=RogueWave

Accelerating Great Code

IMSL® FORTRAN MATH SPECIAL FUNCTIONS
LIBRARY

Version 7.1.0

ROGUE WAVE SOFTWARE / 5500 FLATIRON PARKWAY, SUITE 200 / BOULDER, CO 80301, USA / WWW.ROGUEWAVE.COM

F T W A R E

= RogueWav

rating Great Code

© 1970-2014 Rogue Wave Software, Visual Numerics, IMSL and PV-WAVE are registered trademarks of Rogue
Wave Software, Inc. in the U.S. and other countries. JMSL, JWAVE, TS-WAVE, PyIMSL are trademarks of Rogue
Wave Software, Inc. or its subsidiaries. All other company, product or brand names are the property of their
respective owners.

IMPORTANT NOTICE: Information contained in this documentation is subject to change without notice. Use
of this document is subject to the terms and conditions of a Rogue Wave Software License Agreement,
including, without limitation, the Limited Warranty and Limitation of Liability. If you do not accept the terms
of the license agreement, you may not use this documentation and should promptly return the product for a
full refund. This documentation may not be copied or distributed in any form without the express written
consent of Rogue Wave.

ACKNOWLEDGMENTS

This documentation, and the information contained herein (the "Documentation"), contains proprietary information of Rogue Wave Software,
Inc. Any reproduction, disclosure, modification, creation of derivative works from, license, sale, or other transfer of the Documentation with-
out the express written consent of Rogue Wave Software, Inc., is strictly prohibited. The Documentation may contain technical inaccuracies or
typographical errors. Use of the Documentation and implementation of any of its processes or techniques are the sole responsibility of the
client, and Rogue Wave Software, Inc., assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might
result from any use or misuse of the Documentation

ROGUE WAVE SOFTWARE, INC., MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THE DOCUMENTA-
TION. THE DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ROGUE WAVE
SOFTWARE, INC., HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS WITH REGARD TO THE DOCUMEN-
TATION, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGE-
MENT. IN NO EVENT SHALL ROGUE WAVE SOFTWARE, INC., BE LIABLE, WHETHER IN CONTRACT, TORT, OR
OTHERWISE, FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES IN CON-
NECTION WITH THE USE OF THE DOCUMENTATION.

The Documentation is subject to change at any time without notice.

Rogue Wave Software, Inc.

Address: 5500 Flatiron Parkway, Boulder, CO 80301 USA

Product Information: (303)473-9118 (800) 487-3217
Fax: (303) 473-9137
Web: http://www.roguewave.com

= RogueWuve ROGUEWAVE.COM

—

— Contents

—
The IMSL Fortran Numerical LiDraries.. ... e 1
GELIING SEAMEA ...t e et n b e nne e 1
Finding the RIGNt ROULINE.couiiieiice et 2
Organization Of the DOCUMENTALION.ccereiieeiieieeie et 2
NAMING CONVENTIONS ...ttt b e e e e sn e b e snesbesreens 3
UsiNg Library SUDPrOQraMS.......cccueieeiieieeiesieeieseesieeaesiee e eaesseesaeeaesseessesneesneensesneesseenss 4
Programming CONVENTIONScccuiiiiriirieniesieeie et s e sree st sre e sseesbeetesaeessesneesneenaesneas 5
MOTUIE USAJE ...ttt bbbttt bbbt bttt e e et e nr e b e e 6
ProgramiMing TIPS ...ecueeeeiieeieseeseeeeesteesseseesteesesseesseesesseesseassesseesseassesseessesssessesssesssessennses 6
Optional SUbProgram ATQUIMENTS.ccuereerierierieerie e e et see e eesreeseessessseseesseessesneesaeenes 7
ErrOr HanIiNgooeeee ettt 7
PrINGING RESUITS.....c.eeceieecie et e et st este et e ere e te et e sneenaeeneenneeneas 8

Chapter 1: Elementary Functions 9
ROULINES ...ttt bbbttt ettt e s b bt b e bt e st e e e et et e neenbe st enas 9
USAOE NOLES ...t e e s e e e sab e e e nn e e s ann e e snnee s 10
CARG . E b A bt bRt Rt ettt e bt ns 11
(22 SRS 13
EXPRL .ttt sttt e et be R Re R e e Re e R e et e tententenreerenre s 15
€1 O USRS 17
ALNREL ...ttt ettt bbb a e bttt st b re e 19
Chapter 2: Trigonometric and Hyperbolic Functions 23

01U (] 1= PR 23
USBOE NOLES ..ot me e s e e ne e s n e e nne e nnreenneeans 24
LI ST 25
[2 P 27
IS N LSS 30
COSDIG ...ttt b e bbb bbbt Rt a ettt e b b ae b ens 32
N PSSP 34
O 1 RSN 36
ATAN ettt et bRt e b b e bR bt Re et et et et neenre e 38

EEROQUEWFIUE ROGUEWAVE.COM Contents |

SINH coooooevveooseseeos s 42
COSH eoevveeeeesieseeeesee e s ses s es s s s s s s s s s s s ses s senessssenesssanns 44
TANH w..cooeeeeee e s s s s sss e ssssenesssanns 46
ASINH .ooooooeveetee s 48
ACOSH.....oooevvoeieeeeveieeseeseseseeessessesse s ss s s esssssesessssssesss s ss s ssssssesess s 50
ATANH ..o eeeeee s es s ess s seses s s s s s se s eese st seeessssessessnsee 52
Chapter 3: Exponential Integrals and Related Functions 55
0T =SS 55
USAJE NOLES ...ttt ettt sttt e st e bt e e bt e e s ba e e sabe e e snbeesnnseeennneenns 56
Bl oo es e ee s s 57
Ed oo seess s 59
ENE . .o.ooooeeevoeeeee s s s s 61
AL oo 63
Sl 66
Cl oo 68
CIN oo ee s as s sss s s s eeees s s ese st eeesssnsennessssenesssnens 70
SHI oo st 72
CHI oo s s 74
CINH..evoooeee oo sessesessesssesees s ess s sssssesess s ss s sessessessssssssenesssnsessssnnns 76
Chapter 4: Gamma Function and Related Functions 79
ROULINES ...ttt ettt s e et e e s e et e e s ae e et e e saeeanteesaeesaseesaeesaneeaseesnneeseennns 79
USAOE NOLES ...ttt sttt ettt sttt e e st e bt e e bt e e s ba e e snbe e e nnbeesasseeennneenns 80
FAC ..o oeeeeeveeseeeesessee s s es s s s s s s e s s 81
BINOM .oo.eooeooeeveeeeeeeseeeeeeseesseeessesseess s ssessesessassssssssssssessssssassessssssssessssaesesssssseneees 83
GAMMOA ...ooevveeseeveesee e s s s s s s s s sss s s esssnnns 85
GAMR ..o et 88
ALNGAMooooemeveeeeseeeeseeeeseeeeeessesseeessesssesessesssessssssssesesssssesessssssssessssaesessssasessses 90
ALGAMS........oooierevvoiessesssseeesssseses s s s ss s s s s s 93
GAM I oo s s s eees s sssssensssanns 95
GAMIC ..o ss s e s s eses s sess e ses s sessssessseseessssenesssnnns 97
GAMIT oo s s s 99
PSl oo 101
PSI Lo eeeeeeeeeesesseeees s s s s 103
POCH ...coorevvoeseeeseeseessssssss s s s s s s s s s s s s 105
POCHL..oooevveeoeeeveeeeeees e s s s ssss s s s ses s esesssss e ssssssssssssssessssssssnesssssene 107
BETA coooooeevoeeeeeeseeseeessssssseessssssesssssssssessss s sesssssesssssssasesssssaessssssass s ssasaeeesessee 109
ALBETA ..ot ees s sssss s s s s s s s s s asss s 112
BETA .ooooevoeoeeeeeoeeeeessessesesssseeessssssssnessssssesssssesssssssasessssssesssssssassssssssssssssssssesssssne 114
Chapter 5: Error Function and Related Functions 117
ROULINES ...ttt sttt ettt e st esbe e st e e be e saeeeteesaeeeaseesseesnseesaeeenseesseesnreans 117

EEROQUEWFIUE ROGUEWAVE.COM Contents i

ERF coooo oottt st 119
ERFC w..oooooeeooveesesess s st 121
ERFCEoooevvetoeeveteeesssseeessssesssassessssssessssssesssssssss s sssases s ssssnsssssssssssssssssssansssssnnens 124
CERFE ..ooo.oootovvose s sss s 126
ERFL ..ot 128
ERFCI ...oooooevveoeeseeeessseeeesessessssssessssssesss s s s sssasssssenssssanssssssssssssssssssssnsssssenees 131
DAWS....oooevvttiesietessssses s sss s 134
FRESCooorvvvoaeesetessssessessssesssssesssssessssse s s s s ssssss s ssse s s sssenens 136
FRESS......oorvvteeeeseteesssssesesassesssasssssssssesssssssss s s sssasssssssssssssesssssssssssssssssssssssseness 138
Chapter 6: Bessel Functions 141
01U 1] 7= 141
USAE NOLES ...ttt sb e e e s be e e naae e e nase e e naneeennes 143
BSUD ...ocvveeoeseeseesessesssssee st 144
BSUL .oovvveesissaesssses st 146
BSY 0ottt 148
BSY Luooooeoceeeeeeeeeseeeeseeee s sss st 150
BSIO covovveeesistse st 152
BSIL cooovveeicsieseesssses st 154
BSKO.rvveeoeeveeoeeeesesssssesessssesesss s sse s st 156
BSK Lu...vvvvoviesassisssssssssessssse s sss s sss st 159
BSIOE c.....ooomvveeseesssssssssssesssesesssesssss s 161
BSILE c...oooooeveeeceeeeeeesseeee s 163
BSKOEooomvvvoseesssssssssssesssssssssss s ssss st 165
BSKLE ...oooomvvvescesssssssssssessssesssssss s 167
BSINS.....ooovoeeeceeeseesssssese s sssess s s s 169
BSINS ...ooooosvttsesetess st 172
BSUS....cvveeaesissaesssses s 175
BSY'S oottt 177
BSIS vttt 179
BSIES....oooouevvseseesssessssisss s st 181
BSK'S w..eoeeoeeveteeeesseessssese s sss st 183
BSKES....ooomvvuiueesssisssssssssssessssssessssss s s st 185
CBUIS ..ot 187
CBY Sooooeeeeeeeseeee s s s 190
CBIS. oottt 193
CBK S .oooovootestee st sse bbb 195
Chapter 7: Kelvin Functions 197
ROULINES ...ttt sttt e et e s ae e et e e e ae e e ate e s beeeaseeaseesareenbeesnteenreas 197
USAE NOLES ...ttt st s b e s ne e s e e e san e e s nnneeennes 198
BERD.oooevvttiessssesssssssssssessssssssssssse s 200
BELD ..oo.vveeoceveeeeeeeseessssess s sss s 202

E:'ROQUEWFWE ROGUEWAVE.COM Contents i

AKELD ..o ee e s e s es e ee s eee e see e ses e eeseeeseeeeneed 206
BERPO ...ttt s e ee e s e es st e s es e s e e ee et en e s 208
BEIPO....veoo oo eeeeeeeeseeeeses e es e seseeee e eeseeeesese s e et ses e s eeee s ee e eee e eee s s s seeeeee 210
F = = L= OO 212
AKETPO. ...t ee e ee e e s e ee e ee s ee e es e ees e ses e ees s seeeeeeseneed 214
BERL ..o veeeeeseeeeseseeeseeseeeeeeeeeseseeeeeeeeeseeeeseee s eeseeses e ees e s ee st eee s eee et e e ees e e eeeeee 216
BEIL oo eeeee s ee s eeeeee e ee st en et eee s e e eeeee 218
AKERL. ..ot ee s e s es e ee s een s seseseseee e seneed 220
AKEIL ..ot e e s s s e ee e es e ees e es e es e ees e ees e eeseneseeeeeseneed 222

Chapter 8: Airy Functions 225
01 1] 1= 225
AL ettt ettt en e s s seneed 226
Bl oot et e e ettt e e et ee e e ettt e et ee et et et eee s e e e en e 228
AAID oottt e e s een e seneed 230
BID ..o eeee et e et e et e e e e ee e et et e e eee e 232
AL .ottt e et s ettt e s ee e e ee e ee e nen e seneed 234
BIE .ot ee e ee e ee e e e e e e en et ee s e 236
AAIDE ..ot e et s et n e ee s eeneed 238
BIDE ... eeeeeeeeeeeeee e ses e eee e e s ee s e e s ees et et e s e ee s ee et ee et et ees e eere 240
(7 OO 242
(1= OO 244
CAID ettt et ee e s e sttt e e ee et ee s ser e 246
(1] o JE OO 248

Chapter 9: Elliptic Integrals 251
01 (] 1= 251
USBOE NOLES ...ttt be e s b e e e s n e e e s mn e e s enn e e s nnee s 252
ELK v eeeseeeeees e s s e e e es e es e s e e ee e ee s e e een et eee et e e een e 255
ELE e eee e ee et e e en et ee s ee e 257
ELRF ...t ee et ee e e e e e e e ee e ee e ee et et s e eee e 259
ELRD ..o eeeeeeeeeeeees s es s ee e eeese s e e seees e ee s s e s ses s ee s se s eee s eee et ee e s e eeeere 261
ELRJ ..ot ee e e e es e s s ee e st ee e s 263
ELRC .ottt ee s ee e e e st e e e ee s ee et r e e 265

Chapter 10: Elliptic and Related Functions 267
0 U< 267
USAJE NOLES ...ttt s e e be e e st e e e sne e e s ane e e nnreeennee s 268
CWVPL. oottt e e ee et et es e s e e s s s s eee s sen e 269
CWVPLD oottt s e s et s s ee s e e ses e s ees e eeseeses e 271
(01117 = TSR 273
CWVPQD ..ot ee e ee e s e e et ee et s s e s ee e ees e ees e 275
EISN oot e e e e e e e et et eee e e e e et r et eee e nen e 277

E:'ROQUEWFWE ROGUEWAVE.COM Contents iv

Chapter 11: Probability Distribution Functions and Inverses287

ROULINES ...ttt ettt s et s e e be e s ae e et e e saeesabeesbeesabeeebeesnseeabeesareebeesnneenrens 287
USBOE NOLES ..ot esne e sn e nneenane s 290
I N0 S 294
BINPIR ..o s e e e e e eae e e s b e e e e be e e e ae e e eaae e e aareeeaaaeeeaeeeenreesreeeeanes 296
L] LSRR 299
L] I\ USRS 301
GEOPR ...ttt e ettt e et e e e e ae e e et e e e e ate e e eateeeaheeeeabeee e beeeebeeeeareeeanreeearreeans 303
[I 5 P 305
o I o 307
[O 1 I LSS 309
O o USSR 311
O 1100 314
[] N O 316
(1N 5 o PSSR 318
N S 1 LRSS 320
N S Y24 I LRSS 323
N 5 SRS 326
I N 1 S 328
o I N RS 330
ANORDF ... et e e et e e st e e ste e e beaaaseeseesaeeereeaaeeereesreeereeareeas 332
N 1 L S 334
ANORPRR ... e e et e s b e e s e e e e e e e e abe e e eare e e eaee e e reeeebeeeereeeaareas 336
T 5 SRR 338
T I 1 SR 341
] I SRR 343
T N 5 USSR 345
T I 348
] I AL SR 351
BINRDF ...ttt ettt e st e e e e e e s b e e st e e ae e e e e e ae e eaae e beeeareereenane e reeanes 354
L o | 5 SRR 356
L0 o 11 SRRSO 359
(O o 1 R 361
LR NI RSSO 363
LS N1 1 USSP 366
L0 N SR 368
o 1D LSS 371
) RS 373
) o SRS 375
[V I LS 377
)Y 1\ SRR 379
)Y o SR 381

EEROQUEWUVE ROGUEWAVE.COM Contents v

FIN oot ssse st ss s 386
FPR ooooocvveoeeesvesessssseesssssess s sssseessssse s 388
FINDF ...t s s s s 390
FININ Looooeovoosvesss st ss st 393
FINPR ..ot ssseessssse st s s s s s s 396
GAMDF ... 399
GAMIN ..o 402
GAMPR ... 404
RALDF <...ooovvteeeveteeeeseeess s s s s s s s s s s s e 406
RALIN w..oooooeveeceetee s 408
RALPR......oovvoeemesteesesessessssssessssssessssss s s s ssss s s s s ss s s s s 409
TDF oot e s 411
TIN oot 413
TPR oo s s s 415
TINDF ..ot s s enessens 417
TININ oot 420
TINPR oo bbb 422
UNDF ..ot ess s s ss s ss s s 424
UNIN coooeoeoosset sttt 426
UNPR ...coooooce oot ssse s ss s s s s s s 428
WBLDF ...oooeveoeeeeeeeeeseseseesse e s sssssse s ss s sss s s s s 430
WBLIN w...cooooeveoestssessse st 432
WBLPR......ooorvvotreeeeessssess st sssssessssssss s s ssssssessssse s s e sss s sssse s 434
GODF ...oooeveeeeveeeeeseesees s s s s s s s s s s s s 436
GCIN oo 439
GININ oot 442

Chapter 12: Mathieu Functions 445
0 U< 445
USAGE NOLES ...ttt st e bt e e be e e s b e e e sne e e s ane e e nnreeennee s 446
MATEEoovveeeesitesssssees s sssss s 447
MATCE ...ooovvooeeeeteeesesesseee s s s s s s e sssenss s 450
IMATSE ...oooo oot sssse s sss s 454

Chapter 13: Miscellaneous Functions 457
01 (] 1R 457
@ ES-2 0 [NN (0] = TSRS 458
SPENC ...oooevveoeeveeeeesseeessesess s s esssssse s ssss s s s ssss s s nes s enss s snssssanessnns 460
INITS oottt 462
CSEVL covveevvereeseeseesseess s s s s s s s s s s nessens 463
ROULINES/ TOPICS ..vveveeieeiestiesieeiesteestesee s e estesseesteeeesseesseeseesseensesseesseensesseesseensesseessnnnenns 465
LS = o TSR 466
ERSET ...oooooevoeeestoe et sssess s ssss s s s s s 469

E:'ROQUEWFWE ROGUEWAVE.COM Contents Vi

[ERCD 8N NIRTY ...ttt sttt b e b sne s 470

Machine-Dependent CONSLANTS..........ccvieeiiereeieseere e see e e e ste e sreesaeeaesneees 471
IIMIACH oo e e e e e e e e e es e e s eeeee e ee e e e eeeeeeenees s eeneee s eeeeeeeneenenens 472
Y Y X = TR 474
DIMACH ..ottt ee e eee et eee e et eeee e e s eeeeeeeseee e eeeeeeeneseeeeeeeeeneeseeeeeneeneeeaneeeans 476
TEINANCX) et eeeeeesseee e eee s se s e s seeeseeesessessees e s esesseseseesesseesseseesenseseeeesesseseeesene 477
UMAGCH .o e ee e eee e e s ees e s s eseeseseeeeseesess s eeseeseseseseseseseseesseesenesneseeneeenns 479
RESEIVEA NAIMES ...t e e e ettt e e e e e e e e e e e e e e e e e e e s aeeeneeeaeeneeaaaan 481
Deprecated Features and Deleted ROULINES.............oooiieiieriienieseee e 482
Appendix A: Alphabetical Summary of Routines 485
Appendix B: References 495

EEROQUEWFIUE ROGUEWAVE.COM Contents vii

=RogueWave rocuewave.com Contents vii

Introduction

‘l‘l‘l

The IMSL Fortran Numerical Libraries

The IMSL Libraries consist of two separate, but coordinated Libraries that allow easy user access. These
Libraries are organized as follows:

¢ MATH LIBRARY general applied mathematics and special functions

The User’s Guide for IMSL MATH LIBRARY has two parts:
1. MATH LIBRARY
2. MATH LIBRARY Special Functions

o STAT/LIBRARY statistics

Most of the routines are available in both single and double precision versions. Many routines are also avail-
able for complex and complex-double precision arithmetic. The same user interface is found on the many
hardware versions that span the range from personal computer to supercomputer. Note that some IMSL rou-
tines are not distributed for FORTRAN compiler environments that do not support double precision complex
data. The specific names of the IMSL routines that return or accept the type double complex begin with the
letter “z” and, occasionally, “DC.”

