABLE

more. ..
more. ..

Computes the RTR Cholesky factorization of a real symmetric positive definite matrix.

Required Arguments

A — N by N symmetric positive definite matrix to be factored. (Input)
Only the upper triangle of A is referenced.

FACT — N by N matrix containing the upper triangular matrix R of the factorization of A in the upper trian-

gle, and the lower triangular matrix R in the lower triangle. (Output)
If A is not needed, A and FACT can share the same storage location.

Optional Arguments

N — Order of the matrix. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFTDS (A, FACT [,...])
Specific: The specific interface names are S_LFTDS and D_LFTDS.

FORTRAN 77 Interface

Single: CALL LFTDS (N, A, LDA, FACT, LDFACT)
Double: The double precision name is DLFTDS.

ScalLAPACK Interface
Generic: CALL LFTDS (A0, FACTO [,...1)
Specific: The specific interface names are S_LFTDS and D_LFTDS.
See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

= Rogygmﬂn\{q LFTDS Chapter 1: Linear Systems 224

Description

Routine LFTDS computes an R'R Cholesky factorization of a real symmetric positive definite coefficient
matrix. The matrix R is upper triangular.

LFTDS fails if any submatrix of R is not positive definite or if R has a zero diagonal element. These errors
occur only if A is very close to a singular matrix or to a matrix which is not positive definite.

The R'R factors are returned in a form that is compatible with routines LFIDS, LFSDS and LFDDS. To solve
systems of equations with multiple right-hand-side vectors, use LFTDS followed by either LFIDS or LFSDS
called once for each right-hand side. The routine LFDDS can be called to compute the determinant of the coef-
ficient matrix after LFTDS has performed the factorization.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon which
supporting libraries are used during linking. For a detailed explanation see Using ScaLAPACK, LAPACK, LIN-
PACK, and EISPACK in the Introduction section of this manual.

Comments

Informational error

Type Code Description

4 2 The input matrix is not positive definite.

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:
A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A. A contains
the symmetric positive definite matrix to be factored. (Input)

FACT0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix FACT.
FACT contains the upper triangular matrix R of the factorization of A in the upper triangular part.
(Output)

Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share the same stor-
age locations.

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

Examples

Example

The inverse of a 3 X 3 matrix is computed. LFTDS is called to factor the matrix and to check for nonpositive
definiteness. LFSDS is called to determine the columns of the inverse.

USE LFTDS_INT

= ROQQ?WQ\{EF LFTDS Chapter 1: Linear Systems 225

USE LFSDS_INT
USE WRRRN_INT
Declare variables

INTEGER LDA, LDFACT, N
PARAMETER (LDA=3, LDFACT=3, N=3)
REAL A(LDA,LDA), AINV(LDA,LDA), FACT(LDFACT,LDFACT), RJ(N)
Set values for A
A= (1.0 -3.0 2.0)
(-3.0 10.0 -5.0)
(2.0 -=5.0 6.0)

DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
Factor the matrix A

CALL LFTDS (A, FACT)
Set up the columns of the identity
matrix one at a time in RJ

RJ = 0.0EO0
DO 10 J=1, N
RJ(J) = 1.0EO
RJ is the J-th column of the identity
matrix so the following LFSDS
reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
CALL LFSDS (FACT, RJ, AINV(:,J))
RJ(J) = 0.0EO

10 CONTINUE
! Print the results
CALL WRRRN (’'AINV’, AINV)

END

Output
AINV

1 2 3
1 35.00 8.00 -5.00
2 8.00 2.00 -1.00
3 -5.00 -1.00 1.00
ScaLAPACK Example

The inverse of the same 3 X 3 matrix is computed as a distributed example. LFTDS is called to factor the
matrix and to check for nonpositive definiteness. LFSDS is called to determine the columns of the inverse.

SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Ultilities”) used to map
and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK

tools routine which initializes the descriptors for the local arrays.

USE MPI_SETUP_INT
USE LFTDS_INT
USE UMACH_INT
USE LFSDS_INT

=RogueWave

LFTDS

Chapter 1: Linear Systems

226

10

USE WRRRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
Declare variables

INTEGER J, LDA, N, DESCA(9), DESCL(9)

INTEGER INFO, MXCOL, MXLDA

REAL, ALLOCATABLE :: A(:,:), AINV(:,:), X0(:)

REAL, ALLOCATABLE :: AO(:,:), FACTO(:,:), RESO(:), RJO(:)

PARAMETER (LDA=3, N=3)
Set up for MPI
MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), AINV(LDA,N))
Set values for A

A(l,:) = (/ 1.0, =-3.0, 2.0/)
A(2,:) = (/ -3.0, 10.0, -5.0/)
A(3,:) = (/ 2.0, -5.0, 6.0/)
ENDIF
Set up a 1D processor grid and define
its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
Get the array descriptor entities MXLDA,
and MXCOL

CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)
Set up the array descriptors
CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
Allocate space for the local arrays
ALLOCATE (A0 (MXLDA,MXCOL) , X0 (MXLDA) ,FACTO (MXLDA,MXCOL), RJ(N), &
RJO (MXLDA), RESO(MXLDA), IPVTO (MXLDA))
Map input arrays to the processor grid
CALL SCALAPACK_MAP (A, DESCA, AO0)
Call the factorization routine
CALL LFTDS (A0, FACTO)
Set up the columns of the identity
matrix one at a time in RJ
RJ = 0.0EO
DO 10 J=1, N
RJ(J) = 1.0
CALL SCALAPACK_MAP(RJ, DESCL, RJO)
RJ is the J-th column of the identity
matrix so the following LFSDS
reference computes the J-th column of
the inverse of A
CALL LFSDS (FACTO, RJO, XO0)

RJ(J) = 0.0
CALL SCALAPACK_UNMAP (X0, DESCL, AINV(:,J))
CONTINUE

Print results.

Only Rank=0 has the solution, AINV.
IF (MP_RANK.EQ.O0) CALL WRRRN (’AINV’, AINV)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, AINV)
DEALLOCATE (A0, FACTO, IPVTO, RJ, RJO, RESO, XO0)

= R{nggmq\{q LFTDS Chapter 1: Linear Systems

227

! Exit ScaLAPACK usage
CALL SCALAPACK_EXIT (MP_ICTXT)

! Shut down MPI
MP_NPROCS = MP_SETUP(‘'FINAL’)
END

Output

RCOND < 0.005
L1 Condition number < 875.0

AINV
1 2 3
1 35.00 8.00 -5.00
8.00 2.00 -1.00
3 -5.00 -1.00 1.00

[\S)

= R{ng?mq\{q LFTDS Chapter 1: Linear Systems 228

LFSDS

;%': ErMPI
FE CE caPABLE

more. ..
more. ..

Solves a real symmetric positive definite system of linear equations given the R R Cholesky factorization of
the coefficient matrix.

Required Arguments
FACT — N by N matrix containing the R R factorization of the coefficient matrix A as output from routine
LFCDS/DLFCDS or LFTDS/DLFTDS. (Input)
B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)
Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFSDS (FACT,B, X [,...]1)
Specific: The specific interface names are S_LFSDS and D_LFSDS.