Getting Started

IMSL MATH LIBRARY Special Functions is a collection of FORTRAN subroutines and functions useful in
research and statistical analysis. Each routine is designed and documented to be used in research activities as
well as by technical specialists.

To use any of these routines, you must write a program in FORTRAN (or possibly some other language) to
call the MATH LIBRARY Special Functions routine. Each routine conforms to established conventions in pro-
gramming and documentation. We give first priority in development to efficient algorithms, clear

EE Rogygmq\{q Introduction

documentation, and accurate results. The uniform design of the routines makes it easy to use more than one
routine in a given application. Also, you will find that the design consistency enables you to apply your
experience with one MATH LIBRARY Special Functions routine to all other IMSL routines that you use.

Finding the Right Routine

The organization of IMSL MATH LIBRARY Special Functions closely parallels that of the National Bureau of
Standards” Handbook of Mathematical Functions, edited by Abramowitz and Stegun (1964). Corresponding to
the NBS Handbook, functions are arranged into separate chapters, such as elementary functions, trigonomet-
ric and hyperbolic functions, exponential integrals, gamma function and related functions, and Bessel
functions. To locate the right routine for a given problem, you may use either the table of contents located in
each chapter introduction, or one of the indexes at the end of this manual.

Organization of the Documentation

This manual contains a concise description of each routine, with at least one demonstrated example of each
routine, including sample input and results. You will find all information pertaining to the Special Functions
Library in this manual. Moreover, all information pertaining to a particular routine is in one place within a
chapter.

Each chapter begins with an introduction followed by a table of contents that lists the routines included in
the chapter. Documentation of the routines consists of the following information:

¢ IMSL Routine’s Generic Name

& Purpose: a statement of the purpose of the routine. If the routine is a function rather than a
subroutine the purpose statement will reflect this fact.

« Function Return Value: a description of the return value (for functions only).

& Required Arguments: a description of the required arguments in the order of their occurrence.
Input arguments usually occur first, followed by input/output arguments, with output
arguments described last. Futhermore, the following terms apply to arguments:

Input Argument must be initialized; it is not changed by the routine.

Input/Output Argument must be initialized; the routine returns output through this argument; cannot
be a constant or an expression.

Input or Output Select appropriate option to define the argument as either input or output. See individ-
ual routines for further instructions.

Output No initialization is necessary; cannot be a constant or an expression. The routine returns output
through this argument.

¢ Optional Arguments: a description of the optional arguments in the order of their occurrence.

EE Rog':l?wgq\\:er Introduction

& FPortran 90 Interface: a section that describes the generic and specific interfaces to the routine.

& Fortran 77 Style Interface: an optional section, which describes Fortran 77 style interfaces, is
supplied for backwards compatibility with previous versions of the Library.

o ScaLAPACK Interface: an optional section, which describes an interface to a ScaLAPACK based
version of this routine.

& Description: a description of the algorithm and references to detailed information. In many
cases, other IMSL routines with similar or complementary functions are noted.

¢ Comments: details pertaining to code usage.

Programming notes: an optional section that contains programming details not covered
elsewhere.

& Example: at least one application of this routine showing input and required dimension and
type statements.

¢ Output: results from the example(s). Note that unique solutions may differ from platform to
platform.

Additional Examples: an optional section with additional applications of this routine showing
input and required dimension and type statements.

Naming Conventions

The names of the routines are mnemonic and unique. Most routines are available in both a single precision
and a double precision version, with names of the two versions sharing a common root. The root name is also
the generic interface name. The name of the double precision specific version begins with a“D”. The single
precision specific version begins with an “S_". For example, the following pairs are precision specific names
of routines in the two different precisions: S_GAMDF/D_GAMDF (the root is “GAMDF ,” for “Gamma distribu-
tion function”) and S_POIDF/D_POIDF (the rootis “POIDF,” for “Poisson distribution function”). The
precision specific names of the IMSL routines that return or accept the type complex data begin with the let-
ter “C_" or “z_" for complex or double complex, respectively. Of course the generic name can be used as an
entry point for all precisions supported.

When this convention is not followed the generic and specific interfaces are noted in the documentation. For
example, in the case of the BLAS and trigonometric intrinsic functions where standard names are already
established, the standard names are used as the precision specific names. There may also be other interfaces
supplied to the routine to provide for backwards compatibility with previous versions of the Library. These
alternate interfaces are noted in the documentation when they are available.

Except when expressly stated otherwise, the names of the variables in the argument lists follow the FOR-
TRAN default type for integer and floating point. In other words, a variable whose name begins with one of
the letters “I” through “N” is of type INTEGER, and otherwise is of type REAL or DOUBLE PRECISION,
depending on the precision of the routine.

EE R{ngﬁ.lnewlg\{er Introduction

An assumed-size array with more than one dimension that is used as a FORTRAN argument can have an
assumed-size declarator for the last dimension only. In the MATH LIBRARY Special Functions routines, the
information about the first dimension is passed by a variable with the prefix “L.LD” and with the array name as
the root. For example, the argument LDA contains the leading dimension of array A. In most cases, informa-
tion about the dimensions of arrays is obtained from the array through the use of Fortran 90’s size function.
Therefore, arguments carrying this type of information are usually defined as optional arguments.

Where appropriate, the same variable name is used consistently throughout a chapter in the MATH
LIBRARY Special Functions. For example, in the routines for random number generation, NR denotes the
number of random numbers to be generated, and R or IR denotes the array that stores the numbers.

When writing programs accessing the MATH LIBRARY Special Functions, the user should choose FOR-
TRAN names that do not conflict with names of IMSL subroutines, functions, or named common blocks. The
careful user can avoid any conflicts with IMSL names if, in choosing names, the following rules are observed:

¢ Do not choose a name that appears in the Alphabetical Summary of Routines, at the end of the
User’s Manual, nor one of these names preceded byaD,S_,D_,C_,or Z_.

Do not choose a name consisting of more than three characters with a numeral in the second or
third position.

For further details, see the section on Reserved Names in the Reference Material.

Using Library Subprograms

The documentation for the routines uses the generic name and omits the prefix, and hence the entire suite of
routines for that subject is documented under the generic name.

Examples that appear in the documentation also use the generic name. To further illustrate this principle,
note the BSINS documentation (see Chapter 6, “Bessel Functions”, of this manual). A description is provided
for just one data type. There are four documented routines in this subject area: S_BSJNS, D_BSJNS,
C_BSJNS, and Z_BSJNS.

These routines constitute single-precision, double-precision, complex, and complex double-precision ver-
sions of the code.

The appropriate routine is identified by the Fortran 90 compiler. Use of a module is required with the rou-
tines. The naming convention for modules joins the suffix “_int” to the generic routine name. Thus, the line
“use BSJNS_INT” is inserted near the top of any routine that calls the subprogram “BSINS”. More inclusive
modules are also available. For example, the module named imsl_libraries contains the interface mod-
ules for all routines in the library.

When dealing with a complex matrix, all references to the transpose of a matrix, 4”are replaced by the adjoint
matrix

EE R{ngﬁ.lnewlg\{er Introduction

Al =4"= 4"

where the overstrike denotes complex conjugation. IMSL Fortran Numerical Library linear algebra software
uses this convention to conserve the utility of generic documentation for that code subject. All references to
orthogonal matrices are to be replaced by their complex counterparts, unitary matrices. Thus, an n x n orthog-

onal matrix Q satisfies the condition QTQ = I,. An n x n unitary matrix V satisfies the analogous condition

for complex matrices, V'V =1,

Programming Conventions

In general, the IMSL MATH LIBRARY Special Functions codes are written so that computations are not
affected by underflow, provided the system (hardware or software) places a zero value in the register. In this
case, system error messages indicating underflow should be ignored.

IMSL codes also are written to avoid overflow. A program that produces system error messages indicating
overflow should be examined for programming errors such as incorrect input data, mismatch of argument
types, or improper dimensioning.

In many cases, the documentation for a routine points out common pitfalls that can lead to failure of the
algorithm.

Library routines detect error conditions, classify them as to severity, and treat them accordingly. This
error-handling capability provides automatic protection for the user without requiring the user to make any
specific provisions for the treatment of error conditions. See the section on User Errors in the Reference Mate-
rial for further details.

EE ROQQ?WQ\{E{ Introduction 5

Module Usage

Users are required to incorporate a “use” statement near the top of their program for the IMSL routine being
called when writing new code that uses this library. However, legacy code which calls routines in the previ-
ous version of the library without the presence of a “use” statement will continue to work as before. The
example programs throughout this manual demonstrate the syntax for including use statements in your pro-
gram. In addition to the examples programs, common cases of when and how to employ a use statement are
described below.

o Users writing new programs calling the generic interface to IMSL routines must include a use
statement near the top of any routine that calls the IMSL routines. The naming convention for
modules joins the suffix “_int” to the generic routine name. For example, if a new program is
written calling the IMSL routines LFTRG and LFSRG, then the following use statements should
be inserted near the top of the program

USE LFTRG_INT
USE LFSRG_INT

In addition to providing interface modules for each routine individually, we also provide a module
named “imsl_libraries”, which contains the generic interfaces for all routines in the library. For
programs that call several different IMSL routines using generic interfaces, it can be simpler to insert the
line

USE IMSL_LIBRARIES

rather than list use statements for every IMSL subroutine called.

o Users wishing to update existing programs to call other routines from this library should
incorporate a use statement for the new routine being called. (Here, the term “new routine”
implies any routine in the library, only “new” to the user’s program.) For example, if a call to
the generic interface for the routine LSARG is added to an existing program, then

USE LSARG_INT
should be inserted near the top of your program.

& Users wishing to update existing programs to call the new generic versions of the routines must
change their calls to the existing routines to match the new calling sequences and use either the
routine specific interface modules or the all encompassing “imsl_libraries” module.

¢ Code which employed the “use numerical_libraries” statement from the previous
version of the library will continue to work properly with this version of the library.

Programming Tips

It is strongly suggested that users force all program variables to be explicitly typed. This is done by including
the line “IMPLICIT NONE” as close to the first line as possible. Study some of the examples accompanying
an IMSL Fortran Numerical Library routine early on. These examples are available online as part of the
product.

EE ROQQ?WQ\{E{ Module Usage Introduction

Each subject routine called or otherwise referenced requires the “use” statement for an interface block
designed for that subject routine. The contents of this interface block are the interfaces to the separate rou-
tines available for that subject. Packaged descriptive names for option numbers that modify documented
optional data or internal parameters might also be provided in the interface block. Although this seems like
an additional complication, many typographical errors are avoided at an early stage in development through
the use of these interface blocks. The “use” statement is required for each routine called in the user’s
program.

However, if one is only using the Fortran 77 interfaces supplied for backwards compatibility then the “use”
statements are not required.

Optional Subprogram Arguments

IMSL Fortran Numerical Library routines have required arguments and may have optional arguments. All
arguments are documented for each routine. For example, consider the routine GCIN which evaluates the
inverse of a general continuous CDF. The required arguments are P, X, and F. The optional arguments are
IOPT and M. Both TOPT and M take on default values so are not required as input by the user unless the user
wishes for these arguments to take on some value other than the default. Often there are other output argu-
ments that are listed as optional because although they may contain information that is closely connected
with the computation they are not as compelling as the primary problem. In our example code, GCIN, if the
user wishes to input the optional argument “IOPT” then the use of the keyword “IOPT="in the argument
list to assign an input value to IOPT would be necessary.

For compatibility with previous versions of the IMSL Libraries, the NUMERICAL_LIBRARIES interface mod-
ule includes backwards compatible positional argument interfaces to all routines which existed in the
Fortran 77 version of the Library. Note that it is not necessary to use “use” statements when calling these rou-
tines by themselves. Existing programs which called these routines will continue to work in the same manner
as before.

Error Handling

The routines in IMSL MATH LIBRARY Special Functions attempt to detect and report errors and invalid
input. Errors are classified and are assigned a code number. By default, errors of moderate or worse severity
result in messages being automatically printed by the routine. Moreover, errors of worse severity cause pro-
gram execution to stop. The severity level as well as the general nature of the error is designated by an “error
type” with numbers from 0 to 5. An error type 0 is no error; types 1 through 5 are progressively more severe.
In most cases, you need not be concerned with our method of handling errors. For those interested, a com-
plete description of the error-handling system is given in the Reference Material, which also describes how
you can change the default actions and access the error code numbers.

EE R{ngﬁ.lnewlg\{er Module Usage Introduction

Printing Results

None of the routines in IMSL MATH LIBRARY Special Functions print results (but error messages may be
printed). The output is returned in FORTRAN variables, and you can print these yourself.

The IMSL routine UMACH (see the Reference Material section of this manual) retrieves the FORTRAN device
unit number for printing. Because this routine obtains device unit numbers, it can be used to redirect the
input or output. The section on Machine-Dependent Constants in the Reference Material contains a description
of the routine UMACH.

= Rogygmq\{q Printing Results Introduction 8

Chapter 1: Elementary Functions

I

Routines
Evaluates the argument of a complex number. CARG 11
Evaluates the cube root of a real or complex number CBRT 13
Evaluates (¥ - 1)/xforreal orcomplex x, EXPRL 15
Evaluates the complex base 10 logarithm, log{gz LOG10 17
Evaluates In(x + 1) forrealorcomplex x ALNREL 19

= R{nggﬂg\{q Chapter 1: Elementary Functions 9

Usage Notes

The “relative” function EXPRL is useful for accurately computing ¢* - 1 near x = 0. Computing ¢* - 1 using
EXP(X) - 1 near x = (0 is subject to large cancellation errors.

Similarly, ALNREL can be used to accurately compute In(x + 1) near x = 0. Using the routine ALOG to compute
In(x + 1) near x = 0 is subject to large cancellation errors in the computation of 1 + X.

= R{ng?mq\{q Usage Notes Chapter 1: Elementary Functions 10

CARG

This function evaluates the argument of a complex number.

Function Return Value

CARG — Function value. (Output)
If z = x + iy, then arctan(y/x) is returned except when both x and y are zero. In this case, zero is
returned.

Required Arguments

Z — Complex number for which the argument is to be evaluated. (Input)

FORTRAN 90 Interface

Generic: CARG (2)
Specific: The specific interface names are S_CARG and D_CARG.

FORTRAN 77 Interface

Single: CARG (2)
Double: The double precision function name is ZARG.
Description

Arg(z) is the angle 8 in the polar representation z = |z|e®, where j =+ —1 .

If z = x + iy, then 8 = tan™! (y/x) except when both x and y are zero. In this case, 8 is defined to be zero

Example
In this example, Arg(1 + i) is computed and printed.

USE CARG_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE
COMPLEX Z
! Compute
Z = (1.0, 1.0)
VALUE = CARG(Z)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE

= Rogygmﬂn\{q CARG Chapter 1: Elementary Functions

11

99999 FORMAT (' CARG(', F6.3, ',', F6.3, ') = ', F6.3)
END

Output

CARG(1.000, 1.000) = 0.785

= Rogygmg\(e: CARG Chapter 1: Elementary Functions 12

CBRT

This function evaluates the cube root.

Function Return Value
CBRT — Function value. (Output)

Required Arguments
X — Argument for which the cube root is desired. (Input)

FORTRAN 90 Interface

Generic: CBRT (X)
Specific: The specific interface names are S_CBRT, D_CBRT, C_CBRT, and Z_CBRT.

FORTRAN 77 Interface

Single: CBRT (X)
Double: The double precision name is DCBRT.
Complex: The complex precision name is CCBRT.

Double Complex: The double complex precision name is ZCBRT.

Description

1/3

The function CBRT(X) evaluates x*/°. All arguments are legal. For complex argument, x, the value of |x| must

not overflow.

Comments

For complex arguments, the branch cut for the cube root is taken along the negative real axis. The argu-
ment of the result, therefore, is greater than —11/3 and less than or equal to T1/3. The other two roots are
obtained by rotating the principal root by 3 11/3 and 11/3.

Examples

Example 1

In this example, the cube root of 3.45 is computed and printed.

USE CBRT_INT
USE UMACH_INT

IMPLICIT NONE

= ROQQ?WQ\{EF CBRT Chapter 1: Elementary Functions 13

! Declare variables

INTEGER NOUT
REAL VALUE, X

! Compute
X = 3.45

VALUE = CBRT (X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' CBRT(', F6.3, ') = ', F6.3)
END

Output

CBRT(3.450) = 1.511

Example 2

In this example, the cube root of -3 + 0.0076i is computed and printed.

USE UMACH_INT
USE CBRT_INT
IMPLICIT NONE

! Declare variables
INTEGER NOouT
COMPLEX VALUE, Z

! Compute
Z (-3.0, 0.0076)
VALUE = CBRT(Z)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) 2z, VALUE

99999 FORMAT (' CBRT((’, F7.4, ',’, F7.4, ")) = (', &
F6.3, *,’, F6.3, "))
END
Output
CBRT((-3.0000, 0.0076)) = (0.722, 1.248)

= R{nggmq\{q CBRT Chapter 1: Elementary Functions 14

EXPRL

This function evaluates the exponential function factored from first order, (EXP(X) - 1.0)/X.

Function Return Value
EXPRL — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: EXPRL (X)
Specific: The specific interface names are S_EXPRL, D_EXPRL, and C_EXPRL.

FORTRAN 77 Interface

Single: EXPRL (X)
Double: The double precision function name is DEXPRL.
Complex: The complex name is CEXPRL.

Description

The function EXPRL(X) evaluates (¢* - 1)/x. It will overflow if ¢* overflows. For complex arguments, z, the
argument z must not be so close to a multiple of 2 Tt that substantial significance is lost due to cancellation.
Also, the result must not overflow and |Jz| must not be so large that the trigonometric functions are
inaccurate.

Examples

Example 1

In this example, EXPRL(0.184) is computed and printed.

USE EXPRL_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = 0.184
VALUE = EXPRL (X)

= Rogygmﬂn\{q EXPRL Chapter 1: Elementary Functions 15

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' EXPRL(', F6.3, ') = ', F6.3)
END

Output

EXPRL(0.184) = 1.098

Example 2

In this example, EXPRL(0.00767) is computed and printed.

USE EXPRL_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
COMPLEX VALUE, Z
! Compute
Z = (0.0, 0.0076)
VALUE = EXPRL(Z)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) 2z, VALUE

99999 FORMAT (' EXPRL((', F7.4, ',', F7.4, ')) = (', &
F6.3, ',' F6.3, ')"')
END
Output
EXPRL((0.0000, 0.0076)) = (1.000, 0.004)

= Rogypmq\{q EXPRL Chapter 1: Elementary Functions 16

LOG10

This function extends FORTRAN's generic log10 function to evaluate the principal value of the complex

common logarithm.