FORTRAN 77 Interface

Single: CALL LFSDS (N, FACT, LDFACT, B, X)
Double: The double precision name is DLFSDS.
ScaLAPACK Interface
Generic: CALL LFSDS (FACTO,BO0,X0 [,...1)
Specific: The specific interface names are S_LFSDS and D_LFSDS.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

= Rogygmﬂn\{q LFSDS Chapter 1: Linear Systems

229

Description

Routine LFSDS computes the solution for a system of linear algebraic equations having a real symmetric pos-

itive definite coefficient matrix. To compute the solution, the coefficient matrix must first undergo an RTR
factorization. This may be done by calling either LFCDS or LFTDS. R is an upper triangular matrix.

The solution to Ax = b is found by solving the triangular systems RTy = b and Rx = y/.

LFSDS and LFIDS both solve a linear system given its R R factorization. LFIDS generally takes more time
and produces a more accurate answer than LFSDS. Each iteration of the iterative refinement algorithm used
by LFIDS calls LFSDS.

The underlying code is based on either LINPACK, LAPACK, or ScaLAPACK code depending upon which
supporting libraries are used during linking. For a detailed explanation see Using ScaLAPACK, LAPACK, LIN-
PACK, and EISPACK in the Introduction section of this manual.

Comments

Informational error

Type Code Description

4 1 The input matrix is singular.

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

FACT0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix FACT.

FACT contains the RT R factorization of the coefficient matrix A as output from routine
LFCDS/DLFCDS or LFTDS/DLFTDS. (Input)

B0 — Local vector of length MXLDA containing the local portions of the distributed vector B. B contains
the right-hand side of the linear system. (Input)

X0 — Local vector of length MXLDA containing the local portions of the distributed vector X. X contains
the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

= ROQQ?WQ\{EF LFSDS Chapter 1: Linear Systems 230

Examples

Example

A set of linear systems is solved successively. LFTDS is called to factor the coefficient matrix. LFSDS is called
to compute the four solutions for the four right-hand sides. In this case the coefficient matrix is assumed to be
well-conditioned and correctly scaled. Otherwise, it would be better to call LFCDS to perform the factoriza-

tion, and LFIDS to compute the solutions.

USE LFSDS_INT
USE LFTDS_INT
USE WRRRN_INT

! Declare variables

INTEGER LDA, LDFACT, N
PARAMETER (LDA=3, LDFACT=3, N=3)
REAL A(LDA,LDA), B(N,4), FACT(LDFACT,LDFACT), X(N,4)
I
! Set values for A and B
1
! A= (1.0 -3.0 2.0)
! (-3.0 10.0 -5.0)
! (2.0 -5.0 6.0)
I
! B=(-1.0 3.6 -8.0 -9.4)
! (-3.0 -4.2 11.0 17.6)
! (-3.0 -5.2 -6.0 -23.4)
!
DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
DATA B/-1.0, -3.0, -3.0, 3.6, -4.2, -5.2, -8.0, 11.0, -6.0,&
-9.4, 17.6, -23.4/
! Factor the matrix A
CALL LFTDS (A, FACT)
! Compute the solutions
DO 10 1I=1, 4
CALL LFSDS (FACT, B(:,I), X(:,I))
10 CONTINUE
1 Print solutions
CALL WRRRN (’'The solution vectors are’, X)
!
END
Output
The solution vectors are
1 2 3 4
1 -44.0 118.4 -162.0 -71.2
2 -11.0 25.6 -36.0 -16.6
3 5.0 -19.0 23.0 6.0
= Rogygmq\{q LFSDS Chapter 1: Linear Systems 231

ScaLAPACK Example

The same set of linear systems is solved successively as a distributed example. Routine LFTDS is called to fac-
tor the coefficient matrix. The routine LFSDS is called to compute the four solutions for the four right-hand
sides. In this case, the coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it
would be better to call LFCDS to perform the factorization, and LFIDS to compute the solutions.
SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Ultilities”) used to map
and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK
tools routine which initializes the descriptors for the local arrays.

USE MPI_SETUP_INT
USE LFSDS_INT
USE LFTDS_INT
USE WRRRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER J, LDA, N, DESCA(9), DESCL(9)

INTEGER INFO, MXCOL, MXLDA

REAL, ALLOCATABLE :: A(:,:), B(:,:), X(:,:), X0(:)
REAL, ALLOCATABLE :: AO(:,:), FACTO(:,:), BO(:)

PARAMETER (LDA=3, N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), B(N,4), X(N,4))
! Set values for A and B

A(l1,:) = (/ 1.0, =-3.0, 2.0/)
A(2,:) = (/ -3.0, 10.0, -5.0/)
A(3,:) = (/ 2.0, -5.0, 6.0/)
1
B(1,:) = (/ -1.0, 3.6, -8.0, -9.4/)
B(2,:) = (/ -3.0, -4.2, 11.0, 17.6/)
B(3,:) = (/ -3.0, -5.2, -6.0, -23.4/)
ENDIF

! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (A0 (MXLDA, MXCOL) , X0 (MXLDA) ,FACTO (MXLDA,MXCOL), BO(MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK_MAP (A, DESCA, A0)
! Call the factorization routine
CALL LFTDS (A0, FACTO)
! Set up the columns of the B
! matrix one at a time in XO
DO 10 J=1, 4

= Rogygmq\{q LFSDS Chapter 1: Linear Systems

232

CALL SCALAPACK_MAP(B(:,j), DESCL, BO)
! Solve for the J-th column of X
CALL LFSDS (FACTO, BO, X0)
CALL SCALAPACK_UNMAP (X0, DESCL, X(:,dJ))
10 CONTINUE
! Print results.
! Only Rank=0 has the solution, X.
IF (MP_RANK.EQ.0) CALL WRRRN (’The solution vectors are’, X)
IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X)
DEALLOCATE (A0, FACTO, BO, XO0)
! Exit Scalapack usage
CALL SCALAPACK_EXIT (MP_ICTXT)
! Shut down MPI
MP_NPROCS = MP_SETUP(‘FINAL’)

END
Output
The solution vectors are
1 2 3 4
1 -44.0 118.4 -162.0 -71.2
2 -11.0 25.6 -36.0 -16.6
3 5.0 -19.0 23.0 6.0

= Rogypmq\{q LFSDS Chapter 1: Linear Systems 233

LFIDS

;%}' rMPI
PE CE cAPABLE

more. ..
more. ..

Uses iterative refinement to improve the solution of a real symmetric positive definite system of linear
equations.

Required Arguments

A — N by N matrix containing the symmetric positive definite coefficient matrix of the linear system.
(Input)
Only the upper triangle of A is referenced.

FACT — N by N matrix containing the RT R factorization of the coefficient matrix A as output from routine
LFCDS/DLFCDS or LFTDS/DLFTDS. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

RES — Vector of length N containing the residual vector at the improved solution. (Output)

Optional Arguments

N — Number of equations. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimesion statement of the calling program.
(Input)
Default: LDA = size (3,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFIDS (A, FACT,B,X, RES [,...])
Specific: The specific interface names are S_LFIDS and D_LFIDS.

FORTRAN 77 Interface

Single: CALL LFIDS (N, A, LDA, FACT, LDFACT, B, X, RES)
Double: The double precision name is DLFIDS.

= Rogygmﬂn\{q LFIDS Chapter 1: Linear Systems 234

ScalLAPACK Interface

Generic: CALL LFIDS (A0, FACTO, B0, X0,RESO [, ...])
Specific: The specific interface names are S_LFIDS and D_LFIDS.
See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

Description

Routine LFIDS computes the solution of a system of linear algebraic equations having a real symmetric pos-
itive definite coefficient matrix. Iterative refinement is performed on the solution vector to improve the
accuracy. Usually almost all of the digits in the solution are accurate, even if the matrix is somewhat ill-condi-
tioned. The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon
which supporting libraries are used during linking. For a detailed explanation see Using ScaLAPACK,
LAPACK, LINPACK, and EISPACK in the Introduction section of this manual.

To compute the solution, the coefficient matrix must first undergo an RTR factorization. This may be done by
calling either LFCDS or LFTDS.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFIDS and LFSDS both solve a linear system given its RTR factorization. LFIDS generally takes more time
and produces a more accurate answer than LFSDS. Each iteration of the iterative refinement algorithm used
by LFIDS calls LFSDS.

Comments

Informational error

Type Code Description

3 2 The input matrix is too ill-conditioned for iterative refinement to be effective.

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:
A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A. A contains
the symmetric positive definite coefficient matrix of the linear system. (Input)
FACT0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix FACT.

FACT contains the RT R factorization of the coefficient matrix A as output from routine
LFCDS/DLFCDS or LFTDS/DLFTDS. (Input)

B0 — Local vector of length MXLDA containing the local portions of the distributed vector B. B contains
the right-hand side of the linear system. (Input)

X0 — Local vector of length MXLDA containing the local portions of the distributed vector X. X contains
the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

RESO — Local vector of length MXLDA containing the local portions of the distributed vector RES. RES
contains the residual vector at the improved solution to the linear system. (Output)

= Rog':lgwgﬂ\\:er LFIDS Chapter 1: Linear Systems 235

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

Examples

Example

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving the sys-
tem each of the first two times by adding 0.2 to the second element.

USE LFIDS_INT
USE LFCDS_INT
USE UMACH_INT
USE WRRRN_INT
! Declare variables

INTEGER LDA, LDFACT, N

PARAMETER (LDA=3, LDFACT=3, N=3)

REAL A(LDA,LDA), B(N), RCOND, FACT(LDFACT,LDFACT), RES(N,3),&
X(N,3)

! Set values for A and B

! A= (1.0 -3.0 2.0)
! (-3.0 10.0 -5.0)
! (2.0 -5.0 6.0)
1

! B=(1.0 -3.0 2.0)

pATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
DATA B/1.0, -3.0, 2.0/
! Factor the matrix A
CALL LFCDS (A, FACT, RCOND)
! Print the estimated condition number
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
! Compute the solutions
DO 10 1I=1, 3
CALL LFIDS (A, FACT, B, X(:,I), RES(:,I))
B(2) = B(2) + .2EO
10 CONTINUE
! Print solutions and residuals
CALL WRRRN (’'The solution vectors are’, X)
CALL WRRRN (’'The residual vectors are’, RES)
1
99999 FORMAT ('’ RCOND = ’',F5.3,/,’ L1 Condition number = ’,F9.3)
END

Output

RCOND = 0.001

= Rogygmq\{q LFIDS Chapter 1: Linear Systems

236

L1l Condition number = 674.727

The solution vectors are

1 2 3
1 1.000 2.600 4.200
2 0.000 0.400 0.800
3 0.000 -0.200 -0.400

The residual vectors are

1 2 3
1 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000

ScaLAPACK Example

The same set of linear systems is solved successively as a distributed example. The right-hand-side vector is
perturbed after solving the system each of the first two times by adding 0.2 to the second element.
SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Ultilities”) used to map
and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK
tools routine which initializes the descriptors for the local arrays.

USE
USE
USE
USE

MPI_SETUP_INT
LFIDS_INT
LFCDS_INT
UMACH_INT

USE WRRRN_INT

USE SCALAPACK_SUPPORT
IMPLICIT NONE

INCLUDE ‘mpif.h’

Declare variables

INTEGER J, LDA, N, NOUT, DESCA(9), DESCL(9)
INTEGER INFO, MXCOL, MXLDA
REAL RCOND
REAL, ALLOCATABLE A(:,:), B(:), X(:,:), RES(:,:), X0(:)
REAL, ALLOCATABLE :: AO(:,:), FACTO(:,:), BO(:), RESO(:)
PARAMETER (LDA=3, N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), B(N), X(N,3), RES(N,3))
! Set values for A and B
A(l,:) = (/ 1.0, -3.0, 2.0/)
A(2,:) = (/-3.0, 10.0, -5.0/)
A(3,:) = (/ 2.0, -5.0, 6.0/)
1
B = (/ 1.0, -3.0, 2.0/)
ENDIF
! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

=RogueWave

LFIDS Chapter 1: Linear Systems 237

! Set up the array descriptors
CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCL, N, 1, MP_MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (AQ0 (MXLDA, MXCOL) , X0 (MXLDA), FACTO (MXLDA,MXCOL), BO(MXLDA), &
RESO (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK_MAP (A, DESCA, A0)
! Call the factorization routine
CALL LFCDS (A0, FACTO, RCOND)
! Print the estimated condition number
CALL UMACH (2, NOUT)
IF (MP_RANK .EQ. 0) WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
! Set up the columns of the B
! matrix one at a time in X0
DO 10 J=1, 3
CALL SCALAPACK_MAP (B, DESCL, BO)
! Solve for the J-th column of X
CALL LFIDS (AO, FACTO, BO, X0, RESO0)
CALL SCALAPACK_UNMAP (X0, DESCL, X(:,J))
CALL SCALAPACK_UNMAP (RESO, DESCL, RES(:,J))
IF (MP_RANK .EQ. 0) B(2) = B(2) + .2EO0
10 CONTINUE
! Print results.
! Only Rank=0 has the full arrays
IF (MP_RANK.EQ.0) CALL WRRRN (’The solution vectors are’, X)
IF (MP_RANK.EQ.0) CALL WRRRN (’The residual vectors are’, RES)
IF (MP_RANK .EQ. 0) DEALLOCATE(A, B, X, RES)
DEALLOCATE (A0, BO, FACTO, RESO, XO0)
! Exit ScaLAPACK usage
CALL SCALAPACK_EXIT (MP_ICTXT)
! Shut down MPI
MP_NPROCS = MP_SETUP(‘'FINAL’)
99999 FORMAT ('’ RCOND = ’,F5.3,/,’ Ll Condition number = ’',F9.3)
END

Output

RCOND = 0.001
L1 Condition number = 674.727

The solution vectors are

1 2 3
1 1.000 2.600 4.200
2 0.000 0.400 0.800
3 0.000 -0.200 -0.400

The residual vectors are

1 2 3
1 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000

[\S)

= R{ng?mq\{q LFIDS Chapter 1: Linear Systems 238

LFDDS

Computes the determinant of a real symmetric positive definite matrix given the RTR Cholesky factorization
of the matrix .

Required Arguments
FACT — N by N matrix containing the R R factorization of the coefficient matrix A as output from routine
LFCDS/DLFCDS or LFTDS/DLFTDS. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that, 1.0 < |[DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form, det(a) = DET1 * 10P¥72,

Optional Arguments

N — Number of equations. (Input)
Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFDDS (FACT,DET1,DET2 [,...])
Specific: The specific interface names are S_LFDDS and D_LFDDS.

FORTRAN 77 Interface

Single: CALL LFDDS (N, FACT, LDFACT, DET1, DET2)
Double: The double precision name is DLFDDS.
Description

Routine LFDDS computes the determinant of a real symmetric positive definite coefficient matrix. To com-
pute the determinant, the coefficient matrix must first undergo an R'R factorization. This may be done by

calling either LFCDS or LFTDS. The formula det A = det RT det R = (det R)? is used to compute the determi-
nant. Since the determinant of a triangular matrix is the product of the diagonal elements,

N
detR = H R;;
i1

(The matrix R is stored in the upper triangle of FACT.)