Function Return Value
LOG10 — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: LOGL10 (2)

Specific:

FORTRAN 77 Interface

Complex: CLOG10 (2)

Double complex:The double complex function name is ZLOG10.

Description

The specific interface names are CLOG10 and ZLOG10.

The function LOG10(Z) evaluates logy (z) . The argument must not be zero, and |z| must not overflow.

Example

In this example, the log((0.0076i) is computed and printed.

USE LOG10_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables
INTEGER NOUT
COMPLEX VALUE, Z
! Compute
Z = (0.0, 0.0076)

VALUE = LOG10 (Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' LOG1O((', F7.4, ',', F7.4, ")) = (',
F6.3, ',', F6.3, "))
END

=RogueWave

LOG10

Chapter 1: Elementary Functions

17

Output

LOG10((0.0000, 0.0076)) = (-2.119, 0.682)

= Rogygmq\{e; LOG10 Chapter 1: Elementary Functions 18

ALNREL

This function evaluates the natural logarithm of one plus the argument, or, in the case of complex argument,
the principal value of the complex natural logarithm of one plus the argument.

Function Return Value
ALNREL — Function value. (Output)

Required Arguments
X — Argument for the function. (Input)

FORTRAN 90 Interface

Generic: ALNREL (X)
Specific: The specific interface names are S_ALNREL, D_ALNREL, and C_ALNREL.

FORTRAN 77 Interface

Single: ALNREL (X)
Double: The double precision name function is DLNREL.
Complex: The complex name is CLNREL.

Description

For real arguments, the function ALNREL(X) evaluates In(1 + x) for x > -1. The argument x must be greater
than —1.0 to avoid evaluating the logarithm of zero or a negative number. In addition, x must not be so close
to —1.0 that considerable significance is lost in evaluating 1 + x.

For complex arguments, the function CLNREL(Z) evaluates In(1 + z). The argument z must not be so close to
-1 that considerable significance is lost in evaluating 1 + z. If it is, a recoverable error is issued; however,
z = -1is a fatal error because In(1 + z) is infinite. Finally, |z| must not overflow.

Letp =|z],z=x+ iy and P=1+z?=1+x*+ y2 =1+ 2x + p% Now, if p is small, we may evaluate
CLNREL(Z) accurately by
log(1 +z) = log r + iArg(z + 1)
= 1/2log r* + iArg(z + 1)
= 1/2 ALNREL(2x + p?) + iCARG(1 + 2)

= ROQQ?WQ\{EF ALNREL Chapter 1: Elementary Functions 19

Comments

Informational Error

Type Code
3 2

Description

too near -1.0.

ALNREL evaluates the natural logarithm of (1 + X) accurate in the sense of relative error even when X is very

Result of ALNREL(X) is accurate to less than one-half precision because X is

small. This routine (as opposed to the intrinsic ALOG) should be used to maintain relative accuracy when-

ever X is small and accurately known.

Examples

Example 1

In this example, In(1.189) = ALNREL(0.189) is computed and printed.

USE ALNREL_INT
USE UMACH_INT

IMPLICIT NONE
1
INTEGER NOUT
REAL VALUE, X
!
X = 0.189
VALUE = ALNREL (X)
1
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' ALNREL(', F6.3,
END
Output
ALNREL(0.189) = 0.173
Example 2

In this example, In(0.00767) = ALNREL(-1 + 0.00767) is computed and printed.

USE UMACH_INT
USE ALNREL_INT

IMPLICIT NONE

!
INTEGER NOUT
COMPLEX VALUE, 7Z

Declare variables

Compute

Print the results

- 1

, F6.3)

Declare variables

=RogueWave

ALNREL

Chapter 1: Elementary Functions

20

! Compute
Z (-1.0, 0.0076)
VALUE ALNREL (Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) 2z, VALUE

99999 FORMAT (' ALNREL((', F8.4, ',', F8.4, ")) = (', &
F8.4, ',', F8.4, "))
END
Output
ALNREL ((-1.0000, 0.0076)) = (-4.8796, 1.5708)

= Rogygmq\f‘e; ALNREL Chapter 1: Elementary Functions 21

% Rogygmq\f‘q ALNREL Chapter 1: Elementary Functions 22

—=— Chapter 2: Trigonometric and
—= Hyperbolic Functions
Routines
2.1 Trigonometric Functions
Evaluatestan zforcomplex z TAN 25
Evaluates cot xforreal x CcoT 27
Evaluates sin x for xarealangleindegrees........... SINDG 30
Evaluates cos x for xareal angleindegrees COSDG 32
Evaluates sin~ " z for COMPIEX Z. o e ASIN 34
Evaluates cos™ ' z for complexz.......... ACOS 36
Evaluates tan~" z for complex z e ATAN 38
Evaluates tan ™~ (xly)forxandycomplex ATAN2 40
2.2 Hyperbolic Functions
Evaluates sinh zforcomplex z. SINH 42
Evaluates cosh zforcomplex z. i COSH 44
Evaluates tanh zforcomplex z TANH 46
2.3 Inverse Hyperbolic Functions
Evaluates sinh~! x for real or COMPIEX X\ v vt e ASINH 48
Evaluates cosh~" x for real or COmMpIeX X ..o ACOSH 50
Evaluates tanh~" x for real or complex X. ... ATANH 52

=RogueWave

Chapter 2: Trigonometric and Hyperbolic Functions

23

Usage Notes

The complex inverse trigonometric hyperbolic functions are single-valued and regular in a slit complex
plane. The branch cuts are shown below for z = x + iy, i.e., x = Rz and y = 3z are the real and imaginary parts
of z, respectively.

¥
X X
-1 +1
sin~lz, cos~!z and tanh~1(z) tan~!z and sinh~lz
¥
+1 X
cosh™1lz
Figure 2.1 — Branch Cuts for Inverse Trigonometric and Hyperbolic Functions

= ROQEI?WH\{E: Usage Notes Chapter 2: Trigonometric and Hyperbolic Functions 24

TAN

This function extends FORTRAN'’s generic tan to evaluate the complex tangent.

Function Return Value
TAN — Complex function value. (Output)

Required Arguments

Z — Complex number representing the angle in radians for which the tangent is desired. (Input)

FORTRAN 90 Interface

Generic: TAN (Z)
Specific: The specific interface names are CTAN and ZTAN.

FORTRAN 77 Interface

Complex: CTAN (Z)
Double complex:The double complex function name is ZTAN.

Description

Let z = x + iy. If |cos z|? is very small, that is, if x is very close to Tr/2 or 311/2 and if y is small, then tan z is

nearly singular and a fatal error condition is reported. If |cos z|? is somewhat larger but still small, then the
result will be less accurate than half precision. When 2x is so large that sin 2x cannot be evaluated to any non-
zero precision, the following situation results. If |y| < 3/2, then CTAN cannot be evaluated accurately to better
than one significant figure. If 3/2 < |y| < -1/21n €/2, then CTAN can be evaluated by ignoring the real part of
the argument; however, the answer will be less accurate than half precision. Here, € = AMACH(4) is the
machine precision.

Comments

Informational Error

Type Code Description

3 2 Result of cTAN(z) is accurate to less than one-half precision because the real
part of z is too near Tr/2 or 311/2 when the imaginary part of z is near zero
or because the absolute value of the real part is very large and the absolute
value of the imaginary part is small.

= ROQQ?WQ\{EF TAN Chapter 2: Trigonometric and Hyperbolic Functions 25

Example
In this example, tan(1 + 7) is computed and printed.

USE TAN_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
COMPLEX VALUE, Z

! Compute
Z = (1.0, 1.0)

VALUE = TAN(Z)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE

99999 FORMAT (' TAN((', F6.3, ',', F6.3, ")) = (', &
F6.3, ',', F6.3, "))
END
Output
TAN((1.000, 1.000)) = (0.272, 1.084)

= R{ng?mq\{q TAN Chapter 2: Trigonometric and Hyperbolic Functions 26

COT

This function evaluates the cotangent.

Function Value Return
COT — Function value. (Output)

Required Arguments

X — Angle in radians for which the cotangent is desired. (Input)

FORTRAN 90 Interface

Generic: COT (X)
Specific: The specific interface names are COT, DCOT, CCOT, and ZCOT.

FORTRAN 77 Interface

Single: COT (X)
Double: The double precision function name is DCOT.
Complex: The complex name is CCOT.

Double Complex: The double complex name is ZCOT.

Description

For real x, the magnitude of x must not be so large that most of the computer word contains the integer part
of x. Likewise, x must not be too near an integer multiple of 1T, although x close to the origin causes no accu-
racy loss. Finally, x must not be so close to the origin that COT(X) = 1/x overflows.

For complex arguments, let z = x + iy. If [sin z|%is very small, that is, if x is very close to a multiple of Tr and if

|y| is small, then cot z is nearly singular and a fatal error condition is reported. If |sin z|? is somewhat larger
but still small, then the result will be less accurate than half precision. When |2x/| is so large that sin 2x cannot
be evaluated accurately to even zero precision, the following situation results. If lyl <3/2, then CCOT cannot
be evaluated accurately to be better than one significant figure. If 3/2 <[y| < -1/2 In £/2, where

€ = AMACH(4) is the machine precision, then CCOT can be evaluated by ignoring the real part of the argument;
however, the answer will be less accurate than half precision. Finally, |z| must not be so small that cotz = 1/z
overflows.

Comments

1. Informational error for Real arguments

Type Code Description

3 2 Result of cOT(X) is accurate to less than one-half precision because ABS(x) is
too large, or X is nearly a multiple of TT.

= ROQQ?WQ\{E{ coT Chapter 2: Trigonometric and Hyperbolic Functions 27

2. Informational error for Complex arguments

Type Code Description

3 2 Result of ccOT(z) is accurate to less than one-half precision because the real
part of z is too near a multiple of T when the imaginary part of Z is zero, or
because the absolute value of the real part is very large and the absolute
value of the imaginary part is small.

3. Referencing COT(X) is not the same as computing 1.0/ TAN(X) because the error conditions are quite
different. For example, when X is near T1/2, TAN(X) cannot be evaluated accurately and an error mes-
sage must be issued. However, COT(X) can be evaluated accurately in the sense of absolute error.

Examples

Example 1

In this example, cot(0.3) is computed and printed.

USE COT_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = 0.3
VALUE = COT (X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' COT(', F6.3, ') = ', F6.3)
END

Output

COT(0.300) = 3.233

Example 2

In this example, cot(1 + 7) is computed and printed.

USE COT_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables
INTEGER NOUT
COMPLEX VALUE, Z

= ROQEI?WH\{E: coT Chapter 2: Trigonometric and Hyperbolic Functions 28

1 Compute
7 (1.0, 1.0)
VALUE = COT(Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) 2z, VALUE

99999 FORMAT (' COT((', F6.3, ',', F6.3, ")) = (', &
F6.3, ',', F6.3, ')')
END
Output
COT((1.000, 1.000)) = (0.218,-0.868)

= R‘Dgygmq\{eg coT Chapter 2: Trigonometric and Hyperbolic Functions 29

SINDG

This function evaluates the sine for the argument in degrees.

Function Return Value
SINDG — Function value. (Output)

Required Arguments

X — Argument in degrees for which the sine is desired. (Input)

FORTRAN 90 Interface

Generic: SINDG (X)

Specific:

FORTRAN 77 Interface
Single: SINDG (X)

Double:

Description

The specific interface names are S_SINDG and D_SINDG.

The double precision function name is DSINDG.

To avoid unduly inaccurate results, the magnitude of x must not be so large that the integer part fills more

than the computer word. Under no circumstances is the magnitude of x allowed to be larger than the largest

representable integer because complete loss of accuracy occurs in this case.

Example

In this example, sin 45° is computed and printed.

USE SINDG_INT
USE UMACH_INT
IMPLICIT NONE

INTEGER
REAL

NOUT
VALUE, X

45.0
SINDG (X)

X
VALUE

CALL UMACH (2, NOUT)

WRITE (NOUT,99999) X, VALUE

Declare variables

Compute

Print the results

99999 FORMAT (' SIN(', F6.3, ' deg) = ', F6.3)
END
= Rogygmq\{q SINDG Chapter 2: Trigonometric and Hyperbolic Functions 30

Output

SIN(45.000 deg) = 0.707.

=
= Rogygmq\{e; SINDG Chapter 2: Trigonometric and Hyperbolic Functions 31

COSDG

This function evaluates the cosine for the argument in degrees.

Function Return Value
COSDG — Function value. (Output)

Required Arguments

X — Argument in degrees for which the cosine is desired. (Input)

FORTRAN 90 Interface

Generic: COSDG (X)
Specific: The specific interface names are S_COSDG and D_COSDG.

FORTRAN 77 Interface

Single: COSDG (X)
Double: The double precision function name is DCOSDG.
Description

To avoid unduly inaccurate results, the magnitude of x must not be so large that the integer part fills more
than the computer word. Under no circumstances is the magnitude of x allowed to be larger than the largest
representable integer because complete loss of accuracy occurs in this case.

Example

In this example, cos 100° computed and printed.

USE COSDG_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = 100.0
VALUE = COSDG (X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' COS(', F6.2, ' deg) = ', F6.3)
END

= Rogygmq\{q COSDG Chapter 2: Trigonometric and Hyperbolic Functions 32

Output

COS(100.00 deg) = -0.174

=
= Rogygmq\{e; COSDG Chapter 2: Trigonometric and Hyperbolic Functions 33

ASIN

This function extends FORTRAN's generic ASIN function to evaluate the complex arc sine.

Function Return Value

ASIN — Complex function value in units of radians and the real part in the first or fourth quadrant.
(Output)

Required Arguments

ZINP — Complex argument for which the arc sine is desired. (Input)

FORTRAN 90 Interface

Generic: ASIN (ZINP)
Specific: The specific interface names are CASIN and ZASIN.

FORTRAN 77 Interface
Complex: CASIN (ZINP)

Double complex: The double complex function name is ZASIN.

Description

Almost all arguments are legal. Only when |z| > b/2 can an overflow occur. Here, b = AMACH(2) is the largest
floating point number. This error is not detected by ASIN.

See Pennisi (1963, page 126) for reference.

Example
In this example, sin\(1 - i) is computed and printed.

USE ASIN_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables
INTEGER NOouT
COMPLEX VALUE, Z
! Compute
Z (1.0, -1.0)
VALUE ASIN(Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) z, VALUE

= Rogygmq\{q ASIN Chapter 2: Trigonometric and Hyperbolic Functions

34

99999 FORMAT (' ASIN((', F6.3, ',', F6.3, ')) = (', &
F6.3, ',', F6.3, ')")
END

Output

ASIN((1.000,-1.000)) = (0.666,-1.061)

= R‘Ogy?mq\{es ASIN Chapter 2: Trigonometric and Hyperbolic Functions 35

ACOS

This function extends FORTRAN's generic ACOS function to evaluate the complex arc cosine.

Function Return Value

ACOS — Complex function value in units of radians with the real part in the first or second quadrant.
(Output)

Required Arguments

Z — Complex argument for which the arc cosine is desired. (Input)

FORTRAN 90 Interface

Generic: ACOS (2)
Specific: The specific interface names are CACOS and ZACOS.

FORTRAN 77 Interface

Complex: CACOS (2)
Double complex: The double complex function name is ZACOS.

Description

Almost all arguments are legal. Only when |z| > b/2 can an overflow occur. Here, b = AMACH(2) is the largest
floating point number. This error is not detected by ACOS.

Example
In this example, cosM(1 - i) is computed and printed.

USE ACOS_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
COMPLEX VALUE, Z
! Compute
Z = (1.0, -1.0)
VALUE = ACOS(Z)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' ACOS((', F6.3, ',', F6.3, ")) = (', &
F6.3, ',', F6.3, "))
END

= ROQEI?WH\{E: ACOS Chapter 2: Trigonometric and Hyperbolic Functions 36

Output

ACOS((1.000,-1.000)) = (0.905, 1.061)

=
= Rogygmq\{e; ACOS Chapter 2: Trigonometric and Hyperbolic Functions 37

ATAN

This function extends FORTRAN'’s generic function ATAN to evaluate the complex arc tangent.

Function Return Value

ATAN — Complex function value in units of radians with the real part in the first or fourth quadrant.
(Output)

Required Arguments

Z — Complex argument for which the arc tangent is desired. (Input)

FORTRAN 90 Interface

Generic: ATAN (2)
Specific: The specific interface names are CATAN and ZATAN.

FORTRAN 77 Interface

Complex: CATAN (2)
Double complex:The double complex function name is ZATAN.

Description

The argument z must not be exactly +i, because tan~! z is undefined there. In addition, z must not be so close
to *i that substantial significance is lost.

Comments

Informational error

Type Code Description

3 2 Result of ATAN(z) is accurate to less than one-half precision because |Z2| is

too close to -1.0.

Example
In this example, tan™1(0.01 - 0.01) is computed and printed.

USE ATAN_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables
INTEGER NOouT
COMPLEX VALUE, Z

= Rogygmﬂn\{q ATAN Chapter 2: Trigonometric and Hyperbolic Functions 38

! Compute
Z (0.01, 0.01)
VALUE = ATAN(Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) 2z, VALUE

99999 FORMAT (' ATAN((', F6.3, ',', F6.3, ')) = (', &
F6.3, ',', F6.3, ')"')
END
Output
ATAN((0.010, 0.010)) = (0.010, 0.010)

= R‘Dgygmq\{eg ATAN Chapter 2: Trigonometric and Hyperbolic Functions 39

ATANZ2

This function extends FORTRAN'’s generic function ATAN2 to evaluate the complex arc tangent of a ratio.

Function Return Value

ATAN2 — Complex function value in units of radians with the real part between -1t and 1. (Output)

Required Arguments
CSN — Complex numerator of the ratio for which the arc tangent is desired. (Input)
CCS — Complex denominator of the ratio. (Input)

FORTRAN 90 Interface

Generic: ATAN2 (CSN, CCS)
Specific: The specific interface names are CATAN2 and ZATAN2.

FORTRAN 77 Interface

Complex: CATAN2 (CSN, CCS)
Double complex: The double complex function name is ZATAN2.
Description

Let z; = CSN and z, = CS. The ratio z = z;/z, must not be +i because tan™! (i) is undefined. Likewise, z;
and z; should not both be zero. Finally, z must not be so close to *i that substantial accuracy loss occurs.

Comments

The result is returned in the correct quadrant (modulo 2).

Example
In this example,

L(172) +(i/2)
an 2+

t

is computed and printed.

USE ATAN2_INT
USE UMACH_INT

IMPLICIT NONE

= Rogygmﬂn\{q ATAN2 Chapter 2: Trigonometric and Hyperbolic Functions

40

! Declare variables
INTEGER NOuUT
COMPLEX VALUE, X, Y

! Compute
X = (2.0, 1.0)
Y = (0.5, 0.5)
VALUE = ATAN2 (Y, X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Y, X, VALUE

99999 FORMAT (' ATAN2((', F6.3, ',', F6.3, '), (', F6.3, ',', F6.3,&
")) = (', F6.3, ',', F6.3, "))
END
Output
ATAN2 ((0.500, 0.500), (2.000, 1.000)) = (0.294, 0.092)

= Rogygmg\{q ATAN2 Chapter 2: Trigonometric and Hyperbolic Functions 41

SINH

This function extends FORTRAN's generic function SINH to evaluate the complex hyperbolic sine.

Function Return Value
SINH — Complex function value. (Output)

Required Arguments

Z — Complex number representing the angle in radians for which the complex hyperbolic sine is desired.
(Input)

FORTRAN 90 Interface

Generic: SINH (Z)
Specific: The specific interface names are CSINH and ZSINH.