LFDDS is based on the LINPACK routine SPODI; see Dongarra et al. (1979).

= Rog':lgwgﬂ\\:er LFDDS Chapter 1: Linear Systems 239

Example

The determinant is computed for a real positive definite 3 X 3 matrix.

USE LFDDS_INT
USE LFTDS_INT
USE UMACH_INT

Declare variables

INTEGER LDA, LDFACT, NOUT
PARAMETER (LDA=3, LDFACT=3)
REAL A(LDA,LDA), DET1, DET2,
Set values for
A= (1.0 -3.
(-3.0 20.
(2.0 -=5.
DATA A/1.0, -3.0, 2.0, -3.0, 20.0, -5.0, 2.

Factor the matrix

o o o »

0,

-5.

FACT (LDFACT, LDFACT)

.0/

CALL LFTDS (A, FACT)

! Compute the determinant
CALL LFDDS (FACT, DET1, DET2)

1 Print results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) DET1, DET2

1

99999 FORMAT ('’ The determinant of A is ’',F6.3,’ * 10**’,F2.0)
END

Output

The determinant of A is 2.100 * 10**1.

=RogueWave

LFDDS

Chapter 1: Linear Systems

240

LINDS

;%': ErMPI
FE CE caPABLE

more. ..
more. ..

Computes the inverse of a real symmetric positive definite matrix.

Required Arguments

A — N by N matrix containing the symmetric positive definite matrix to be inverted. (Input)
Only the upper triangle of 2 is referenced.

AINV — N by N matrix containing the inverse of A. (Output)
If A is not needed, A and AINV can share the same storage locations.

Optional Arguments

N — Order of the matrix A. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDAINV = size (AINV,1).

FORTRAN 90 Interface

Generic: CALL LINDS (A, AINV [,...])
Specific: The specific interface names are S_LINDS and D_LINDS.

FORTRAN 77 Interface

Single: CALL LINDS (N, A, LDA, AINV, LDAINV)
Double: The double precision name is DLINDS.

ScalLAPACK Interface

Generic: CALL LINDS (A0, AINVO [, ...])
Specific: The specific interface names are S_LINDS and D_LINDS.
See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

= Rogygmﬂn\{q LINDS Chapter 1: Linear Systems 241

Description

Routine LINDS computes the inverse of a real symmetric positive definite matrix. The underlying code is
based on either LINPACK , LAPACK, or ScaLAPACK code depending upon which supporting libraries are
used during linking. For a detailed explanation see Using ScaLAPACK, LAPACK, LINPACK, and EISPACK in

the Introduction section of this manual. L INDS first uses the routine LFCDS to compute an R'R factorization
of the coefficient matrix and to estimate the condition number of the matrix. LINRT is then used to compute

R'L. Finally a1 is computed using A = R1 R

LINDS fails if any submatrix of R is not positive definite or if R has a zero diagonal element. These errors
occur only if A is very close to a singular matrix or to a matrix which is not positive definite.

If the estimated condition number is greater than 1/& (where € is machine precision), a warning error is
issued. This indicates that very small changes in A can cause very large changes in A.

Comments
1. Workspace may be explicitly provided, if desired, by use of L2NDS/DL2NDS. The reference is:
CALL L2NDS (N, A, LDA, AINV, LDAINV, WK)
The additional argument is:
WK — Work vector of length N.

2. Informational errors

Type Code Description
3 1 The input matrix is too ill-conditioned. The solution might not be accurate.
4 2 The input matrix is not positive definite.

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:
A0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A. A contains
the symmetric positive definite matrix to be inverted. (Input)

AINV0 — MXLDA by MXCOL local matrix containing the local portions of the distributed matrix AINV.
AINV contains the inverse of the matrix A. (Output)
If A is not needed, A and AINV can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

Examples

Example

The inverse is computed for a real positive definite 3 X 3 matrix.

= ROQQ?WQ\{E{ LINDS Chapter 1: Linear Systems 242

USE LINDS_INT
USE WRRRN_INT
! Declare variables

INTEGER LDA, LDAINV

PARAMETER (LDA=3, LDAINV=3)

REAL A (LDA,LDA), AINV(LDAINV,LDAINV)
1
! Set values for A
! A= (1.0 -3.0 2.0)
! (-3.0 10.0 -5.0)
! (2.0 =-5.0 6.0)

DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/

CALL LINDS (A, AINV)
! Print results
CALL WRRRN (’'AINV’, AINV)

END
Output
AINV
1 2 3
1 35.00 8.00 -5.00
2 8.00 2.00 -1.00
3 -5.00 -1.00 1.00

ScaLAPACK Example

The inverse of the same 3 X 3 matrix is computed as a distributed example. SCALAPACK_MAP and
SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Utilities”) used to map and unmap arrays to
and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK tools routine which
initializes the descriptors for the local arrays.

USE MPI_SETUP_INT
USE LINDS_INT
USE WRRRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER J, LDA, LDFACT, N, DESCA(9)

INTEGER INFO, MXCOL, MXLDA

REAL, ALLOCATABLE :: A(:,:), AINV(:,:)
REAL, ALLOCATABLE :: AO(:,:), AINVO(:,:)

PARAMETER (LDA=3, N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP ()
IF(MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), AINV(LDA,N))
! Set values for A

= Rogygmq\{q LINDS Chapter 1: Linear Systems 243

A(l,:) = (/ 1.0, -=3.0, 2.0/)
A(2,:) = (/ -3.0, 10.0, -5.0/)
A(3,:) = (/ 2.0, -5.0, 6.0/)
ENDIF
! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL

CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (AO0 (MXLDA,MXCOL) , AINVO (MXLDA,MXCOL))
! Map input arrays to the processor grid
CALL SCALAPACK_MAP (A, DESCA, A0)
! Call the routine to get the inverse
CALL LINDS (A0, AINVO)
! Unmap the results from the distributed
! arrays back to a nondistributed array.
! After the unmap, only Rank=0 has the full
! array.
CALL SCALAPACK_UNMAP (AINV0O, DESCA, AINV)
! Print results.
! Only Rank=0 has the solution, AINV.
IF (MP_RANK.EQ.0) CALL WRRRN (’'AINV’, AINV)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, AINV)
DEALLOCATE (A0, AINVO)
! Exit ScaLAPACK usage
CALL SCALAPACK_EXIT (MP_ICTXT)
! Shut down MPI
MP_NPROCS = MP_SETUP(‘'FINAL’)

END
Output
AINV
1 2 3
1 35.00 8.00 -5.00
2 8.00 2.00 -1.00
3 -5.00 -1.00 1.00

= R{nggmq\{q LINDS Chapter 1: Linear Systems 244

LSASF

HIGH

PE (E

more. ..

Solves a real symmetric system of linear equations with iterative refinement.

Required Arguments

A — N by N matrix containing the coefficient matrix of the symmetric linear system. (Input)
Only the upper triangle of A is referenced.

B — Vector of length N containing the right-hand side of the linear system. (Input)
X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

FORTRAN 90 Interface

Generic: CALL LSASF (&,B,X[,...1)
Specific: The specific interface names are S_LSASF and D_LSASF.