FORTRAN 77 Interface
Complex: CSINH (Z)

Double complex: The double complex function name is ZSINH.
Description
The argument z must satisfy

| 3zl <1/Ve

where € = AMACH(4) is the machine precision and Jz is the imaginary part of z.

Example
In this example, sinh(5 - i) is computed and printed.

USE SINH_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOouT
COMPLEX VALUE, Z
! Compute
Z = (5.0, -1.0)
VALUE = SINH(Z)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) 2z, VALUE

= Rogygmq\{q SINH Chapter 2: Trigonometric and Hyperbolic Functions 42

99999 FORMAT (' SINH((', F6.3, ',', F6.3, ')) = (', &
F7.3, ',', F7.3, ')")
END

Output

SINH((5.000,-1.000)) = (40.092,-62.446)

= R‘Ogy?mq\{es SINH Chapter 2: Trigonometric and Hyperbolic Functions 43

COSH

The function extends FORTRAN’s generic function COSH to evaluate the complex hyperbolic cosine.

Function Return Value
COSH — Complex function value. (Output)

Required Arguments

Z — Complex number representing the angle in radians for which the hyperbolic cosine is desired. (Input)

FORTRAN 90 Interface

Generic: COSH (2)
Specific: The specific interface names are CCOSH and ZCOSH.

FORTRAN 77 Interface
Complex: CCOSH (2)

Double complex: The double complex function name is ZCOSH.

Description

Let € = AMACH(4) be the machine precision. If |Jz| is larger than

1/ve

then the result will be less than half precision, and a recoverable error condition is reported. If |Jz| is larger
than 1/¢, the result has no precision and a fatal error is reported. Finally, if |Rz] is too large, the result over-
flows and a fatal error results. Here, 'Rz and 3z represent the real and imaginary parts of z, respectively.
Example

In this example, cosh(-2 + 2i) is computed and printed.

USE COSH_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
COMPLEX VALUE, Z
! Compute
Z = (-2.0, 2.0)
VALUE = COSH(Z)

! Print the results
CALL UMACH (2, NOUT)

= Rogygmﬂn\{q COSH Chapter 2: Trigonometric and Hyperbolic Functions 44

WRITE (NOUT,99999) 7z, VALUE

99999 FORMAT (' COSH((', F6.3, ',', F6.3, ")) = (',&
F6.3, ',', F6.3, ')")
END
Output
COSH((-2.000, 2.000)) = (-1.566,-3.298)

= Rogygmg\{q COSH Chapter 2: Trigonometric and Hyperbolic Functions 45

TANH

This function extends FORTRAN'’s generic function TANH to evaluate the complex hyperbolic tangent.

Function Return Value
TANH — Complex function value. (Output)

Required Arguments

Z — Complex number representing the angle in radians for which the hyperbolic tangent is desired.
(Input)

FORTRAN 90 Interface

Generic: TANH (Z)
Specific: The specific interface names are CTANH and ZTANH.

FORTRAN 77 Interface

Complex: CTANH (Z)
Double complex: The double complex function name is ZTANH.

Description

Let z = x + iy. If |cosh z|? is very small, that is, if y mod 1T is very close to Tr/2 or 311/2 and if x is small, then

tanh z is nearly singular; a fatal error condition is reported. If |cosh z| 2is somewhat larger but still small, then
the result will be less accurate than half precision. When 2y (z = x + iy) is so large that sin 2y cannot be evalu-
ated accurately to even zero precision, the following situation results. If [x| < 3/2, then TANH cannot be
evaluated accurately to better than one significant figure. If 3/2 <|y| <-1/21n (¢/2), then TANH can be eval-
uated by ignoring the imaginary part of the argument; however, the answer will be less accurate than half
precision. Here, € = AMACH(4) is the machine precision.

Example

In this example, tanh(1 + i) is computed and printed.

USE TANH_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
COMPLEX VALUE, Z
! Compute
Z = (1.0, 1.0)
VALUE = TANH(Z)

= Rogygmﬂn\{q TANH Chapter 2: Trigonometric and Hyperbolic Functions 46

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) 2z, VALUE

99999 FORMAT (' TANH((', F6.3, ',', F6.3, ')) = (',&
F6.3, ',', F6.3, ')")
END
Output
TANH((1.000, 1.000)) = (1.084, 0.272)

= Rogygmg\{q TANH Chapter 2: Trigonometric and Hyperbolic Functions

47

ASINH

This function evaluates the arc hyperbolic sine.

Function Return Value
ASINH — Function value. (Output)

Required Arguments
X — Argument for which the arc hyperbolic sine is desired. (Input)

FORTRAN 90 Interface

Generic: ASINH (X)
Specific: The specific interface names are ASINH, DASINH, CASINH, and ZASINH.

FORTRAN 77 Interface

Single: ASINH (X)
Double: The double precision function name is DASINH.
Complex: The complex name is CASINH.

Double Complex: The double complex name is ZASINH.

Description

The function ASTNH (X) computes the inverse hyperbolic sine of x, sinh™!x.

For complex arguments, almost all arguments are legal. Only when |z| > /2 can an overflow occur, where
b =AMACH (2) is the largest floating point number. This error is not detected by ASINH.

Examples

Example 1
In this example, sinh~1(2.0) is computed and printed.

USE ASINH_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X =2.0
VALUE = ASINH (X)

= Rogygmq\{q ASINH Chapter 2: Trigonometric and Hyperbolic Functions 48

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' ASINH(', F6.3, ') = ', F6.3)
END

Output

ASINH(2.000) = 1.444

Example 2

In this example, sinh~!(-1 + i) is computed and printed.

USE ASINH_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
COMPLEX VALUE, Z

! Compute
Z = (-1.0, 1.0)

VALUE = ASINH(Z)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE

99999 FORMAT (' ASINH((', F6.3, ',', F6.3, ')) = (', &
F6.3, ',', F6.3, ')"')
END
Output
ASINH((-1.000, 1.000)) = (-1.061, 0.666)

= R{nggmq\{q ASINH Chapter 2: Trigonometric and Hyperbolic Functions 49

ACOSH

This function evaluates the arc hyperbolic cosine.

Function Return Value
ACOSH — Function value. (Output)

Required Arguments

X — Argument for which the arc hyperbolic cosine is desired. (Input)

FORTRAN 90 Interface

Generic: ACOSH (X)
Specific: The specific interface names are ACOSH, DACOSH, CACOSH, and ZACOSH.

FORTRAN 77 Interface

Single: ACOSH (X)
Double: The double precision function name is DACOSH.
Complex: The complex name is CACOSH.

Double Complex: The double complex name is ZACOSH.

Description

The function ACOSH(X) computes the inverse hyperbolic cosine of x, cosh™lx.

For complex arguments, almost all arguments are legal. Only when |z| > b/2 can an overflow occur, where
b = AMACH(2) is the largest floating point number. This error is not detected by ACOSH.

Comments

The result of ACOSH(X) is returned on the positive branch. Recall that, like SQRT(X), ACOSH(X) has multiple
values.

Examples

Example 1
In this example, cosh™1(1.4) is computed and printed.

USE ACOSH_INT
USE UMACH_INT

IMPLICIT NONE

= Rogygmﬂn\{q ACOSH Chapter 2: Trigonometric and Hyperbolic Functions 50

! Declare variables

INTEGER NOUT
REAL VALUE, X

! Compute
X = 1.4

VALUE = ACOSH (X)

! Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' ACOSH(', F6.3, ') =

END

Output

ACOSH(1.400) = 0.867

Example 2

F6.3)

In this example, cosh™!(1 - i) is computed and printed.

USE ACOSH_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables

INTEGER NOUT
COMPLEX VALUE, Z

! Compute
Z = (1.0, -1.0)

VALUE = ACOSH(Z)

! Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE

99999 FORMAT (' ACOSH((', F6.3, ',',
F6.3, ',', F6.3, ')"')
END
Output
ACOSH((1.000,-1.000)) = (-1.061, 0.905)

=RogueWave

ACOSH

Chapter 2: Trigonometric and Hyperbolic Functions

51

ATANH

This function evaluates the arc hyperbolic tangent.

Function Return Value
ATANH — Function value. (Output)

Required Arguments
X — Argument for which the arc hyperbolic tangent is desired. (Input)

FORTRAN 90 Interface

Generic: ATANH (X)
Specific: The specific interface names are ATANH, DATANH, CATANH, and ZATANH

FORTRAN 77 Interface

Single: ATANH (X)
Double: The double precision function name is DATANH.
Complex: The complex name is CATANH.

Double Complex: The double complex name is ZATANH.

Description

ATANH (X) computes the inverse hyperbolic tangent of x, tanh~'x. The argument x must satisfy

x| <1—-+e

where € = AMACH(4) is the machine precision. Note that [x| must not be so close to one that the result is less
accurate than half precision.

Comments

Informational Error

Type Code Description

3 2 Result of ATANH(X) is accurate to less than one-half precision because the
absolute value of the argument is too close to 1.0.

= Rogygmq\{q ATANH Chapter 2: Trigonometric and Hyperbolic Functions

Examples

Example 1
In this example, tanh~1(-1/4) is computed and printed.

USE ATANH_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = -0.25
VALUE = ATANH (X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' ATANH(', F6.3, ') = ', F6.3)
END

Output

ATANH(-0.250) = -0.255

Example 2

In this example, tanh™(1/2 + i/2) is computed and printed.

USE ATANH_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
COMPLEX VALUE, Z

! Compute
Z = (0.5, 0.5)

VALUE = ATANH (Z)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE

99999 FORMAT (' ATANH((', F6.3, ',', F6.3, ')) = (', &
F6.3, ',', F6.3, ')")
END
Output
ATANH((0.500, 0.500)) = (0.402, 0.554)

= R{ng?mq\{q ATANH Chapter 2: Trigonometric and Hyperbolic Functions 53

% Rogygmqv.‘e" ATANH Chapter 2: Trigonometric and Hyperbolic Functions 54

E—
- —
- —
——

Chapter 3: Exponential Integrals and
Related Functions

Routines

Evaluates the exponential integral, Ei(x) El
Evaluates the exponential integral, Eq(X). E1
Evaluates the scaled exponential integrals, integer order, E;(x) ENE
Evaluates the logarithmic integral, li(x) ALI
Evaluates the sineintegral, Si(x) SI
Evaluates the cosineintegral, Ci(x) Cl
Evaluates the cosine integral (alternate definition) CIN
Evaluates the hyperbolic sine integral, Shi(x) SHI
Evaluates the hyperbolic cosine integral, Chi(x) CHI
Evaluates the hyperbolic cosine integral (alternate definition). CINH

57
59
61
63
66
68
70
72
74
76

=RogueWave

Chapter 3: Exponential Integrals and Related Functions

55

Usage Notes

The notation used in this chapter follows that of Abramowitz and Stegun (1964).

The following is a plot of the exponential integral functions that can be computed by the routines described

in this chapter.

y

5.0

2.5

0.0

—-2.5

-5.0

Function

Figure 3.1 — Plot of e*E(x), E; (x) and Ei(x)

=RogueWave

Usage Notes

Chapter 3: Exponential Integrals and Related Functions

56

El

This function evaluates the exponential integral for arguments greater than zero and the Cauchy principal
value for arguments less than zero.

Function Return Value
EI — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: EI (X)
Specific: The specific interface names are S_ETI and D_ET.

FORTRAN 77 Interface

Single: EI (X)
Double: The double precision function name is DET.
Description

The exponential integral, Ei(x), is defined to be

El(x) :j e '/tdt for x#0
X

The argument x must be large enough to insure that the asymptotic formula ¢*/x does not underflow, and x

must not be so large that ¢* overflows.

Comments

If principal values are used everywhere, then for all X, EI(X) = -E1(-X) and E1(X) = -EI(-X).

Example
In this example, Ei(1.15) is computed and printed.

USE EI_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables
INTEGER NOuUT

= Rogygmq\{q El Chapter 3: Exponential Integrals and Related Functions

REAL VALUE, X
! Compute
X = 1.15
VALUE EI (X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' EI(', F6.3, ') = ', F6.3)
END

Output

EI(1.150) = 2.304

= R‘Dgygmq\{eg El Chapter 3: Exponential Integrals and Related Functions 58

El

This function evaluates the exponential integral for arguments greater than zero and the Cauchy principal
value of the integral for arguments less than zero.

Function Return Value
E1 — Function value. (Output)

Required Arguments
X — Argument for which the integral is to be evaluated. (Input)

FORTRAN 90 Interface
Generic: El (X)
Specific: The specific interface names are S_E1 and D_E1.

FORTRAN 77 Interface

Single: El (X)
Double: The double precision function name is DE1.
Description

The alternate definition of the exponential integral, E;(x), is

00
E (x) :j e'/tdt for x#0
X
The path of integration must exclude the origin and not cross the negative real axis.

The argument x must be large enough that e does not overflow, and x must be small enough to insure that

e */x does not underflow.

Comments

Informational Error

Type Code Description

3 2 The function underflows because X is too large.

= Rogygmq\{q E1 Chapter 3: Exponential Integrals and Related Functions

Example

In this example, E; (1.3) is computed and printed.

USE E1_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X =1.3
VALUE = El1(X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' E1(', F6.3, ') = ', F6.3)
END

Output

E1(1.300) = 0.135

= R{ng?mq\{q E1 Chapter 3: Exponential Integrals and Related Functions 60

ENE

Evaluates the exponential integral of integer order for arguments greater than zero scaled by EXP(X).

Required Arguments

X — Argument for which the integral is to be evaluated. (Input)
It must be greater than zero.

N — Integer specifying the maximum order for which the exponential integral is to be calculated. (Input)
F — Vector of length N containing the computed exponential integrals scaled by EXP(X). (Output)

FORTRAN 90 Interface

Generic: CALL ENE (X, N, F)

Specific: The specific interface names are S_ENE and D_ENE.

FORTRAN 77 Interface

Single: CALL ENE (X, N, F)
Double: The double precision function name is DENE.
Description

The scaled exponential integral of order n, E,(x), is defined to be

0

E,(x)= exje_xtt_”dt for x>0
1

The argument x must satisfy x > 0. The integer n must also be greater than zero. This code is based on a code
due to Gautschi (1974).

Example

In this example, E,(10) for n =1, ..., n is computed and printed.

USE ENE_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables
INTEGER N
PARAMETER (N=10)

INTEGER K, NOUT
REAL F(N), X

= Rogygmq\{q ENE Chapter 3: Exponential Integrals and Related Functions

61

! Compute
X = 10.0
CALL ENE (X, N, F)

! Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N

WRITE (NOUT,99999) K, X, F(K)
10 CONTINUE

99999 FORMAT (' E sub ', 12, ' (', F6.3, ') = ', F6.3)
END

Output

E sub 1 (10.000) = 0.092
E sub 2 (10.000) = 0.084
E sub 3 (10.000) = 0.078
E sub 4 (10.000) = 0.073
E sub 5 (10.000) = 0.068
E sub 6 (10.000) = 0.064
E sub 7 (10.000) = 0.060
E sub 8 (10.000) = 0.057
E sub 9 (10.000) = 0.054
E sub 10 (10.000) = 0.051

= Rogygmq\{q ENE Chapter 3: Exponential Integrals and Related Functions 62

ALI

This function evaluates the logarithmic integral.

Function Return Value
ALI — Function value. (Output)

Required Arguments

X — Argument for which the logarithmic integral is desired. (Input)
It must be greater than zero and not equal to one.

FORTRAN 90 Interface

Generic: ALT (X)
Specific: The specific interface names are S_ALTI and D_ALT.

FORTRAN 77 Interface

Single: ALT (X)
Double: The double precision function name is DALT.
Description

The logarithmic integral, li(x), is defined to be

li(x) = - olz_tt for x>0 and x £ 1

The argument x must be greater than zero and not equal to one. To avoid an undue loss of accuracy, x must be
different from one at least by the square root of the machine precision.

The function li(x) approximates the function TT(x), the number of primes less than or equal to x. Assuming the
Riemann hypothesis (all non-real zeros of Z(z) are on the line Rz = 1/2), then

li<x> —7r<x) = O<\/§ln x)

= Rogygmq\{q ALI Chapter 3: Exponential Integrals and Related Functions

63

180

3 | Function
. oAl -
150 — o
] Ry
] A
: _..-';-*‘fr
120 E ‘I;}}ff
] A
u A
= 3 <
90] .
- e
60 /-/‘3:’!(
30 //
D 7 | L I LI I '| LI T | 1 L T | I I L
0] 200 400 GO0 BOO 1000
X

Figure 3.2 — Plot of li(x) and TT(x)

Comments

Informational Error

Type Code Description
3 2
close to 1.0.
Example

In this example, 1i(2.3) is computed and printed.

USE ALI_INT
USE UMACH_INT
IMPLICIT NONE

INTEGER
REAL

NOUT
VALUE, X

X =
VALUE

2.3
ALT (X)

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

Result of ALI(X) is accurate to less than one-half precision because X is too

Declare variables

Compute

Print the results

99999 FORMAT (' ALI(', F6.3, ') = ', F6.3)
END
= Rogygmg\{q ALl Chapter 3: Exponential Integrals and Related Functions 64

Output

ALI(2.300) = 1.439

=
= Rogygmq\{q ALl Chapter 3: Exponential Integrals and Related Functions 65

Sl

This function evaluates the sine integral.

Function Return Value
SI — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: ST (X)

Specific: The specific interface names are S_ST and D_ST.

FORTRAN 77 Interface

Single: ST (X)
Double: The double precision function name is DST.
Description

The sine integral, Si(x), is defined to be

X
o~_ | sint
Si(x) —IOTdt
If

lx| > 1/+e

the answer is less accurate than half precision, while for |x| > 1 /&, the answer has no precision. Here,
€ = AMACH(4) is the machine precision.

Example

In this example, 5i(1.25) is computed and printed.

USE SI_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables
INTEGER NOouT
REAL VALUE, X

= ROQEI?WH\{E: Si Chapter 3: Exponential Integrals and Related Functions 66

! Compute
X 1.25
VALUE = SI(X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' SI(', F6.3, ') = ', F6.3)
END

Output

SI(1.250) = 1.146

= Rogygmg\{q Si Chapter 3: Exponential Integrals and Related Functions 67

Cl

This function evaluates the cosine integral.

Function Return Value
CI — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
It must be greater than zero.

FORTRAN 90 Interface

Generic: CI (X)
Specific: The specific interface names are S_CI and D_CT.

FORTRAN 77 Interface

Single: CI (X)
Double: The double precision function name is DCT.
Description

The cosine integral, Ci(x), is defined to be

X

Cix) =y +In(x) + | €511

Where y =~ 0.57721566 is Euler’s constant.
The argument x must be larger than zero. If

x>1/+e

then the result will be less accurate than half precision. If x > 1/¢, the result will have no precision. Here,
€ = AMACH(4) is the machine precision.
Example

In this example, Ci(1.5) is computed and printed.

USE CI_INT
USE UMACH_INT

IMPLICIT NONE

= Rogygmq\{q cl Chapter 3: Exponential Integrals and Related Functions

68

INTEGER NOUT
REAL VALUE, X

X 1.5
VALUE = CI(X)

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' CI(', F6.3, ') =
END

Output

CI(1.500) = 0.470

Declare variables

Compute

Print the results

, F6.3)

=RogueWave

cl Chapter 3: Exponential Integrals and Related Functions

69

CIN

This function evaluates a function closely related to the cosine integral.

Function Return Value
CIN — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: CIN (X)
Specific: The specific interface names are S_CIN and D_CIN.

FORTRAN 77 Interface

Single: CIN (X)
Double: The double precision function name is DCIN.
Description

The alternate definition of the cosine integral, Cin(x), is

X
. | l-cost
Cin(x) Io—f dt
For

0<|x|l <+vs

where s = AMACH(1) is the smallest representable positive number, the result underflows. For

Ix| > 1/+e

the answer is less accurate than half precision, while for |x| > 1 /¢, the answer has no precision. Here,
€ = AMACH(4) is the machine precision.

Comments

Informational Error

Type Code Description

2 1 The function underflows because X is too small.

= Rogygmﬂn\{q CIN Chapter 3: Exponential Integrals and Related Functions 70

Example

In this example, Cin(21T) is computed and printed.
USE CIN_INT
USE UMACH_INT

USE CONST_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = CONST('pi')
X = 2.0 X

VALUE = CIN(X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' CIN(', F6.3, ') = ', F6.3)
END

Output

CIN(6.283) = 2.438

= ROQEJ?WH\{E: CIN Chapter 3: Exponential Integrals and Related Functions 71

SHI

This function evaluates the hyperbolic sine integral.

Function Return Value

SHI— function value. (Output)
SHI equals

Iosinh(t) /tdt

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: SHI (X)
Specific: The specific interface names are S_SHI and D_SHI.

FORTRAN 77 Interface

Single: SHI (X)
Double: The double precision function name is DSHI.
Description

The hyperbolic sine integral, Shi(x), is defined to be

Shi(x) = f;@dz

The argument x must be large enough that e™*/x does not underflow, and x must be small enough that e*
does not overflow.

Example
In this example, Shi(3.5) is computed and printed.

USE SHI_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables
INTEGER NOouT
REAL VALUE, X

= Rogygmq\{q SHI Chapter 3: Exponential Integrals and Related Functions 72

! Compute
X = 3.5
VALUE = SHI (X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' SHI(', F6.3, ') = ', F6.3)
END

Output

SHI(3.500) = 6.966

= Rogygmg\{q SHI Chapter 3: Exponential Integrals and Related Functions 73

CHI

This function evaluates the hyperbolic cosine integral.

Function Return Value
CHI — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: CHI (X)
Specific: The specific interface names are S_CHI and D_CHI.

FORTRAN 77 Interface

Single: CHI (X)
Double: The double precision function name is DCHI.
Description

The hyperbolic cosine integral, Chi(x), is defined to be

Chi(x) =y+lnx+J‘;COSh+_ldt for x> 0

where y = 0.57721566 is Euler’s constant.

The argument x must be large enough that e™*/x does not underflow, and x must be small enough that ¢*
does not overflow.

Comments

When X is negative, the principal value is used.

Example
In this example, Chi(2.5) is computed and printed.

USE CHI_INT
USE UMACH_INT

IMPLICIT NONE

= Rogygmq\{q CHI Chapter 3: Exponential Integrals and Related Functions

74

Declare variables

INTEGER NOUT
REAL VALUE, X

! Compute
X = 2.5
VALUE = CHI(X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' CHI(', F6.3, ') = ', F6.3)
END

Output

CHI(2.500) = 3.524

= R‘Dgygmq\{eg CHI Chapter 3: Exponential Integrals and Related Functions 75

CINH

This function evaluates a function closely related to the hyperbolic cosine integral.

Function Return Value
CINH — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: CINH (X)
Specific: The specific interface names are S_CINH and D_CINH.

FORTRAN 77 Interface

Single: CINH (X)
Double: The double precision function name is DCINH.
Description

The alternate definition of the hyperbolic cosine integral, Cinh(x), is

. _ | coshr—1
Cinh (X) ,ro—t dt
For

0 < |x| <2vs

where s = AMACH(1) is the smallest representable positive number, the result underflows. The argument x

must be large enough that e”*/x does not underflow, and x must be small enough that e* does not overflow.

Comments

Informational Error

Type Code Description

2 1 The function underflows because X is too small.

= Rogygmq\{q CINH Chapter 3: Exponential Integrals and Related Functions

76

Example

In this example, Cinh(2.5) is computed and printed.

USE CINH_INT
USE UMACH_INT

IMPLICIT NONE
Declare variables

INTEGER NOUT
REAL VALUE, X

Compute
X = 2.5

VALUE = CINH (X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' CINH(', F6.3, ') = ', F6.3)
END

Output

CINH(2.500) = 2.031

= ROQEJ?WH\{E: CINH Chapter 3: Exponential Integrals and Related Functions

77

% Rogygmqv.‘e" CINH Chapter 3: Exponential Integrals and Related Functions 78

. .
——=— Chapter 4: Gamma Function and
p— :
—= Related Functions
Routines
4.1 Factorial Function
Evaluates the factorial, n!. FAC 81
Evaluates the binomial coefficient.. BINOM 83
4.2 Gamma Function
Evaluates the real or complex gamma function, I'(x). GAMMA 85
Evaluates the reciprocal of the real or complex gamma function, 1/T'(x) GAMR 88
Evaluates the real or complex function, In ly(x)l ALNGAM 90
Evaluates the log abs gamma function anditssign. ALGAMS 93
4.3 Incomplete Gamma Function
Evaluates the incomplete gamma function, y(a,x) GAMI 95
Evaluates the complementary incomplete gamma function, I'(a,x) GAMIC 97
Evaluates Tricomi’s incomplete gamma function, y*(a, x) GAMIT 99
4.4 Psi Function
Evaluates the real or complex psi function, w(x) PSI 101
Evaluates the real psi1 function, wq(x). i PSI1 103
4.5 Pochhammer’s Function
Evaluates Pochhammer’s generalized symbol, (@), POCH 105
Evaluates Pochhammer’s symbol starting from the firstorder. POCH1 107
4.6 Beta Function
Evaluates the real or complex beta function, B(a,b). BETA 109
Evaluates the log of the real or complex beta function, In B(a,b)......... ALBETA 112
Evaluates the incomplete beta function, I (a,b) BETAI 114

=RogueWave

Chapter 4: Gamma Function and Related Functions

79

Usage Notes

The notation used in this chapter follows that of Abramowitz and Stegun (1964).

The following is a table of the functions defined in this chapter:

FAC nl=Fn+1)
BINOM nl/m(n-m),0<m<n
GAMMA

T(x)=le'r'd, x#0, -1, -2,

GAMR 1/T(x)

ALNGAM InIF(x),x+0,-1,-2,..

ALGAMS In IF(x)l and sign M(x), x # 0, -1, -2, ..
GAMI

y(a,x) = roct‘ﬂe*’dt, a>0,x>0

cANIC I'(ax) = th“ile*’dt, x>0

GAMIT y*(a, x) = (x""/ T(a)y(a, x),x =0

PSI W) =T"(x)/Mx),x=0,-1,-2,..

PSI1 PYy(x) = d?/dx%InT(x), x # 0, -1, -2, ...

POCH @y=T@a+x)/ Ma),ifa+x=0,-1,-2,..thenamust=0, -1, -2, ..
POCH1 (@), -1)/x,ifa+x=0,-1,-2,..thenamust =0, -1, -2, ...

BETA B(x1, x9) = T(x1) T(xp)/ T(x1 + x), x1 >0and x>0

CBETA B(z1, z0) = T(z1) M(z9)/ T(z1 + 23),z1 >0and z, > 0

ALBETA InB(@,b),a>0,b>0

BETAI L(a,b) =B, b)/ B b),0<x<1,a>0,b>0

= R{ng?mq\{q Usage Notes Chapter 4: Gamma Function and Related Functions 80

FAC

This function evaluates the factorial of the argument.

Function Return Value

FAC — Function value. (Output)
See Comments.

Required Arguments
N — Argument for which the factorial is desired. (Input)

FORTRAN 90 Interface

Generic: FAC (N)
Specific: The specific interface names are S_FAC and D_FAC.

FORTRAN 77 Interface

Single: FAC (N)
Double: The double precision function name is DFAC.
Description

The factorial is computed using the relation n! = ['(n + 1). The function I'(x) is defined in GAMMA. The argu-
ment n must be greater than or equal to zero, and it must not be so large that n! overflows. Approximately, n!

overflows when n"e~" overflows.

Comments
If the generic version of this function is used, the immediate result must be stored in a variable before use
in an expression. For example:
X = FAC(6)
Y = SOQRT(X)
must be used rather than
Y = SQRT(FAC(6)).
If this is too much of a restriction on the programmer, then the specific name can be used without this
restriction.

To evaluate the factorial for nonintegral values of the argument, the gamma function should be used. For
large values of the argument, the log gamma function should be used.

= Rogygmﬂn\{q FAC Chapter 4: Gamma Function and Related Functions

81

Example
In this example, 6! is computed and printed.

USE FAC_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER N, NOUT
REAL VALUE

! Compute
N =6

VALUE = FAC(N)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) N, VALUE
99999 FORMAT (' FAC(', I1, ') ="', F6.2)
END

Output

FAC(6) = 720.00

= R{ng?mq\{q FAC Chapter 4: Gamma Function and Related Functions 82

BINOM

This function evaluates the binomial coefficient.

Function Return Value

BINOM — Function value. (Output)
See Comment 1.

Required Arguments

N — First parameter of the binomial coefficient. (Input)
N must be nonnegative.

M — Second parameter of the binomial coefficient. (Input)
M must be nonnegative and less than or equal to N.

FORTRAN 90 Interface

Generic: BINOM (N, M)
Specific: The specific interface names are S_BINOM and D_BINOM.

FORTRAN 77 Interface

Single: BINOM (N, M)
Double: The double precision function name is DBINOM.
Description

The binomial function is defined to be

with n = m = 0. Also, n must not be so large that the function overflows.

Comments
1. If the generic version of this function is used, the immediate result must be stored in a variable before
use in an expression. For example:
X = BINOM(9, 5)Y = SORT(X)
must be used rather than
Y = SQRT(BINOM(9, 5)).

If this is too much of a restriction on the programmer, then the specific name can be used without this
restriction.

2. To evaluate binomial coefficients for nonintegral values of the arguments, the complete beta function
or log beta function should be used.

= Rogygmﬂn\{q BINOM Chapter 4: Gamma Function and Related Functions

83

Example
In this example, (2) is computed and printed.

USE BINOM_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER M, N, NOUT
REAL VALUE
! Compute
N =9
M =5

VALUE = BINOM (N, M)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) N, M, VALUE

99999 FORMAT (' BINOM(', I1, ',', I1l, ') = ', F6.2)
END

Output

BINOM(9,5) = 126.00

= R{ng?mq\{q BINOM Chapter 4: Gamma Function and Related Functions 84

GAMMA

This function evaluates the complete gamma function.

Function Return Value
GAMMA — Function value. (Output)

Required Arguments

X — Argument for which the complete gamma function is desired. (Input)

FORTRAN 90 Interface
Generic: GAMMA (X)
Specific: The specific interface names are S_GAMMA, D_GAMMA, and C_GAMMA.

FORTRAN 77 Interface

Single: GAMMA (X)
Double: The double precision function name is DGAMMA.
Complex: The complex name is CGAMMA.

Description

The gamma function, [(z), is defined to be

F(z) :.[t7ledt for Rz>0
0

For R(z) <0, the above definition is extended by analytic continuation.

z must not be so close to a negative integer that the result is less accurate than half precision. If R(z) is too
small, then the result will underflow. Users who need such values should use the log gamma function
ALNGAM. When J(z) = 0, R(z) should be greater than x,,;,, so that the result does not underflow, and R(z)

should be less than x,,,,, so that the result does not overflow. x,,;, and x,,,,, are available by

CALL R9GAML (XMIN, XMAX)

Note that z must not be too far from the real axis because the result will underflow.

= Rogygmq\{q GAMMA Chapter 4: Gamma Function and Related Functions

85

[
3.0 '||
4 WA
D':' — ..-.:;___.:i{ i -.-'...........- -
j [
|
=3.0 — |
| |
—E.O T |l T |] T i T T I | T T T
—&.0 —-2.0 0.0 2.0 4.0

Figure 4.1 — Plot of ['(x) and 1/T(x)

Comments

Informational Errors

Type Code Description
2 3 The function underflows because X is too small.
3 2 Result is accurate to less than one-half precision because X is too near a nega-
tive integer.
Examples
Example 1

In this example, (5.0) is computed and printed.

USE GAMMA_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = 5.0
VALUE = GAMMA (X)
=RogueWave camMMA

Chapter 4: Gamma Function and Related Functions 86

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' GAMMA(', F6.3, ') = ', F6.3)
END

Output

GAMMA(5.000) = 24.000

Example 2

In this example, (1.4 + 3i) is computed and printed.

USE GAMMA_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables
INTEGER NOuUT
COMPLEX VALUE, Z
! Compute
Z (1.4, 3.0)
VALUE GAMMA (Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE

99999 FORMAT (' GAMMA(', F6.3, ',', F6.3, ') = (',
F6.3, ',', F6.3, ')")
END
Output
GAMMA (1.400, 3.000) = (-0.001, 0.061)

= ROQEJ?WH\{E: GAMMA Chapter 4: Gamma Function and Related Functions

87

GAMR

This function evaluates the reciprocal gamma function.

Function Return Value
GAMR — Function value. (Output)

Required Arguments

X — Argument for which the reciprocal gamma function is desired. (Input)

FORTRAN 90 Interface

Generic: GAMR (X)
Specific: The specific interface names are S_GAMR, D_GAMR, and C_GAMR

FORTRAN 77 Interface

Single: GAMR (X)
Double: The double precision function name is DGAMR.
Complex: The complex name is CGAMR.

Description

The function GAMR computes 1/ (z). See GAMMA for the definition of I'(z).

For 3(z) = 0, z must be larger than x,,;,, so that 1/l (z) does not underflow, and x must be smaller than x,,,, so
that 1/T(z) does not overflow. Symmetric overflow and underflow limits x,,,;,, and x,,,, are obtainable from

CALL RO9GAML (XMIN, XMAX)

Note that z must not be too far from the real axis because the result will overflow there.

Comments

This function is well behaved near zero and negative integers.
Examples

Example 1

In this example, 1/T(1.85) is computed and printed.

USE GAMR_INT
USE UMACH_INT

= Rogygmﬂn\{q GAMR Chapter 4: Gamma Function and Related Functions 88

IMPLICIT NONE
Declare variables
INTEGER NOouT

REAL VALUE, X

Compute
X = 1.85
VALUE = GAMR (X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' GAMR(', F6.3, ') = ', F6.3)
END

Output

GAMR(1.850) = 1.058

Example 2

In this example, In (1.4 + 3i) is computed and printed.

99999 FORMAT (' GAMR(', F6.3, ',', F6.3, ') = (', F7.
END

Output

GAMR (1.400, 3.000) = (-0.303,-16.367)

USE GAMR_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER NOouT
COMPLEX VALUE, Z

Compute
Z
VALUE

(1.4, 3.0)
GAMR (Z)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE

= R{nggmq\{q GAMR Chapter 4: Gamma Function and Related Functions

89

ALNGAM

The function evaluates the logarithm of the absolute value of the gamma function.

Function Return Value
ALNGAM — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: ALNGAM (X)
Specific: The specific interface names are S_ALNGAM, D_ALNGAM, and C_ALNGAM.

FORTRAN 77 Interface

Single: ALNGAM (X)
Double: The double precision function name is DLNGAM.
Complex: The complex name is CLNGAM.

Description

The function ALNGAM computes In |[(x)|. See GAMMA for the definition of I'(x).

The gamma function is not defined for integers less than or equal to zero. Also, |x| must not be so large that
the result overflows. Neither should x be so close to a negative integer that the accuracy is worse than half
precision.

= Rogygmq\{q ALNGAM Chapter 4: Gamma Function and Related Functions

90

()|

og

10.0

/
5.0 H i /
—y E -'I-r".-
] I|I hil /,/
. AU /
\ A
0.0 e
. fu" |
I
- II"-._-’"
4 Y
E-D II.- H
- II"-'"I
- I|
] 1/
-10.0 '||1[|1|]:|1[1||
-10.0 -5.0 0.0 5.0 10.0

Comments

Informational Error

Type Code

3 2
Examples
Example 1

Figure 4.2 — Plot of log|[(x)|

Description

Result of ALNGAM(X) is accurate to less than one-half precision because X is

too near a negative integer.

In this example, In |[(1.85)| is computed and printed.

USE ALNGAM_INT

USE UMACH_INT

IMPLICIT NONE

Declare variables

INTEGER NOUT

REAL VALUE, X
! Compute
X = 1.85
VALUE = ALNGAM (X)
= R‘Dgygmq\{eg ALNGAM Chapter 4: Gamma Function and Related Functions 91

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' ALNGAM(', F6.3, ') = ', F6.3)
END

Output

ALNGAM(1.850) = -0.056

Example 2

In this example, In (1.4 + 3i) is computed and printed.

USE ALNGAM_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
COMPLEX VALUE, Z
! Compute
Z = (1.4, 3.0)
VALUE = ALNGAM(Z)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) 2z, VALUE

99999 FORMAT (' ALNGAM(', F6.3, ',', F6.3, ') = (',&
F6.3, ',', F6.3, ')")
END
Output
ALNGAM(1.400, 3.000) = (-2.795, 1.589)

= ROQEJ?WH\{E: ALNGAM Chapter 4: Gamma Function and Related Functions

92

ALGAMS

Returns the logarithm of the absolute value of the gamma function and the sign of gamma.

Required Arguments

X — Argument for which the logarithm of the absolute value of the gamma function is desired. (Input)
ALGM — Result of the calculation. (Output)

S — Sign of gamma(X). (Output)
If gamma(Xx) is greater than or equal to zero, S = 1.0. If gamma(X) is less than zero, S = -1.0.

FORTRAN 90 Interface

Generic: CALL ALGAMS (X, ALGM, S)
Specific: The specific interface names are S_ALGAMS and D_ALGAMS.

FORTRAN 77 Interface

Single: CALL ALGAMS (X, ALGM, S)
Double: The double precision function name is DLGAMS.
Description

The function ALGAMS computes In [(x)| and the sign of ['(x). See GAMMA for the definition of I'(x).

The result overflows if |x| is too large. The accuracy is worse than half precision if x is too close to a negative
integer.

Comments

Informational Error

Type Code Description

3 2 Result of ALGAMS is accurate to less than one-half precision because X is too
near a negative integer.

Example

In this example, In [[(1.85)| and the sign of (1.85) are computed and printed.

USE ALGAMS_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables
INTEGER NOuUT
REAL VALUE, S, X

= Rogygmﬂn\{q ALGAMS Chapter 4: Gamma Function and Related Functions

93

! Compute
X = 1.85
CALL ALGAMS (X, VALUE, S)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99998) X, VALUE

99998 FORMAT (' Log Abs(Gamma (', F6.3, ')) ="', F6.3)
WRITE (NOUT,99999) X, S

99999 FORMAT (' Sign(Gamma (', F6.3, ')) = ', F6.2)
END

Output

Log Abs (Gamma(1.850)) = -0.056

Sign(Gamma(1.850)) = 1.00

= Rogygmg\{q ALGAMS Chapter 4: Gamma Function and Related Functions 94

GAMI

This function evaluates the incomplete gamma function.

Function Return Value
GAMI — Function value. (Output)

Required Arguments

A — The integrand exponent parameter. (Input)
It must be positive.

X — The upper limit of the integral definition of GAMI. (Input)
It must be nonnegative.

FORTRAN 90 Interface
Generic: GAMI (2, X)
Specific: The specific interface names are S_GAMI and D_GAMTI.