FORTRAN 77 Interface

Single: CALL LSASF (N, A, LDA, B, X)
Double: The double precision name is DLSASF.
Description

Routine LSASF solves systems of linear algebraic equations having a real symmetric indefinite coefficient

matrix. It first uses the routine LECSF to compute a U DU factorization of the coefficient matrix and to esti-
mate the condition number of the matrix. D is a block diagonal matrix with blocks of order 1 or 2, and U is a
matrix composed of the product of a permutation matrix and a unit upper triangular matrix. The solution of
the linear system is then found using the iterative refinement routine LFISF.

LSASF fails if a block in D is singular or if the iterative refinement algorithm fails to converge. These errors
occur only if A is singular or very close to a singular matrix.

= ROQQ?WQ\{E{ LSASF Chapter 1: Linear Systems

245

If the estimated condition number is greater than 1/€ (where € is machine precision), a warning error is
issued. This indicates that very small changes in A can cause very large changes in the solution x. Iterative
refinement can sometimes find the solution to such a system. LSASF solves the problem that is represented in
the computer; however, this problem may differ from the problem whose solution is desired.

Comments

Workspace may be explicitly provided, if desired, by use of L2ASF/DL2ASF. The reference is
CALL L2ASF (N, A, LDA, B, X, FACT, IPVT, WK)
The additional arguments are as follows:
FACT — N x N work array containing information about the U DU factorization of A on output. If
Ais not needed, A and FACT can share the same storage location.

IPVT — Integer work vector of length N containing the pivoting information for the factorization
of A on output.

WK — Work vector of length N.

Informational errors

Type Code Description
3 1 The input matrix is too ill-conditioned. The solution might not be accurate.
4 2 The input matrix is singular.

Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency) problems. In
routine L2ASF the leading dimension of FACT is increased by IVAL(3) when N is a multiple of
IVAL(4). The values IVAL(3) and IVAL(4) are temporarily replaced by IVAL(1) and IVAL(2),
respectively, in LSASF. Additional memory allocation for FACT and option value restoration are
done automatically in LSASF. Users directly calling L2ASF can allocate additional space for
FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no longer cause inefficiencies.
There is no requirement that users change existing applications that use LSASF or L2ASF.
Default values for the option are IVAL(*) =1,16,0, 1.

17 This option has two values that determine if the L; condition number is to be computed. Rou-
tine LSASF temporarily replaces TVAL(2) by IVAL(1). The routine L2CSF computes the

condition number if IVAL(2) = 2. Otherwise L2CSF skips this computation. LSASF restores the
option. Default values for the option are IVAL(*) =1, 2.

Example

A system of three linear equations is solved. The coefficient matrix has real symmetric form and the right-

hand-side vector b has three elements.

USE LSASF_INT
USE WRRRN_INT
! Declare variables
PARAMETER (LDA=3, N=3)
REAL A (LDA,LDA),

B(N), X(N)

! Set values for A and B

=RogueWave

Chapter 1: Linear Systems

246

! A= (1.0 -2.0 1.0)
! (-2.0 3.0 -2.0)
! (1.0 -2.0 3.0)

DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
DATA B/4.1, -4.7, 6.5/

CALL LSASF (A, B, X)

! Print results
CALL WRRRN ('X’, X, 1, N, 1)
END

Output

X
1 2 3
-4.100 -3.500 1.200

= Rogyngq\(e: LSASF Chapter 1: Linear Systems 247

LSLSF

HIGH

PE (E

more. ..

Solves a real symmetric system of linear equations without iterative refinement .

Required Arguments

A — N by N matrix containing the coefficient matrix of the symmetric linear system. (Input)
Only the upper triangle of A is referenced.

B — Vector of length N containing the right-hand side of the linear system. (Input)
X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

FORTRAN 90 Interface

Generic: CALL LSLSF (A,B,X [,...]1)
Specific: The specific interface names are S_LSLSF and D_LSLSF.

FORTRAN 77 Interface

Single: CALL LSLSF (N, A, LDA, B, X)
Double: The double precision name is DLSLSF.
Description

Routine LSLSF solves systems of linear algebraic equations having a real symmetric indefinite coefficient

matrix. It first uses the routine LFCSF to compute a U DU factorization of the coefficient matrix. D is a block
diagonal matrix with blocks of order 1 or 2, and U is a matrix composed of the product of a permutation
matrix and a unit upper triangular matrix.

The solution of the linear system is then found using the routine LFSSF.

LSLSF fails if a block in D is singular. This occurs only if A either is singular or is very close to a singular
matrix.

= ROQQ?WQ\{EF LSLSF Chapter 1: Linear Systems 248

Comments

1.

Workspace may be explicitly provided, if desired, by use of L2LSF/DL2LSF. The reference is:
CALL L2LSF (N, A, LDA, B, X, FACT, IPVT, WK)
The additional arguments are as follows:
FACT — N x N work array containing information about the U DU factorization of A on output. If
Ais not needed, A and FACT can share the same storage locations.

IPVT — Integer work vector of length N containing the pivoting information for the factorization
of A on output.

WK — Work vector of length N.

Informational errors

Type Code Description
3 1 The input matrix is too ill-conditioned. The solution might not be accurate.

4 2 The input matrix is singular.

Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency) problems. In
routine LSLSF the leading dimension of FACT is increased by IVAL(3) when N is a multiple of
IVAL(4). The values IVAL(3) and IVAL(4) are temporarily replaced by IVAL(1) and IVAL(2),
respectively, in LSLSF. Additional memory allocation for FACT and option value restoration are
done automatically in LSLSF. Users directly calling LSLSF can allocate additional space for
FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no longer cause inefficiencies.
There is no requirement that users change existing applications that use LSLSF or LSLSF.
Default values for the option are IVAL(*) =1, 16,0, 1.

17 This option has two values that determine if the L; condition number is to be computed. Routine

LSLSF temporarily replaces IVAL(2) by IVAL(1). The routine L2CSF computes the condition
number if TVAL(2) = 2. Otherwise L2CSF skips this computation. LSLSF restores the option.
Default values for the option are IVAL(*) =1, 2.

Example

A system of three linear equations is solved. The coefficient matrix has real symmetric form and the right-
hand-side vector b has three elements.

USE LSLSF_INT
USE WRRRN_INT
Declare variables
PARAMETER (LDA=3, N=3)
REAL A(LDA,LDA), B(N), X(N)

A= (1.0 -2.0 1.0)
(-2.0 3.0 -2.0)
(1.0 -2.0 3.0)

B=(4.1 -4.7 6.5)

= ROQQ?WQ\{E{ LSLSF Chapter 1: Linear Systems

249

DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
DATA B/4.1, -4.7, 6.5/

CALL LSLSF (A, B, X)

1 Print results
CALL WRRRN ('X’, X, 1, N, 1)
END

Output

X
1 2 3
-4.100 -3.500 1.200

= R{ng?mg\{q LSLSF Chapter 1: Linear Systems 250

LFCSF

HIGH

W,

PE (E

more. ..

Computes the U DU factorization of a real symmetric matrix and estimate its L; condition number.

Required Arguments
A — N by N symmetric matrix to be factored. (Input)
Only the upper triangle of 2 is referenced.

FACT — N by N matrix containing information about the factorization of the symmetric matrix A. (Output)
Only the upper triangle of FACT is used. If A is not needed, A and FACT can share the same storage
locations.