FORTRAN 77 Interface

Single: GAMI (A, X)
Double: The double precision function name is DGAMT.
Description

The incomplete gamma function is defined to be

X
y(ax) = '[Ot“_le_’dt fora>0and x>0

The function Y (a, x) is defined only for a greater than zero. Although (g, x) is well defined for x >- o0, this
algorithm does not calculate Y (a, x) for negative x. For large a and sufficiently large x, ¥ (a, x) may overflow.
Y(a, x) is bounded by ['(a), and users may find this bound a useful guide in determining legal values of a.

Because logarithmic variables are used, a slight deterioration of two or three digits of accuracy will occur
when GAMI is very large or very small.

= Rogygmq\{q GAMI Chapter 4: Gamma Function and Related Functions

95

1.0
| 1 Ky
i " 1 +0.00
a 2 2 +1.00
0.8 — 3 42.00
_ / 4 +3.00
] . 5 +4.00
i / & +5.00
_ 7 +6.00
0.5 i a 8 +7.00
g 9 +8.00
’ 10 4900
—
0.4': 3f,:f'#ﬂd‘ﬂ—-
- Jfff 4 4 4 '
_‘f ,Hﬂ*"'__-___ .
0.2 _:j::s,r—-ﬁw—-——s 5 5 1
g— 7 F—7 7 7
J=r5::FE§;__J|¢ I—— 1
0.0 P LIS A N S A N e
0.0 1.0 2.0 3.0 4.0

Figure 4.3 — Contour Plot of Y(a, x)

Example

In this example, ¥(2.5, 0.9) is computed and printed.

USE GAMI_INT
USE UMACH_INT

IMPLICIT NONE
Declare variables
INTEGER NOouT

REAL A, VALUE, X
Compute
A = 2.5
X = 0.9
VALUE = GAMI (A, X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, X, VALUE

99999 FORMAT (' GAMI(', F6.3, ',', F6.3, ') ="', F6.4)
END

Output

GAMI (2.500, 0.900) = 0.1647

= Rogygmg\{q GAMI Chapter 4: Gamma Function and Related Functions

96

GAMIC

Evaluates the complementary incomplete gamma function.

Function Return Value
GAMIC — Function value. (Output)

Required Arguments

A — The integrand exponent parameter as per the remarks. (Input)

X — The upper limit of the integral definition of GAMIC. (Input)
If A is positive, then X must be positive. Otherwise, X must be nonnegative.

FORTRAN 90 Interface

Generic: GAMIC (&, X)
Specific: The specific interface names are S_GAMIC and D_GAMIC.

FORTRAN 77 Interface

Single: GAMIC (3, X)
Double: The double precision function name is DGAMIC.
Description

The incomplete gamma function is defined to be

F(a,x) :I 1 et
X

The only general restrictions on a are that it must be positive if x is zero; otherwise, it must not be too close to
a negative integer such that the accuracy of the result is less than half precision. Furthermore, (4, x) must not
be so small that it underflows, or so large that it overflows. Although I'(a, x) is well defined for x >-00 and

a > 0, this algorithm does not calculate I'(g, x) for negative x.

The function GAMIC is based on a code by Gautschi (1979).

Comments

Informational Error

Type Code Description

3 2 Result of GAMIC(a, X) is accurate to less than one-half precision because a is
too near a negative integer.

= Rogygmﬂn\{q GAMIC Chapter 4: Gamma Function and Related Functions

97

Example

In this example, (2.5, 0.9) is computed and printed.

USE GAMIC_INT
USE UMACH_INT

IMPLICIT NONE

INTEGER NOUT

REAL A, VALUE, X
A = 2.5

X = 0.9

VALUE = GAMIC (A, X)

CALL UMACH (2, NOUT)

WRITE (NOUT,99999) A, X,
99999 FORMAT (' GAMIC(', F6.3,
END
Output
GAMIC(2.500, 0.900) = 1.1646

Declare variables

Compute

Print the results

VALUE

’

, F6.3, ') = ', F6.4)

=RogueWave

GAMIC Chapter 4: Gamma Function and Related Functions

98

GAMIT

This function evaluates the Tricomi form of the incomplete gamma function.

Function Return Value
GAMIT — Function value. (Output)

Required Arguments

A — The integrand exponent parameter as per the comments. (Input)

X — The upper limit of the integral definition of GAMIT. (Input)
It must be nonnegative.

FORTRAN 90 Interface

Generic: GAMIT (2, X)
Specific: The specific interface names are S_GAMIT and D_GAMIT.

FORTRAN 77 Interface

Single: GAMIT (3, X)
Double: The double precision function name is DGAMIT.
Description

The Tricomi’s incomplete gamma function is defined to be

x “(ax) ~

y* (ax) = O)2:>Lt“1e’dt

where) (g, x) is the incomplete gamma function. See GAMI for the definition of Y (a, x).

The only general restriction on 4 is that it must not be too close to a negative integer such that the accuracy of
the result is less than half precision. Furthermore, |7*(a, x)| must not underflow or overflow. Although

Y*(a, x) is well defined for x >-o, this algorithm does not calculate y*(a, x) for negative x.

A slight deterioration of two or three digits of accuracy will occur when GAMIT is very large or very small in
absolute value because logarithmic variables are used. Also, if the parameter a is very close to a negative inte-

ger (but not quite a negative integer), there is a loss of accuracy which is reported if the result is less than half
machine precision.

The function GAMIT is based on a code by Gautschi (1979).

= ROQQ?WQ\{EF GAMIT Chapter 4: Gamma Function and Related Functions 99

Comments

Informational Error

Type Code
3 2
Example

Description

Result of GAMIT(2, X) is accurate to less than one-half precision because 2 is
too close to a negative integer.

In this example, Y*(3.2, 2.1) is computed and printed.

USE GAMIT_INT
USE UMACH_INT

IMPLICIT NONE

INTEGER NOUT

REAL A, VALUE, X
1

A = 3.2

X = 2.1

VALUE = GAMIT (A, X)

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, X,

99999 FORMAT (' GAMIT(',
END

Output

GAMIT(3.200, 2.100) = 0.0284

Declare variables

Compute

Print the results

VALUE

’

F6.3, ') = ', F6.4)

=RogueWave

GAMIT Chapter 4: Gamma Function and Related Functions

100

PSI

This function evaluates the derivative of the log gamma function.

Function Return Value
PSI — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: PSI (X)
Specific: The specific interface names are S_PSI, D_PSI, and C_PSI.

FORTRAN 77 Interface

Single: PSI (X)
Double: The double precision function name is DPST.
Complex: The complex name is CPST.

Description

The psi function, also called the digamma function, is defined to be

I'(x)

\V(x) = a%ln F(x) = F(x)

See GAMMA for the definition of I'(x).

The argument x must not be exactly zero or a negative integer, or P (x) is undefined. Also, x must not be too
close to a negative integer such that the accuracy of the result is less than half precision.

Comments

Informational Error

Type Code Description

3 2 Result of PSI(X) is accurate to less than one-half precision because X is too
near a negative integer.

= ROQEI?WH\{E: PSI Chapter 4: Gamma Function and Related Functions 101

Examples

Example 1

In this example, P (1.915) is computed and printed.

USE PSI_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = 1.915
VALUE = PSI(X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' PSI(', F6.3, ') = ', F6.3)
END

Output

PSI(1.915) = 0.366

Example 2

In this example, P (1.9 + 4.3i) is computed and printed.

USE PSI_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
COMPLEX VALUE, Z
! Compute
Z = (1.9, 4.3)
VALUE = PSI(Z)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE

99999 FORMAT (' PSI(', F6.3, ',', F6.3, ') = (', F6.3, ',', F6.3, ')')
END

Output

PST(1.900, 4.300) = (1.507, 1.255)

= R{ng?mq\{q PSI Chapter 4: Gamma Function and Related Functions 102

PSI1

This function evaluates the second derivative of the log gamma function.

Function Return Value
PSI1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: PSI1 (X)
Specific: The specific interface names are S_PSI1 and D_PSI1.
Description

The psil function, also called the trigamma function, is defined to be

d2
v (x) = Eln F(x)
See GAMMA for the definition of I'(x).

The argument x must not be exactly zero or a negative integer, or ¢4 (x) is undefined. Also, x must not be too
close to a negative integer such that the accuracy of the result is less than half precision.

Comments
Informational Error

Type Code Description

3 2 Result of PSI1(X) is accurate to less than one-half precision because X is too
near a negative integer.

Example

In this example, ¢(1.915) is computed and printed.

USE PSI1_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables
INTEGER NOuUT
REAL VALUE, X

= Rogygmq\{q PSI1 Chapter 4: Gamma Function and Related Functions 103

! Compute
X 1.915
VALUE = PSI1 (X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' PSI1(', F6.3, ') = ', F6.3)
END

Output

PST1(1.915) = 0.681

= R‘Dgygmq\{eg PSI1 Chapter 4: Gamma Function and Related Functions 104

POCH

This function evaluates a generalization of Pochhammer’s symbol.

Function Return Value

POCH — Function value. (Output)
The generalized Pochhammer symbol is I'(a + x)/T(a).

Required Arguments

A — The first argument. (Input)
X — The second, differential argument. (Input)

FORTRAN 90 Interface

Generic: POCH (2, X)
Specific: The specific interface names are S_POCH and D_POCH.

FORTRAN 77 Interface

Single: POCH (3, X)
Double: The double precision function name is DPOCH.
Description

Pochhammer’s symbol is (a),, = (a)(a - 1)...(a - n + 1) for n a nonnegative integer. Pochhammer’s generalized
symbol is defined to be

I'(a+x
S OX

See GAMMA for the definition of I'(x).

Note that a straightforward evaluation of Pochhammer’s generalized symbol with either gamma or log
gamma functions can be especially unreliable when 4 is large or x is small.

Substantial loss can occur if a + x or a are close to a negative integer unless |x| is sufficiently small. To insure
that the result does not overflow or underflow, one can keep the arguments a and 4 + x well within the range
dictated by the gamma function routine GAMMA or one can keep |x| small whenever a is large. POCH also
works for a variety of arguments outside these rough limits, but any more general limits that are also useful
are difficult to specify.

= Rogygmﬂn\{q POCH Chapter 4: Gamma Function and Related Functions 105

Comments

Informational Errors

Type Code Description

3 2 Result of POCH(2, X) is accurate to less than one-half precision because the
absolute value of the X is too large. Therefore, A + X cannot be evaluated
accurately.

3 2 Result of POCH(2, X) is accurate to less than one-half precision because either

Aor A + X is too close to a negative integer.

For X a nonnegative integer, POCH(A, X) is just Pochhammer’s symbol.

Example

In this example, (1.6)j g is computed and printed.

USE POCH_INT
USE UMACH_INT

IMPLICIT NONE
Declare variables

INTEGER NOUT
REAL A, VALUE, X
Compute
A =1.6
X = 0.8

VALUE = POCH(A, X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, X, VALUE

99999 FORMAT (' POCH(', F6.3, ',', F6.3, ') = ', F6.4)
END

Output

POCH(1.600, 0.800) = 1.3902

= R{nggmq\{q POCH Chapter 4: Gamma Function and Related Functions

106

POCH1

This function evaluates a generalization of Pochhammer’s symbol starting from the first order.

Function Return Value

POCH1 — Function value. (Output)
POCH1(A, X) = (POCH(A, X) - 1)/X%.

Required Arguments

A — The first argument. (Input)
X — The second, differential argument. (Input)

FORTRAN 90 Interface

Generic: POCHI (2, X)
Specific: The specific interface names are S_POCHI and D_POCHL.

FORTRAN 77 Interface

Single: POCHL (2, X)
Double: The double precision function name is DPOCH1.
Description

Pochhammer’s symbol from the first order is defined to be

(a),—1 (r(a+x)_l)/x

POCH1 (a,x) =—% r(a)

where (a), is Pochhammer’s generalized symbol. See POCH for the definition of (a),. It is useful in special sit-

uations that require especially accurate values when x is small. This specification is particularly suited for
stability when computing expressions such as

F<a+x>_ F(b+x>
F(a) 1(b)

Note that POCH1(a, 0) = W(a). See PST for the definition of W(a).

/x =POCHI (a,x) —POCHI1 (b,x)

When |x| is so small that substantial cancellation will occur if the straightforward formula is used, we use an
expansion due to fields and discussed by Luke (1969).

= Rogygmﬂn\{q POCH1 Chapter 4: Gamma Function and Related Functions 107

The ratio (a), = '@ + x)/T(a) is written by Luke as (2 + (x - 1)/2)* times a polynomial in (2 + (x - 1)/ 2)‘2. To

maintain significance in POCH1, we write for positive 4,

where EXPRL (x) = (¢* - 1)/x. Likewise, the polynomial is written P = 1 + xP; (a, x). Thus,

Substantial significance loss can occur if 2 + x or a are close to a negative integer even when |x| is very small.
To insure that the result does not overflow or underflow, one can keep the arguments 2 and a + x well within
the range dictated by the gamma function routine GAMMA or one can keep |x| small whenever a is large. POCH
also works for a variety of arguments outside these rough limits, but any more general limits that are also

(a+ (x-1)/2) =exp(xIn(a + (x - 1)/2)) =T =1 + gEXPRL(g)

POCHL1 (g, x) = ((a), - 1)/x = EXPRL(q)(q/x + qP1(a, x)) + P1(a, x)

useful are difficult to specify.

Example

In this example, POCH1(1.6, 0.8) is computed and printed.

USE POCH1_INT
USE UMACH_INT

IMPLICIT NONE

INTEGER NOUT

REAL A, VALUE, X
A =1.6

X = 0.8

VALUE = POCHI (A, X)

CALL UMACH (2, NOUT)

Declare variables

Compute

Print the results

WRITE (NOUT,99999) A, X, VALUE

99999 FORMAT (' POCH1(', F6.3,
END

Output

POCH1(1.600, 0.800) = 0.4878

’

, F6.3, ') = ', F6.4)

=RogueWave

POCH1 Chapter 4: Gamma Function and Related Functions

108

BETA

This function evaluates the complete beta function.

Function Return Value
BETA — Function value. (Output)

Required Arguments

A — First beta parameter. (Input)
For real arguments, A must be positive.

B — Second beta parameter. (Input)
For real arguments, B must be positive.

FORTRAN 90 Interface

Generic: BETA (3, B)
Specific: The specific interface names are S_BETA, D_BETA, and C_BETA.

FORTRAN 77 Interface

Single: BETA (3, B)
Double: The double precision function name is DBETA.
Complex: The complex name is CBETA.

Description

The beta function is defined to be

pab) = —?825}? = j(l)t"_l(l — 0" ldr

See GAMMA for the definition of I'(x).

For real arguments the function BETA requires that both arguments be positive. In addition, the arguments
must not be so large that the result underflows.

For complex arguments, the arguments a and 2 + b must not be close to negative integers. The arguments
should not be so large (near the real axis) that the result underflows. Also, a + b should not be so far from the
real axis that the result overflows.

= Rogygmﬂn\{q BETA Chapter 4: Gamma Function and Related Functions 109

Comments

Informational Error

Type Code Description

2 1 The function underflows because A and/or B is too large.
Examples
Example 1

In this example, B(2.2, 3.7) is computed and printed.

USE BETA_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOouT
REAL A, VALUE, X
! Compute
A = 2.2
X = 3.7

VALUE = BETA (A, X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, X, VALUE

99999 FORMAT (' BETA(', F6.3, ',', F6.3, ') = ', F6.4)
END

Output

BETA(2.200, 3.700) = 0.0454

Example 2

In this example, B(1.7 + 2.2i, 3.7 + 0.4i) is computed and printed.

USE BETA_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables
INTEGER NOouT

COMPLEX A, B, VALUE

! Compute
A = (1.7, 2.2)
B = (3.7, 0.4)

VALUE = BETA (A, B)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, B, VALUE

= R{ng?mq\{q BETA Chapter 4: Gamma Function and Related Functions 110

99999 FORMAT (' BETA((', F6.3, ',', F6.3, '), (', F6.3, ',', F6.3,&
")) = (', F6.3, ',', F6.3, "))
END

Output

BETA((1.700, 2.200), (3.700, 0.400)) = (-0.033,-0.017)

= Rogygmg\{q BETA Chapter 4: Gamma Function and Related Functions 111

ALBETA

This function evaluates the natural logarithm of the complete beta function for positive arguments.

Function Return Value

ALBETA — Function value. (Output)
ALBETA returns In B(a, B) = In(F'(2) ['(B)/ (A + B)).

Required Arguments

A — The first argument of the BETA function. (Input)
For real arguments, A must be greater than zero.

B — The second argument of the BETA function. (Input)
For real arguments, B must be greater than zero.

FORTRAN 90 Interface

Generic: ALBETA (4, B)
Specific: The specific interface names are S_ALBETA, D_ALBETA, and C_ALBETA.

FORTRAN 77 Interface

Single: ALBETA (2, B)
Double: The double precision function name is DLBETA.
Complex: The complex name is CLBETA.

Description

ALBETA computes In B(a, b) = In B(b, a). See BETA for the definition of B(a, b).

For real arguments, the function ALBETA is defined for a > 0 and b > 0. It returns accurate results even when a
or b is very small. It can overflow for very large arguments; this error condition is not detected except by the
computer hardware.

For complex arguments, the arguments a, b and a + b must not be close to negative integers (even though
some combinations ought to be allowed). The arguments should not be so large that the logarithm of the
gamma function overflows (presumably an improbable condition).

Comments
Note that In B(a, B) = In B(B,).

= Rogygwkﬂn\ter ALBETA Chapter 4: Gamma Function and Related Functions 112

Examples

Example 1

In this example, In (2.2, 3.7) is computed and printed.

USE ALBETA_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL A, VALUE, X
! Compute
A = 2.2
X = 3.7

VALUE = ALBETA (A, X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, X, VALUE

99999 FORMAT (' ALBETA(', F6.3, ',', F6.3, ') = ', F8.4)
END

Output

ALBETA(2.200, 3.700) = -3.0928

Example 2

In this example, In B(1.7 + 2.2, 3.7 + 0.4i) is computed and printed.

USE ALBETA_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
COMPLEX A, B, VALUE
! Compute
A = (1.7, 2.2)
B = (3.7, 0.4)

VALUE = ALBETA (A, B)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) A, B, VALUE

99999 FORMAT (' ALBETA((', F6.3, ',', F6.3, '), (', F6.3, ',', F6.3, &
")) = (', F6.3, ',', F6.3, ')')
END
Output
ALBETA((1.700, 2.200), (3.700, 0.400)) = (-3.280,-2.659)

= R{nggmq\{q ALBETA Chapter 4: Gamma Function and Related Functions

113

BETAI

This function evaluates the incomplete beta function ratio.

Function Return Value

BETAI — Probability that a random variable from a beta distribution having parameters PIN and QIN will
be less than or equal to X. (Output)

Required Arguments
X — Upper limit of integration. (Input)
X must be in the interval (0.0, 1.0) inclusive.

PIN — First beta distribution parameter. (Input)
PIN must be positive.

QIN — Second beta distribution parameter. (Input)
QIN must be positive.

FORTRAN 90 Interface

Generic: BETAT (X, PIN, QIN)
Specific: The specific interface names are S_BETATI and D_BETAT.

FORTRAN 77 Interface

Single: BETAT (X, PIN, QIN)
Double: The double precision function name is DBETAT.
Description

The incomplete beta function is defined to be

_hpa)
Ip.q) = p(pa) B(pa)

for0<x<1,p>0,g>0

ot =0

See BETA for the definition of B(p, 9).