IPVT — Vector of length N containing the pivoting information for the factorization. (Output)
RCOND — Scalar containing an estimate of the reciprocal of the L; condition number of A. (Output)

Optional Arguments

N — Order of the matrix. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFCSF (A, FACT, IPVT, RCOND [, ...])
Specific: The specific interface names are S_LFCSF and D_LFCSF.

FORTRAN 77 Interface

Single: CALL LFCSF (N, A, LDA, FACT, LDFACT, IPVT, RCOND)
Double: The double precision name is DLFCSF.

= Rogygmﬂn\{q LFCSF Chapter 1: Linear Systems

251

Description

Routine LFCSF performs a U DU factorization of a real symmetric indefinite coefficient matrix. It also esti-

mates the condition number of the matrix. The U DU factorization is called the diagonal pivoting
factorization.

The L; condition number of the matrix A is defined to be k(A) = [|All4 Il 1- Since it is expensive to compute

A7) 1, the condition number is only estimated. The estimation algorithm is the same as used by LINPACK
and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/& (where € is machine precision), a warning error is
issued. This indicates that very small changes in A can cause very large changes in the solution x. Iterative
refinement can sometimes find the solution to such a system.

LFCSF fails if A is singular or very close to a singular matrix.

The U DU factors are returned in a form that is compatible with routines LFISF, LESSF and LFDSF. To
solve systems of equations with multiple right-hand-side vectors, use LFCSF followed by either LFISF or
LFSSF called once for each right-hand side. The routine LFDSF can be called to compute the determinant of
the coefficient matrix after LFCSF has performed the factorization.

The underlying code is based on either LINPACK or LAPACK code depending upon which supporting
libraries are used during linking. For a detailed explanation see “Using ScaLAPACK, LAPACK, LINPACK, and
EISPACK” in the Introduction section of this manual.

Comments
1. Workspace may be explicitly provided, if desired, by use of L2CSF/DL2CSF. The reference is:
CALL L2CSF (N, A, LDA, FACT, LDFACT, IPVT, RCOND, WK)
The additional argument is:
WK — Work vector of length N.
2. Informational errors

Type Code Description
3 1 The input matrix is algorithmically singular.
4 2 The input matrix is singular.

Example

The inverse of a 3 X 3 matrix is computed. LFCSF is called to factor the matrix and to check for singularity or
ill-conditioning. LFISF is called to determine the columns of the inverse.

USE LFCSF_INT
USE UMACH_INT
USE LFISF_INT
USE WRRRN_INT
! Declare variables
PARAMETER (LDA=3, N=3)

= ROQQ?WQ\{EF LFCSF Chapter 1: Linear Systems 252

10

99999

INTEGER IPVT(N), NOUT
REAL A(LDA,LDA), AINV(N,N), FACT(LDA,LDA), RJ(N), RES(N),&
RCOND

Set values for A

A= (1.0 -2.0 1.0)
(-2.0 3.0 -2.0)
(1.0 -2.0 3.0)

DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
Factor A and return the reciprocal
condition number estimate

CALL LFCSF (A, FACT, IPVT, RCOND)
Print the estimate of the condition
number

CALL UMACH (2, NOUT)

WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

matrix one at a time in RJ

RJ = 0.EO
DO 10 J=1, N
RJ(J) = 1.0E0
RJ is the J-th column of the identity
matrix so the following LFISF
reference places the J-th column of
the inverse of A in the J-th column
of AINV
CALL LFISF (A, FACT, IPVT, RJ, AINV(:,J), RES)
RJ(J) = 0.0EO0
CONTINUE

Print the inverse
CALL WRRRN (’'AINV’, AINV)
FORMAT ('’ RCOND = ',F5.3,/,’ L1l Condition number = ’,F6.3)
END

Output

RCOND < 0.05
L1l Condition number < 40.0

1 -2
2 -2
3 -0

AINV
1 2 3

.500 -2.000 -0.500
.000 -1.000 0.000
.500 0.000 0.500

= R{nggmq\{q LFCSF Chapter 1: Linear Systems

253

LFTSF

HIGH

PE (E

more. ..

Computes the U DU factorization of a real symmetric matrix.

Required Arguments
A — N by N symmetric matrix to be factored. (Input)
Only the upper triangle of A is referenced.

FACT — N by N matrix containing information about the factorization of the symmetric matrix A. (Output)
Only the upper triangle of FACT is used. If A is not needed, A and FACT can share the same storage
locations.

IPVT — Vector of length N containing the pivoting information for the factorization. (Output)

Optional Arguments

N — Order of the matrix. (Input)
Default: N = size (2,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFTSF (A, FACT, IPVT [,...])
Specific: The specific interface names are S_LFTSF and D_LFTSF.

FORTRAN 77 Interface

Single: CALL LFTSF (N, A, LDA, FACT, LDFACT, IPVT)
Double: The double precision name is DLFTSF.
Description

Routine LFTSF performs a U DU factorization of a real symmetric indefinite coefficient matrix. The U DU’
factorization is called the diagonal pivoting factorization.

LFTSF fails if A is singular or very close to a singular matrix.

= ROQQ?WQ\{EF LFTSF Chapter 1: Linear Systems 254

The U DU factors are returned in a form that is compatible with routines LFISF, LFSSF and LFDSF. To
solve systems of equations with multiple right-hand-side vectors, use LFTSF followed by either LFISF or
LFSSF called once for each right-hand side. The routine LFDSF can be called to compute the determinant of
the coefficient matrix after LFTSF has performed the factorization.

The underlying code is based on either LINPACK or LAPACK code depending upon which supporting
libraries are used during linking. For a detailed explanation see Using ScaLAPACK, LAPACK, LINPACK, and
EISPACK in the Introduction section of this manual.

Comments

Informational error

Type Code Description
4 2 The input matrix is singular.
Example

The inverse of a 3 X 3 matrix is computed. LFTSF is called to factor the matrix and to check for singularity.
LFSSF is called to determine the columns of the inverse.

USE LFTSF_INT
USE LFSSF_INT
USE WRRRN_INT
! Declare variables
PARAMETER (LDA=3, N=3)
INTEGER IPVT (N)
REAL A(LDA,LDA), AINV(N,N), FACT(LDA,LDA), RJ(N)

A= (1.0 -2.0 1.0)
! (-2.0 3.0 -2.0)
! (1.0 -2.0 3.0)

|
! Set values for A
|
1

DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
! Factor A

CALL LFTSF (A, FACT, IPVT)
! Set up the columns of the identity
! matrix one at a time in RJ

RJ = 0.0EO
DO 10 J=1, N
RJ(J) = 1.0E0
! RJ is the J-th column of the identity
! matrix so the following LFSSF
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
CALL LFSSF (FACT, IPVT, RJ, AINV(:,J))
RJ(J) = 0.0EO

10 CONTINUE
! Print the inverse
CALL WRRRN (’AINV’, AINV)

= Rogygmﬂn\{q LFTSF Chapter 1: Linear Systems 255

END

Output
AINV
1 -2.500 -2.000 -0.500

-2.000 -1.000 0.000
3 -0.500 0.000 0.500

N

= R‘Dgygmq\{eg LFTSF Chapter 1: Linear Systems 256

LFSSF

HLGH

PE (E

more. ..

Solves a real symmetric system of linear equations given the U DU factorization of the coefficient matrix.

Required Arguments

FACT — N by N matrix containing the factorization of the coefficient matrix A as output from routine
LFCSF/DLFCSF or LFTSF/DLFTSF. (Input)
Only the upper triangle of FACT is used.