The parameters p and g must both be greater than zero. The argument x must lie in the range 0 to 1. The
incomplete beta function can underflow for sufficiently small x and large p; however, this underflow is not
reported as an error. Instead, the value zero is returned as the function value.

The function BETAT is based on the work of Bosten and Battiste (1974).

= Rogygmﬂn\{q BETAI Chapter 4: Gamma Function and Related Functions 114

Example

In this example, Ij ¢1(2.2, 3.7) is computed and printed.

USE BETAI_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL PIN, QIN, VALUE, X
! Compute
X = 0.61
PIN = 2.2
QIN = 3.7

VALUE = BETAI (X, PIN, QIN)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, PIN, QIN, VALUE

99999 FORMAT (' BETAI(', F6.3, ',', F6.3, ',', F6.3, ') = ', F6.4)
END

Output

BETAT(0.610, 2.200, 3.700) = 0.8822

= R{ng?mq\{q BETAI Chapter 4: Gamma Function and Related Functions 115

% Rogygmqv.‘e" BETAI Chapter 4: Gamma Function and Related Functions 116

. .
—=— Chapter 5: Error Function and
— .
—= Related Functions
Routines
5.1 Error Functions
Evaluates the error function, erf x ERF 119
Evaluates the complementary error function,erfc x. ERFC 121
Evaluates the scaled complementary error function, exp(xz) erfc(x)....... ERFCE 124
Evaluates a scaled function related to erfc, exp(—zz) erfc(-iz) CERFE 126
Evaluates the inverse error function, erf v x ERFI 128
Evaluates the inverse complementary error function, erffc ' x. ERFCI 131
Evaluates Dawson’s function. DAWS 134
5.2 Fresnel Integrals
Evaluates the cosine Fresnelintegral, C(x) FRESC 136
Evaluates the sine Fresnel integral, S(x) FRESS 138

=RogueWave

Chapter 5: Error Function and Related Functions

117

Usage Notes

The error function is
X
2
e(x) = %J‘Oe " dt

The complementary error function is erfc(x) = 1 - erf(x). Dawson’s function is
X
_2 2
e’ J. e dt
0
The Fresnel integrals are

C(x)= Ecos(%ﬂ)dt

and

S(x) = I}in(%tz)dt

They are related to the error function by

C(z) +i8(z) = et (VE (1-4)z)

= R{ng?mq\{q Usage Notes Chapter 5: Error Function and Related Functions 118

ERF

This function evaluates the error function.

Function Return Value
ERF — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: ERF (X)
Specific: The specific interface names are S_ERF and D_ERF.

FORTRAN 77 Interface

Single: ERF (X)
Double: The double precision function name is DERF.
Description

The error function, erf(x), is defined to be

erf (x) = %J‘Oetzdt

All values of x are legal.

= ROQEI?WH\{E: ERF Chapter 5: Error Function and Related Functions 119

0.5

0.0 —

erf(x)

—0.5 —

1-(} IIII|I-I|I|III||IIII|IIII||III

-30 -20 -1.0 00

x

1.0 2.0 3.0

Figure 5.1 — Plot of erf (x)

Example

In this example, erf(1.0) is computed and printed.

USE ERF_INT
USE UMACH_INT

IMPLICIT NONE

INTEGER NOUT

REAL VALUE, X
!

X =1.0

VALUE = ERF (X)

Declare variables

Compute

Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' ERF(', F6.3, ') = ', F6.3)
END

Output

ERF(1.000) = 0.843

=RogueWave

ERF Chapter 5: Error Function and Related Functions

120

ERFC

This function evaluates the complementary error function.

Function Return Value
ERFC — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: ERFC (X)
Specific: The specific interface names are S_ERFC and D_ERFC.

FORTRAN 77 Interface

Single: ERFC (X)
Double: The double precision function name is DERFC.
Description

The complementary error function, erfc(x), is defined to be

00
2 j 2
erfc(x) =—=| e dt
() =7z,
The argument x must not be so large that the result underflows. Approximately, x should be less than

()]

where s = AMACH(1) (see the Reference Material section of this manual) is the smallest representable positive
floating-point number.

= Rogygmq\{q ERFC Chapter 5: Error Function and Related Functions 121

H
= 1
>
D
Comments
Informational Error
Type Code
2 1
Example

2.0

1.5

0.5

0.0

-30 =20 -=-1.0 0.0 1.0 2.0 3.0

xr

Figure 5.2 — Plot of erfc (x)

Description

The function underflows because X is too large.

In this example, erfc(1.0) is computed and printed.

USE ERFC_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables

INTEGER NOouT
REAL VALUE, X

! Compute
X =1.0

VALUE = ERFC(X)

CALL UMACH (2,

END

Print the results

NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' ERFC(',

F6.3, ') = ', F6.3)

=RogueWave

ERFC Chapter 5: Error Function and Related Functions

122

Output

ERFC(1.000) = 0.157

=
= Rogygmq\{e; ERFC Chapter 5: Error Function and Related Functions 123

ERFCE

This function evaluates the exponentially scaled complementary error function.

Function Return Value
ERFCE — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: ERFCE (X)
Specific: The specific interface names are S_ERFCE and D_ERFCE.

FORTRAN 77 Interface

Single: ERFCE (X)
Double: The double precision function name is DERFCE.
Description

The function ERFCE(X) computes

2
e" erfe(x)
where erfc(x) is the complementary error function. See ERFC for its definition.

To prevent the answer from underflowing, x must be greater than

Xin™ —In(5/2)

where b = AMACH(2) is the largest representable floating-point number.

Comments

Informational Error

Type Code Description

2 1 The function underflows because X is too large.

= Rogygmq\{q ERFCE Chapter 5: Error Function and Related Functions 124

Example
In this example, ERFCE(1.0) = !0 erfe(1.0) is computed and printed.

USE ERFCE_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X

! Compute
X =1.0

VALUE = ERFCE (X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' ERFCE(', F6.3, ') = ', F6.3)
END

Output

ERFCE(1.000) = 0.428

= R{ng?mq\{q ERFCE Chapter 5: Error Function and Related Functions 125

CERFE

This function evaluates a scaled function related to ERFC.

Function Return Value
CERFE — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: CERFE (2)
Specific: The specific interface names are C_CERFE and Z_CERFE.

FORTRAN 77 Interface

Complex: CERFE (2)
Double complex:The double complex function name is ZERFE.

Description

Function CERFE is defined to be

00
_2 29 J‘ 2
z . . —Z 4
e “erfc(—iz) = —ie” =| € dt
(Z> N z
Let b = AMACH(2) be the largest floating-point number. The argument z must satisfy

|zl <vb

or else the value returned is zero. If the argument z does not satisfy (92)%-(Rz)*< log b, then b is returned. All
other arguments are legal (Gautschi 1969, 1970).

Example
In this example, CERFE(2.5 + 2.5i) is computed and printed.

USE CERFE_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables
INTEGER NOUT
COMPLEX VALUE, Z

= Rogygmq\{q CERFE Chapter 5: Error Function and Related Functions 126

1 Compute
4 (2.5, 2.5)
VALUE = CERFE(Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) 2z, VALUE

99999 FORMAT (' CERFE(', F6.3, ',', F6.3, ') = (', &
F6.3, ',', F6.3, ")")
END
Output
CERFE(2.500, 2.500) = (0.117, 0.108)

= Rogygmg\{q CERFE Chapter 5: Error Function and Related Functions 127

ERFI

This function evaluates the inverse error function.

Function Return Value
ERFI — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: ERFI (X)
Specific: The specific interface names are S_ERFI and D_ERFI.

FORTRAN 77 Interface

Single: ERFI (X)
Double: The double precision function name is DERFI.
Description

Function ERFI(X) computes the inverse of the error function erf x, defined in ERF.

The function ERFI(X) is defined for |x| < 1. If x,,,,< |x| < 1, then the answer will be less accurate than half

precision. Very approximately,

Xmax =~ 1 =&/ (47[)

where € = AMACH(4) is the machine precision.

= ROQEI?WH\{E: ERFI Chapter 5: Error Function and Related Functions 128

2.0 |
0.0 -
- /
—2.0 =
—-4.0 N B S B s B e
—1.0 0.5 0.0 0.5 1.0
T
Figure 5.3 — Plot of erf"(x)
Comments
Informational Error
Type Code Description
3 2 Result of ERFI(X) is accurate to less than one-half precision because the abso-

lute value of the argument is too large .

Example
In this example, erf 1(erf(1.0)) is computed and printed.

USE ERFI_INT
USE ERF_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables
INTEGER NOouT
REAL VALUE, X
! Compute
X = ERF(1.0)
VALUE = ERFI (X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

= ROQEJ?WH\{E: ERFI Chapter 5: Error Function and Related Functions

129

99999 FORMAT (' ERFI(', F6.3, ') = ', F6.3)
END

Output

ERFI(0.843) = 1.000

= R‘Ogy?mq\{es ERFI Chapter 5: Error Function and Related Functions 130

ERFCI

This function evaluates the inverse complementary error function.

Function Return Value
ERFCI — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: ERFCI (X)
Specific: The specific interface names are S_ERFCI and D_ERFCI.

FORTRAN 77 Interface

Single: ERFCI (X)
Double: The double precision function name is DERFCT.
Description

The function ERFCI(X) computes the inverse of the complementary error function erfc x, defined in ERFC.

The function ERFCI(X) is defined for 0 < x < 2. If x,,,,, < x < 2, then the answer will be less accurate than half

precision. Very approximately,

Xmax = 2 — €/ (47[)

Where € = AMACH(4) is the machine precision.

= ROQEI?WH\{E: ERFCI Chapter 5: Error Function and Related Functions 131

4.0 —

2.0 . |
o Il‘.‘.
.
0.0
- ~
— -"-
-2.0 '
=40 T1TT T T T T T T T T T T T T T T T
0.0 0.5 1.0 1.5 2.0
i
Figure 5.4 — Plot of erf"(x)
Comments
Informational Error
Type Code Description
3 2 Result of ERFCI(X) is accurate to less than one-half precision because the

argument is too close to 2.0.

Example

In this example, erfc™!(erfc(1.0)) is computed and printed.

USE ERFCI_INT
USE ERFC_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X

! Compute
X = ERFC(1.0)

VALUE = ERFCI (X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

= R{nggmq\{q ERFCI Chapter 5: Error Function and Related Functions 132

99999 FORMAT (' ERFCI(', F6.3, ') = ', F6.3)
END

Output

ERFCI(0.157) = 1.000

= R‘Ogy?mq\{es ERFCI Chapter 5: Error Function and Related Functions 133

DAWS

This function evaluates Dawson’s function.

Function Return Value
DAWS — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: DAWS (X)
Specific: The specific interface names are S_DAWS and D_DAWS.

FORTRAN 77 Interface

Single: DAWS (X)
Double: The double precision function name is DDAWS.
Description

Dawson’s function is defined to be
X
2 2
e I e dt
0

It is closely related to the error function for imaginary arguments.

So that Dawson’s function does not underflow, |x| must be less than 1/(2s). Here, s = AMACH(1) is the smallest
representable positive floating-point number.

Comments

Informational Error

Type Code Description

3 2 The function underflows because the absolute value of X is too large.

The Dawson function is closely related to the error function for imaginary arguments.

= Rogygmﬂn\{q DAWS Chapter 5: Error Function and Related Functions 134

Example

In this example, DAWS(1.0) is computed and printed.

USE DAWS_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables
INTEGER NOUT
REAL VALUE, X
! Compute
X =1.0
VALUE = DAWS (X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' DAWS(', F6.3, ') = ', F6.3)
END
Output
DAWS(1.000) = 0.538

=RogueWave

DAWS

Chapter 5: Error Function and Related Functions

135

FRESC

This function evaluates the cosine Fresnel integral.

Function Return Value
FRESC — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: FRESC (X)

Specific: The specific interface names are S_FRESC and D_FRESC.

FORTRAN 77 Interface

Single: FRESC (X)
Double: The double precision function name is DFRESC.
Description

The cosine Fresnel integral is defined to be

C(x)= J-:cos<%tz>dt

All values of x are legal.

Example
In this example, C(1.75) is computed and printed.

USE FRESC_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = 1.75
VALUE = FRESC (X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

= Rogygmq\{q FRESC Chapter 5: Error Function and Related Functions

136

99999 FORMAT (' FRESC(', F6.3, ') = ', F6.3)
END

Output

FRESC(1.750) = 0.322

= R‘Ogy?mq\{es FRESC Chapter 5: Error Function and Related Functions 137

FRESS

This function evaluates the sine Fresnel integral.

Function Return Value
FRESS — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: FRESS (X)

Specific: The specific interface names are S_FRESS and D_FRESS.

FORTRAN 77 Interface

Single: FRESS (X)
Double: The double precision function name is DFRESS.
Description

The sine Fresnel integral is defined to be

S(x) = stin(%tz)dt

All values of x are legal.

Example
In this example, 5(1.75) is computed and printed.

USE FRESS_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = 1.75
VALUE = FRESS (X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

= Rogygmq\{q FRESS Chapter 5: Error Function and Related Functions

138

99999 FORMAT (' FRESS(', F6.3, ') = ', F6.3)
END

Output

FRESS(1.750) = 0.499

= R‘Ogy?mq\{es FRESS Chapter 5: Error Function and Related Functions 139

% Rogygmqv.‘e" FRESS Chapter 5: Error Function and Related Functions 140

I

Chapter 6: Bessel Functions

Routines

6.1

6.2

6.3

6.4

Bessel Functions of Order 0 and 1

Evaluates Jp(X). oo BSJO
Evaluates Ji(X). . .. oo BSJ1
Evaluates Yo(X)o oo BSYO
Evaluates Y (X)o BSY1
Evaluates g (X)o BSIO
Evaluates 11(X)o BSI1
Evaluates Ky(X)o BSKO
Evaluates Ki(X)o BSK1
Evaluates e“x‘lo(x) ... BSIOE
Evaluates e~ Xl (x)o BSI1E
Evaluates 8XKg(X). « .« oot BSKOE
Evaluates €XKq(X). . .« oot BSK1E
Series of Bessel Functions, Integer Order

Evaluates Ji(x), k=0, ..., n-1 .. BSJNS
Evaluates Ii(x), k=0, ..., n-1. .. BSINS
Series of Bessel Functions, Real Order and Argument

Evaluates J, , 4(Xx), k=0, ...,n-1. . BSJS
Evaluates Y, , ((x), k=0,,n-1 BSYS
Evaluates I, . ((X), k=0, ...,n-1 . BSIS
Evaluates € 1, , x(X), k=0, ...,n=1 .. BSIES
Evaluates K, , ((X), k=0, ...,n-1 .. . BSKS
Evaluates €¥K, . (X), k=0, ...,n=1. .. BSKES
Series of Bessel Functions, Real Order and Complex Argument

Evaluates J, , ((2), k=0, ...,n-1. . CBJS
Evaluates Y, , x(2), k=0, ...,n-1 CBYS

144
146
148
150
152
154
156
159
161
163
165
167

169
172

175
177
179
181
183
185

187
190

=RogueWave

Chapter 6: Bessel Functions

141

Evaluates I, . ((2), k=0, ...,n-1 . CBIS 193
Evaluates K, , ((2), K=0, ...,n-1 . .. CBKS 195

= R{nggmg\(e: Chapter 6: Bessel Functions 142

Usage Notes

The following table lists the Bessel function routines by argument and order type:

Real Argument Complex Argument
Order Order

Function 0 1 Integer |Real Integer |Real
Jx) BSJO BsSJ1 BSJNS BSJS BSJNS CBJS
Y Ax) BSYO BSYl BSYS CBYS
Ifx) BSIO BSI1 BSINS BSIS BSINS CBIS
e—\x\Mx) BSIOE |BSI1E BSIES

Kfx) BSKO BSK1 BSKS CBKS
e*‘X‘KV(x) BSKOE |BSKI1E BSKES

EE R{nggmq\{q Usage Notes Chapter 6: Bessel Functions 143

BSJO

This function evaluates the Bessel function of the first kind of order zero.

Function Return Value
BSJ0 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: BSJO (%)
Specific: The specific interface names are S_BSJ0 and D_BSJ0.

FORTRAN 77 Interface

Single: BSJO (%)
Double: The double precision function name is DBSJO0.
Description

The Bessel function Jy(x) is defined to be

7T
_1 .
Jo(x) = ﬁ‘[OCOS<X sin 0)d6
To prevent the answer from being less accurate than half precision, |x| should be smaller than

1/ve

For the result to have any precision at all, |x| must be less than 1/¢. Here, € is the machine precision,
€ = AMACH(4).

= Rogygmﬂn\{q BSJO Chapter 6: Bessel Functions 144

1.0

0.5

0.0

J(x)

—-0.5

-1.0 I S B B B s B B T
=20.0 -10.0 0.0 10.0 20.0
x
Figure 6.1 — Plot of Jy(x) and], (x)

Example
In this example, J(3.0) is computed and printed.

USE BSJO_INT

USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT

REAL VALUE, X
! Compute

X = 3.0

VALUE = BSJO (X)
! Print the results

CALL UMACH (2, NOUT)

WRITE (NOUT, 99999) X, VALUE
99999 FORMAT (' BSJO(', F6.3, ') = ', F6.3)

END
Output
BSJO(3.000) -0.260

EzRO UEW(JVE BSJO Chapter 6: Bessel Functions 145

& 0 F T W & ® § p

BSJ1

This function evaluates the Bessel function of the first kind of order one.

Function Return Value
BSJ1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSJ1 (X)
Specific: The specific interface names are S_BSJ1 and D_BSJ1.

FORTRAN 77 Interface

Single: BSJ1 (X)
Double: The double precision function name is DBSJ1.
Description

The Bessel function J;(x) is defined to be

Ji(x) = %Jocos(x sin 0 —0)d6

The argument x must be zero or larger in absolute value than 2s to prevent J;(x) from underflowing. Also, |x|

should be smaller than

1/ve

to prevent the answer from being less accurate than half precision. |x| must be less than 1/¢€ for the result to
have any precision at all. Here, € is the machine precision, € = AMACH(4), and s = AMACH(1) is the smallest rep-
resentable positive floating-point number.

Comments

Informational Error

Type Code Description

2 1 The function underflows because the absolute value of X is too small.

= ROQQ?WQ\{EF BSJ1 Chapter 6: Bessel Functions 146

Example

In this example, J1(2.5) is computed and printed.

USE BSJ1_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = 2.5
VALUE = BSJ1 (X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' BSJ1(', F6.3, ') = ', F6.3)
END

Output

BSJL1(2.500) = 0.497

EE R{nggmq\{e: BSJ1 Chapter 6: Bessel Functions 147

BSYO

This function evaluates the Bessel function of the second kind of order zero.

Function Return Value
BSY0 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSYO0 (%)
Specific: The specific interface names are S_BSY0 and D_BSY0.

FORTRAN 77 Interface

Single: BSYO0 (x)
Double: The double precision function name is DBSY0.
Description

The Bessel function Y(x) is defined to be

T 00
| J‘ . - 2 —x sinh ¢
Yo(x) = 7| sin(x sin d@——je dt
o(x) =) sin(xsin 0) d0—7]
To prevent the answer from being less accurate than half precision, x should be smaller than

1/ve

For the result to have any precision at all, |x| must be less than 1/¢. Here, € is the machine precision,
€ = AMACH(4).