IPVT — Vector of length N containing the pivoting information for the factorization of A as output from
routine LFCSF/DLFCSF or LFTSF/DLFTSF. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)
Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFSSF (FACT,IPVT,B,X [,...])
Specific: The specific interface names are S_LFSSF and D_LFSSF.

FORTRAN 77 Interface

Single: CALL LFSSF (N, FACT, LDFACT, IPVT, B, X)
Double: The double precision name is DLFSSF.
Description

Routine LFSSF computes the solution of a system of linear algebraic equations having a real symmetric
indefinite coefficient matrix.

To compute the solution, the coefficient matrix must first undergo a U DU factorization. This may be done
by calling either LFCSF or LFTSF.

= ROQQ?WQ\{E{ LFSSF Chapter 1: Linear Systems

257

LFSSF and LFISF both solve a linear system given its U DU factorization. LFISF generally takes more time
and produces a more accurate answer than LFSSF. Each iteration of the iterative refinement algorithm used

by LFISF calls LFSSF.

The underlying code is based on either LINPACK or LAPACK code depending upon which supporting
libraries are used during linking. For a detailed explanation see “Using ScaLAPACK, LAPACK, LINPACK, and

EISPACK” in the Introduction section of this manual.

Example

A set of linear systems is solved successively. LFTSF is called to factor the coefficient matrix. LFSSF is called
to compute the four solutions for the four right-hand sides. In this case the coefficient matrix is assumed to be
well-conditioned and correctly scaled. Otherwise, it would be better to call LFCSF to perform the factoriza-

tion, and LFISF to compute the solutions.

USE LFSSF_INT
USE LFTSF_INT
USE WRRRN_INT

! Declare variables

PARAMETER (LDA=3, N=3)
INTEGER IPVT (N)

REAL A(LDA,LDA), B(N,4), X(N,4), FACT(LDA,LDA)

! Set values for A and B

A= (1.0 -2.0

! (-3.0 -4.2
! (-3.0 -5.2

DATA A/1.0, -2.0, 1.0, -2.0, 3.
DATA B/-1.0, -3.0, -3.0, 3.6,
-9.4, 17.6, -23.4/
! Factor A
CALL LFTSF (A, FACT, IPVT)

-8.
11.
-6.

-2.

.0,

.0)

.0)

.0)

0 -9.4)
0 17.6)
0 -23.4)
0, 3.0/

11.0, -6.0,&

! Solve for the four right-hand sides

DO 10 I=1, 4
CALL LFSSF (FACT, IPVT, B(:,I), X(:,I))
10 CONTINUE

! Print results
CALL WRRRN (’'X’", X)

END
Output
X
1 2 3 4
1 10.00 2.00 1.00 0.00

=RogueWave

LFSSF Chapter 1: Linear Systems

258

2 5.00 -3.00 5.00 1.20
3 -1.00 -4.40 1.00 -7.00

= Rogygmqv‘e" LFSSF Chapter 1: Linear Systems 259

LFISF

HIGH

PE (E

more. ..

Uses iterative refinement to improve the solution of a real symmetric system of linear equations.

Required Arguments
A — N by N matrix containing the coefficient matrix of the symmetric linear system. (Input)
Only the upper triangle of A is referenced

FACT — N by N matrix containing the factorization of the coefficient matrix A as output from routine
LFCSF/DLFCSF or LFTSF/DLFTSF. (Input)
Only the upper triangle of FACT is used.

IPVT — Vector of length N containing the pivoting information for the factorization of A as output from
routine LFCSF/DLFCSF or LFTSF/DLFTSF. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

RES — Vector of length N containing the residual vector at the improved solution. (Output)

Optional Arguments

N — Number of equations. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFISF (A FACT,IPVT,B,X RES [, ...])
Specific: The specific interface names are S_LFISF and D_LFISF.

FORTRAN 77 Interface

Single: CALL LFISF (N, A, LDA, FACT, LDFACT, IPVT, B, X, RES)
Double: The double precision name is DLFISF.

= ROQQ?WQ\{EF LFISF Chapter 1: Linear Systems 260

Description

Routine LFISF computes the solution of a system of linear algebraic equations having a real symmetric
indefinite coefficient matrix. Iterative refinement is performed on the solution vector to improve the accu-
racy. Usually almost all of the digits in the solution are accurate, even if the matrix is somewhat ill-
conditioned.

To compute the solution, the coefficient matrix must first undergo a U DUT factorization. This may be done
by calling either LFCSF or LFTSF.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFISF and LFSSF both solve a linear system given its U DU factorization. LFTSF generally takes more time
and produces a more accurate answer than LFSSF. Each iteration of the iterative refinement algorithm used
by LFISF calls LFSSF.

Comments

Informational error

Type Code Description
3 2 The input matrix is too ill-conditioned for iterative refinement to be effective.
Example

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving the sys-
tem each of the first two times by adding 0.2 to the second element.

USE LFISF_INT
USE UMACH_INT
USE LFCSF_INT
USE WRRRN_INT
! Declare variables
PARAMETER (LDA=3, N=3)

INTEGER IPVT(N), NOUT
REAL A(LDA,LDA), B(N), X(N), FACT(LDA,LDA), RES(N), RCOND
|
! Set values for A and B
! A= (1.0 -2.0 1.0)
! (-2.0 3.0 -2.0)
! (1.0 -2.0 3.0)
|
! B=(4.1 -4.7 6.5)

DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
DATA B/4.1, -4.7, 6.5/
! Factor A and compute the estimate
! of the reciprocal condition number
CALL LFCSF (A, FACT, IPVT, RCOND)
! Print condition number
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0EO0/RCOND

= ROQQ?WQ\{EF LFISF Chapter 1: Linear Systems 261

DO 10

Solve, then perturb right-hand side

I=1, 3

CALL

CALL
CALL

B(2

10 CONTINUE

!

)

LFISF (A, FACT, IPVT, B, X, RES)
Print results

WRRRN (’X’, X, 1, N, 1)

WRRRN ('RES’, RES, 1, N, 1)

B(2) + .20E0

99999 FORMAT (‘' RCOND = ‘,F5.3,/,’ L1 Condition number ', F6.3)
END
Output
RCOND < 0.035
L1l Condition number < 40.0
X
1 2 3
-4.100 -3.500 1.200
RES
1 2 3
-2.384E-07 -2.384E-07 0.000E+00
X
1 2 3
-4.500 -3.700 1.200
RES
1 2 3
-2.384E-07 -2.384E-07 0.000E+00
X
1 2 3
-4.900 -3.900 1.200
RES
1 2 3
-2.384E-07 -2.384E-07 0.000E+00
= R{nggmq\{e: LFISF Chapter 1: Linear Systems 262

LFDSF

Computes the determinant of a real symmetric matrix given the U DU’ factorization of the matrix.

Required Arguments

FACT — N by N matrix containing the factored matrix A as output from subroutine LFTSF/DLFTSF or
LFCSF/DLFCSF. (Input)

IPVT — Vector of length N containing the pivoting information for the U DU factorization as output from
routine LFTSF /DLFTSF or LFCSF/DLFCSF. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that, 1.0 < |[DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form, det(A) = DET1 * 10PFT2,

Optional Arguments

N — Order of the matrix. (Input)
Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of the calling pro-
gram. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFDSF (FACT, IPVT,DET1,DET2 [,...])
Specific: The specific interface names are S_LFDSF and D_LFDSF.

FORTRAN 77 Interface

Single: CALL LFDSF (N, FACT, LDFACT, IPVT, DET1, DET2)
Double: The double precision name is DLFDSF.
Description

Routine LFDSF computes the determinant of a real symmetric indefinite coefficient matrix. To compute the
determinant, the coefficient matrix must first undergo a U DU factorization. This may be done by calling

either LFCSF or LFTSF. Since det U = +1, the formula det A = det U det D det U = det D is used to compute
the determinant. Next det D is computed as the product of the determinants of its blocks.

LFDSF is based on the LINPACK routine SSIDI; see Dongarra et al. (1979).

Example

The determinant is computed for a real symmetric 3 X 3 matrix.

= Rog':lgwgﬂ\\:er LFDSF Chapter 1: Linear Systems 263

USE LFDSF_INT
USE LFTSF_INT
USE UMACH_INT
! Declare variables
PARAMETER (LDA=3, N=3)
INTEGER IPVT(N), NOUT
REAL A(LDA,LDA), FACT(LDA,LDA), DET1l, DET2

! Set values for A

! A= (1.0 -2.0 1.0)
! (-2.0 3.0 -2.0)
! (1.0 -2.0 3.0)

paTA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
! Factor A
CALL LFTSF (A, FACT, IPVT)
! Compute the determinant
CALL LFDSF (FACT, IPVT, DET1, DET2)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) DET1, DET2
99999 FORMAT ('’ The determinant of A is ', F6.3, ' * 10**’, F2.0)
END

Output

The determinant of A is -2.000 * 10**0.

= Rogypmq\{q LFDSF Chapter 1: Linear Systems 264

LSADH

;%': ErMPI
FE CE caPABLE

more. ..
more. ..

Solves a Hermitian positive definite system of linear equations with iterative refinement.

Required Arguments

A — Complex N by N matrix containing the coefficient matrix of the Hermitian positive definite linear sys-
tem. (Input)
Only the upper triangle of 2 is referenced.

B — Complex vector of length N containing the right-hand side of the linear system. (Input)
X — Complex vector of length N containing the solution of the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)
Default: N = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.
(Input)
Default: LDA = size (3,1).

FORTRAN 90 Interface

Generic: CALL LSADH (A,B,X [, ...1)
Specific: The specific interface names are S_LSADH and D_LSADH.

FORTRAN 77 Interface
Single: CALL LSADH (N, A, LDA, B, X)
Double: The double precision name is DLSADH.

ScalLAPACK Interface

Generic: CALL LSADH (A0,B0,X0 [,...])
Specific: The specific interface names are S_LSADH and D_LSADH.
See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

= Rogygmﬂn\{q LSADH Chapter 1: Linear Systems

265

Description

Routine LSADH solves a system of linear algebraic equations having a complex Hermitian positive definite

coefficient matrix. It first uses the routine LFCDH to compute an R R Cholesky factorization of the coefficient
matrix and to estimate the condition number of the matrix. The matrix R is upper triangular. The solution of
the linear system is then found using the iterative refinement routine LF IDH.

LSADH fails if any submatrix of R is not positive definite, if R has a zero diagonal element or if the iterative
refinement algorithm fails to converge. These errors occur only if A either is very close to a singular matrix or
is a matrix that is not positive definite.

If the estimated condition number is greater than 1/€ (where € is machine precision), a warning error is
issued. This indicates that very small changes in A can cause very large changes in the solution x. Iterative
refinement can sometimes find the solution to such a system. LSADH solves the problem that is represented in
the computer; however, this problem may differ from the problem whose solution is desired.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon which
supporting libraries are used during linking. For a detailed explanation see Using ScaLAPACK, LAPACK, LIN-
PACK, and EISPACK in the Introduction section of this manual.

Comments
1. Workspace may be explicitly provided, if desired, by use of L2ADH/DL2ADH. The reference is:
CALL L2ADH (N, A, LDA, B, X, FACT, WK)
The additional arguments are as follows:
FACT — N x N work array containing the RF R factorization of A on output.

WK — Complex work vector of length N.
2. Informational errors

Type Code Description

3 1 The input matrix is too ill-conditioned. The solution might not be accurate.

3 4 The input matrix is not Hermitian. It has a diagonal entry with a small imag-
inary part.

4 2 The input matrix is not positive definite.

4 4 The input matrix is not Hermitian. It has a diagonal entry with an imaginary
part.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency) problems. In
routine L2ADH the leading dimension of FACT is increased by IVAL(3) when N is a multiple of
IVAL(4). The values IVAL(3) and IVAL(4) are temporarily replaced by IVAL(1) and IVAL(2),
respectively, in LSADH. Additional memory allocation for FACT and option value restoration are
done automatically in LSADH. Users directly calling L2ADH can allocate additional space for
FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no longer cause inefficiencies.
There is no requirement that users change existing applications that use LSADH or L2ADH.
Default values for the option are IVAL(*) =1, 16,0, 1.

= ROQQ?WQ\{EF LSADH Chapter 1: Linear Systems 266

17 This option has two values that determine if the L;condition number is to be computed. Routine

LSADH temporarily replaces IVAL(2) by IVAL(1). The routine L2CDH computes the condition
number if TVAL(2) = 2. Otherwise L2CDH skips this computation. LSADH restores the option.
Default values for the option are IVAL(*) =1, 2.

ScalLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — Complex MXLDA by MXCOL local matrix containing the local portions of the distributed matrix A. A
contains the coefficient matrix of the Hermitian positive definite linear system. (Input)
Only the upper triangle of A is referenced.

B0 — Complex local vector of length MXLDA containing the local portions of the distributed vector B. B
contains the right-hand side of the linear system. (Input)

X0 — Complex local vector of length MXLDA containing the local portions of the distributed vector X. X
contains the solution to the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the routine. In the
argument descriptions above, MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM
(see Utilities) after a call to SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example
below.

Examples

Example

A system of five linear equations is solved. The coefficient matrix has complex positive definite form and the
right-hand-side vector b has five elements.

USE LSADH_INT
USE WRCRN_INT
! Declare variables

INTEGER LDA, N
PARAMETER (LDA=5, N=5)
COMPLEX A(LDA,LDA), B(N), X(N)
Set values for A and B
A = 2.0+0.0i -1.0+1.01i 0.0+0.01 0.0+0.01 0.0+0.01)

(

(4.0+0.01 1.0+2.01 0.0+0.01 0.0+0.01)
(10.0+0.01 0.0+4.01 0.0+0.01)
(6.0+0.01 1.0+1.01i)
(

9.0+0.01i)
B = (1.0+45.01i 12.0-6.01i 1.0-16.01i -3.0-3.0i 25.0+16.0i)
DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),&
4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),&
(0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/
DATA B /(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),&

(25.0,16.0)/

= ROQQ?WQ\{E{ LSADH Chapter 1: Linear Systems

267

CALL LSADH (A, B, X)

! Print results

CALL WRCRN (’'X’, X, 1, N, 1)

END
Output
X
1 2
(2.000, 1.000) (3.000, 0.000)
5
(3.000, 2.000)
ScaLAPACK Example

(-1.000,-1.000)

3 4
0.000,-2.000)

The same system of five linear equations is solved as a distributed computing example. The coefficient
matrix has complex positive definite form and the right-hand-side vector b has five elements.
SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Utilities) used to map and unmap

arrays to and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK tools