= ROQQ?WQ\{EF BSYO Chapter 6: Bessel Functions 148

1.0
0.0 —
-1.0
= .
> i
-2.0
-3.0 -
_4-(} I D R D N B B | I
0.0 5.0 10.0 20.0
Figure 6.2 — Plot of Yy(x) and Y (x)
Example
In this example, Y(;(3.0) is computed and printed.
USE BSYO_INT
USE UMACH_INT
IMPLICIT NONE
! Declare variables
INTEGER NOUT
REAL VALUE, X
! Compute
X = 3.0
VALUE = BSYO (X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' BSYO(', F6.3, ') = ', F6.3)
END
Output
BSYO(3.000) = 0.377
EzRO UEW(JVE BSYO Chapter 6: Bessel Functions 149
& 0 F T W & ® § p

BSY1

This function evaluates the Bessel function of the second kind of order one.

Function Return Value
BSY1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSY1 (X)
Specific: The specific interface names are S_BSY1 and D_BSY1.

FORTRAN 77 Interface

Single: BSY1 (X)
Double: The double precision function name is DBSY1.
Description

The Bessel function Y;(x) is defined to be

00

Y1(X) = —% Osin(@—x sin G)de—% . {e’—e_’}e_x sinh 7,

Y(x) is defined for x > 0. To prevent the answer from being less accurate than half precision, x should be
smaller than

1/ve

For the result to have any precision at all, |x| must be less than 1/¢€. Here, € is the machine precision,
€ = AMACH(4).

= Rogygmﬂn\{q BSY1 Chapter 6: Bessel Functions 150

Example

In this example, Y7(3.0) is computed and printed.

USE BSY1_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = 3.0
VALUE = BSY1 (X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' BSY1(', F6.3, ') = ', F6.3)
END

Output

BSY1(3.000) = 0.325

= Rogypmq\{q BSY1 Chapter 6: Bessel Functions 151

BSIO

This function evaluates the modified Bessel function of the first kind of order zero.

Function Return Value
BSI0 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSIO (X)
Specific: The specific interface names are S_BSI0 and D_BSIO.

FORTRAN 77 Interface

Single: BSIO (%)
Double: The double precision function name is DBSIO.
Description

The Bessel function Iy(x) is defined to be

Iy(x) = %J'Ocosh<x cos 0)d0

x|

The absolute value of the argument x must not be so large that ¢'*' overflows.

= Rogygmﬂn\{q BSIO Chapter 6: Bessel Functions 152

6.0
i Ih —
il | —
4.0 - /
- S
- S
o \\ ."".
2.0 - /
= : HH'“H-_______ ___f____.. ,
0.0 - e
_20 i
_4[:' J'I rTrTrrrryrrrrTTT T T T T T T T TTTT
-30 -20 -10 00 10 20 30
p

Figure 6.3 — Plot of ly(x) and I, (x)

Example

In this example, Ij (4.5) is computed and printed.

USE BSIO_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = 4.5
VALUE = BSIO (X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' BSIO(', F6.3, ') = ', F6.3)
END

Output

BSIO(4.500) = 17.481

= R{ng?mg\{q BSIO Chapter 6: Bessel Functions 153

BSI1

This function evaluates the modified Bessel function of the first kind of order one.

Function Return Value
BSI1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSI1 (X)
Specific: The specific interface names are S_BSI1 and D_BSI1.

FORTRAN 77 Interface

Single: BSI1 (X)
Double: The double precision function name is DBSI1.
Description

The Bessel function I;(x) is defined to be

Ii(x)= %J.Oex cos Ocos 6 db

The argument should not be so close to zero that I1(x) = x/2 underflows, nor so large in absolute value that

el and, therefore, I;(x) overflows.

Comments

Informational Error

Type Code Description

2 1 The function underflows because the absolute value of X is too small.

= ROQQ?WQ\{E{ BSI1 Chapter 6: Bessel Functions

154

Example

In this example, I1(4.5) is computed and printed.

USE BSI1_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = 4.5
VALUE = BSI1 (X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' BSI1(', F6.3, ') = ', F6.3)
END

Output

BSI1(4.500) = 15.389

EE Rogypmq\{q BSI1 Chapter 6: Bessel Functions 155

BSKO

This function evaluates the modified Bessel function of the second kind of order zero.

Function Return Value
BSK0 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

Fortran 90 Interface

Generic: BSKO (%)
Specific: The specific interface names are S_BSK0 and D_BSKO.

FORTRAN 77 Interface

Single: BSKO (X)
Double: The double precision function name is DBSKO.
Description

The Bessel function Ky(x) is defined to be

Ko(x) = Iocos(x sinh 7) dt

The argument must be larger than zero, but not so large that the result, approximately equal to

7/ <2x)e_x

underflows.

= Rogygmﬂn\{q BSKO Chapter 6: Bessel Functions 156

10.0

- Ky —
1 Ky
751
2504
= 4
-|
4 Il, }
2.5+ \
- """--\.._;:;___;___‘__u‘
L e e I LA A R S B B B B
0.0 1.0 2.0 3.0 4.0
x
Figure 6.4 — Plot of Ky(x) and K (x)
Comments
Informational Error
Type Code Description
2 1 The function underflows because X is too large.
Example

In this example, Ky(0.5) is computed and printed.

USE BSKO_INT
USE UMACH_INT

IMPLICIT NONE
! Decl
INTEGER NOUT
REAL VALUE, X
! Comp
X = 0.5
VALUE = BSKO (X)
! Prin
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' BSKO(', F6.3, ') ="
END

are variables

ute

t the results

, F6.3)

=RogueWave

BSKO

Chapter 6: Bessel Functions

157

Output

BSKO(0.500) = 0.924

EE Rogygmq\{e; BSKO Chapter 6: Bessel Functions 158

BSK1

This function evaluates the modified Bessel function of the second kind of order one.

Function Return Value
BSK1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSK1 (X)
Specific: The specific interface names are S_BSK1 and D_BSKL1.

FORTRAN 77 Interface

Single: BSK1 (X)
Double: The double precision function name is DBSK1.
Description

The Bessel function K;(x) is defined to be

K (x) = Iosin(x sinh ¢)sinh 7 df

The argument x must be large enough (> max(1/b, s)) that K;(x) does not overflow, and x must be small
enough that the approximate answer,

v/ (2x)e™

does not underflow. Here, s is the smallest representable positive floating-point number, s = AMACH(1) , and
b = AMACH(2) is the largest representable floating-point number.

Comments

Informational Error

Type Code Description

2 1 The function underflows because X is too large.

= ROQQ?WQ\{E{ BSK1 Chapter 6: Bessel Functions

159

Example

In this example, K;(0.5) is computed and printed.

99999 FORMAT (' BSK1(', F6.
END

Output

BSK1(0.500) = 1.656

USE BSKI1_INT
USE UMACH_INT

IMPLICIT NONE

INTEGER NOUT
REAL VALUE, X
X = 0.5

VALUE = BSKI1 (X)

CALL UMACH (2, NOUT)

WRITE (NOUT,99999) X, VALUE

Declare variables

Compute

Print the results

', F6.3)

=RogueWave

BSK1

Chapter 6: Bessel Functions

160

BSIOE

This function evaluates the exponentially scaled modified Bessel function of the first kind of order zero.

Function Return Value
BSIOE — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSIOE (X)

Specific:

FORTRAN 77 Interface

Single: BSIOE (X)
Double: The double precision function name is DBSIOE.
Description

The specific interface names are S_BSIOE and D_BSIOE.

Function BSIOE computes e x| Iy(x). For the definition of the Bessel function Iy(x), see BSIO.

Example
In this example, BSI0E(4.5) is computed and printed.

USE BSIOE_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables
INTEGER NOouT

REAL VALUE, X

! Compute
X = 4.5
VALUE = BSIOE (X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' BSIOE(', F6.3, ') = ', F6.3)
END

=RogueWave

BSIOE

Chapter 6: Bessel Functions

161

Output

BSIOE(4.500) = 0.194

EE Rogygmq\{e; BSIOE Chapter 6: Bessel Functions 162

BSI1E

This function evaluates the exponentially scaled modified Bessel function of the first kind of order one.

Function Return Value
BSI1E — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSILE (X)
Specific: The specific interface names are S_BSI1E and D_BSIL1E.

FORTRAN 77 Interface

Single: BSI1E (X)
Double: The double precision function name is DBSI1E.
Description

Function BSI1E computes e x| I;(x). For the definition of the Bessel function I;(x), see BSI1. The function
BSI1E underflows if |x|/2 underflows.

Comments

Informational Error

Type Code Description
2 1 The function underflows because the absolute value of X is too small.
Example

In this example, BSI1E(4.5) is computed and printed.

USE BSI1E_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = 4.5
VALUE = BSI1E(X)

= Rogygmﬂn\{q BSIME Chapter 6: Bessel Functions 163

! Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' BSI1E(', F6.3, ') = ', F6.3)
END

Output

BSI1E(4.500) = 0.171

= R‘Dgygmq\{eg BSIME Chapter 6: Bessel Functions 164

BSKOE

This function evaluates the exponentially scaled modified Bessel function of the second kind of order zero.

Function Return Value
BSKOE — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSKOE (X)
Specific: The specific interface names are S_BSKOE and D_BSKOE.

FORTRAN 77 Interface

Single: BSKOE (X)
Double: The double precision function name is DBSKOE.
Description

Function BSKOE computes €*Ky(x). For the definition of the Bessel function Ky(x), see BSK0. The argument
must be greater than zero for the result to be defined.

Example
In this example, BSKOE(0.5) is computed and printed.

USE BSKOE_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = 0.5
VALUE = BSKOE (X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' BSKOE(', F6.3, ') = ', F6.3)
END

= Rogygmﬂn\{q BSKOE Chapter 6: Bessel Functions 165

Output

BSKOE(0.500) = 1.524

= Rogygmqv‘e" BSKOE Chapter 6: Bessel Functions 166

BSK1E

This function evaluates the exponentially scaled modified Bessel function of the second kind of order one.

Function Return Value
BSK1E — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BSKL1E (X)
Specific: The specific interface names are S_BSK1E and D_BSKL1E.

FORTRAN 77 Interface

Single: BSK1E (X)
Double: The double precision function name is DBSK1E.
Description

Function BSK1E computes €*K;(x). For the definition of the Bessel function K;(x), see BSK1. The answer

BSK1E = e'K;(x) = 1/x overflows if x is too close to zero.

Example
In this example, BSK1E(0.5) is computed and printed.

USE BSK1E_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables
INTEGER NOouT
REAL VALUE, X
! Compute
X = 0.5
VALUE = BSKI1E (X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' BSKlE(', F6.3, ') = ', F6.3)
END

= Rogygmﬂn\{q BSK1E Chapter 6: Bessel Functions

167

Output

BSK1E(0.500) = 2.731

= Rogygmqv‘e" BSK1E Chapter 6: Bessel Functions 168

BSJINS

Evaluates a sequence of Bessel functions of the first kind with integer order and real or complex arguments.

Required Arguments
X — Argument for which the sequence of Bessel functions is to be evaluated. (Input)
The absolute value of real arguments must be less than 10%.
The absolute value of complex arguments must be less than 10%.

N — Number of elements in the sequence. (Input)
It must be a positive integer.

BS — Vector of length N containing the values of the function through the series. (Output)
BS(I) contains the value of the Bessel function of order T - 1 at x for T =1 to N.

FORTRAN 90 Interface

Generic: CALL BSJNS (X, N, BS)
Specific: The specific interface names are S_BSJNS, D_BSJINS, C_BSJNS, and zZ_BSJNS.

FORTRAN 77 Interface

Single: CALL BSJNS (X, N, BS)
Double: The double precision name is DBSJINS.
Complex: The complex name is CBJINS.

Double Complex: The double complex name is DCBJNS.

Description

The complex Bessel function J,(z) is defined to be

Ju(z) = %J.Ocos<z sin 0 —n)do

This code is based on the work of Sookne (1973a) and Olver and Sookne (1972). It uses backward recursion
with strict error control.

Examples

Example 1

In this example, [,,(10.0), n =0, ..., 9 is computed and printed.

USE BSJNS_INT
USE UMACH_INT

= ROQQ?WQ\{EF BSJNS Chapter 6: Bessel Functions 169

IMPLICIT

INTEGER
PARAMETER

INTEGER
REAL

X =10.0

NONE
Declare variables

(N=10)
K, NOUT

BS(N), X
Compute

CALL BSJNS (X, N, BS)

Print the results

CALL UMACH (2, NOUT)
DO 10 K=1, N

WRITE (NOUT,99999) K-1, X, BS(K)
10 CONTINUE
99999 FORMAT (' J sub ', I2, ' (', F6.3, ') = ', F6.3)
END
Output
J sub 0 (10.000) = -0.246
J sub 1 (10.000) 0.043
J sub 2 (10.000) 0.255
J sub 3 (10.000) = 0.058
J sub 4 (10.000) = -0.220
J sub 5 (10.000) = -0.234
J sub 6 (10.000) = -0.014
J sub 7 (10.000) 0.217
J sub 8 (10.000) 0.318
J sub 9 (10.000) = 0.292
Example 2

In this example, [,,(10 + 10i), n =0, ..., 10 is computed and printed.

10

USE BSJNS_INT
USE UMACH_INT

IMPLICIT

INTEGER
PARAMETER

INTEGER
COMPLEX

Z = (10.0

NONE
Declare variables
N
(N=11)
K, NOUT
CBS(N), zZ
Compute
, 10.0)

CALL BSJNS (Z, N, CBS)

Print the results

CALL UMACH (2, NOUT)
DO 10 K=1, N

WRITE
CONTINUE

(NOUT, 99999) K-1, Z, CBS(K)

=RogueWave

BSJNS

Chapter 6: Bessel Functions

170

99999 FORMAT (' J sub ', I2, ' ((', F6.3, ',', F6.3, &

")) = (', F9.3, ',', F9.3, ')')
END

Output

J sub 0 ((10.000,10.000)) = (-2314.975, 411.563)
J sub 1 ((10.000,10.000)) = (-460.681,-2246.627)
J sub 2 ((10.000,10.000)) = (2044.245, -590.157)
J sub 3 ((10.000,10.000)) = (751.498, 1719.746)
J sub 4 ((10.000,10.000)) = (-1302.871, 880.632)
J sub 5 ((10.000,10.000)) = (-920.394, -846.345)
J sub 6 ((10.000,10.000)) = (419.501, -843.607)
J sub 7 ((10.000,10.000)) = (665.930, 88.480)
J sub 8 ((10.000,10.000)) = (108.586, 439.392)
J sub 9 ((10.000,10.000)) = (-227.548, 176.165)
J sub 10 ((10.000,10.000)) = (-154.831, -76.050)

EE R{nggmq\{e: BSJNS Chapter 6: Bessel Functions 171

BSINS

Evaluates a sequence of modified Bessel functions of the first kind with integer order and real or complex
arguments.

Required Arguments

X — Argument for which the sequence of Bessel functions is to be evaluated. (Input)

For real argument exp(|x|) must not overflow. For complex arguments x must be less than 10* in abso-
lute value.

N — Number of elements in the sequence. (Input)

BSI — Vector of length N containing the values of the function through the series. (Output)
BSI(I) contains the value of the Bessel function of order T - 1 atx for T =1 to N.

FORTRAN 90 Interface

Generic: CALL BSINS (X, N, BSI)
Specific: The specific interface names are S_BSINS, D_BSINS, C_BSINS, and zZ_BSINS.

FORTRAN 77 Interface

Single: CALL BSINS (X, N, BSI)
Double: The double precision name is DBSINS.
Complex: The complex name is CBINS.

Double Complex: The double complex name is DCBINS.

Description

The complex Bessel function I,,(z) is defined to be

1,(z) = %J-Oez s Ocos (n0) do

This code is based on the work of Sookne (1973a) and Olver and Sookne (1972). It uses backward recursion
with strict error control.

Examples

Example 1

In this example, 1,,(10.0), n =0, ..., 10 is computed and printed.

USE BSINS_INT
USE UMACH_INT

IMPLICIT NONE

= ROQQ?WQ\{E{ BSINS Chapter 6: Bessel Functions

172

Declare variables
INTEGER N
PARAMETER (N=11)

INTEGER K, NOUT
REAL BSI(N), X

Compute
X = 10.0

CALL BSINS (X, N, BSI)
Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) K-1, X, BSI(K)

10 CONTINUE
99999 FORMAT (' I sub ', I2, ' (', F6.3, ') = ', F9.3)
END

Output
I sub 0 (10.000) = 2815.716
I sub 1 (10.000) = 2670.988
I sub 2 (10.000) = 2281.519
I sub 3 (10.000) = 1758.381
I sub 4 (10.000) = 1226.490
I sub 5 (10.000) = 777.188
I sub 6 (10.000) = 449.302
I sub 7 (10.000) = 238.026
I sub 8 (10.000) = 116.066
I sub 9 (10.000) = 52.319
I sub 10 (10.000) = 21.892
Example 2

In this example, 1,,(10 + 10i), n = 0, ..., 10 is computed and printed.

10

USE BSINS_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER N
PARAMETER (N=11)

INTEGER K, NOUT
COMPLEX CBS(N), z
Compute
Z = (10.0, 10.0)
CALL BSINS (Z, N, CBS)
Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) K-1, Z, CBS(K)
CONTINUE

=RogueWave

BSINS

Chapter 6: Bessel Functions

173

99999 FORMAT (' I sub ', I2, ' ((', F6.3, ',', F6.3, &

")) = (', F9.3, ',', F9.3, "))
END

Output
I sub 0 ((10.000,10.000)) = (-2314.975, -411.563)
I sub 1 ((10.000,10.000)) = (-2246.627, -460.681)
I sub 2 ((10.000,10.000)) = (-2044.245, -590.157)
I sub 3 ((10.000,10.000)) = (-1719.746, -751.498)
I sub 4 ((10.000,10.000)) = (-1302.871, -880.632)
I sub 5 ((10.000,10.000)) = (-846.345, -920.394)
I sub 6 ((10.000,10.000)) = (-419.501, -843.607)
I sub 7 ((10.000,10.000)) = (-88.480, -665.930)
I sub 8 ((10.000,10.000)) = (108.586, -439.392)
I sub 9 ((10.000,10.000)) = (176.165, -227.548)
I sub 10 ((10.000,10.000)) = (154.831, -76.050)

= R{nggmq\{e: BSINS Chapter 6: Bessel Functions 174

BSJS

Evaluates a sequence of Bessel functions of the first kind with real order and real positive arguments.

Required Arguments
XNU — Real argument which is the lowest order desired. (Input)
It must be at least zero and less than one.

X — Real argument for which the sequence of Bessel functions is to be evaluated. (Input)
It must be nonnegative.

N — Number of elements in the sequence. (Input)

BS — Vector of length N containing the values of the function through the series. (Output)
BS(I) contains the value of the Bessel function of order XNU + I —1 atx for T =1 to N.

FORTRAN 90 Interface

Generic: CALL BSJS (XNU, X, N, BS)
Specific: The specific interface names are S_BSJS and D_BSJS.

FORTRAN 77 Interface

Single: CALL BSJS (XNU, X, N, BS)
Double: The double precision name is DBSJS.
Description

The Bessel function J,(x) is defined to be

(x/2 3
S() = \/EF(v+>1/2)

This code is based on the work of Gautschi (1964) and Skovgaard (1975). It uses backward recursion.

T
j cos(x cos H)sinzve do
0

Comments
Workspace may be explicitly provided, if desired, by use of B2JS/DB2JS. The reference is
CALL B2JS (XNU, X, N, BS, WK)
The additional argument is
WK — work array of length 2 * N.

EE ROQQ?WQ\{E{ BS)S Chapter 6: Bessel Functions

175

Example

In this example, J,,(2.4048256), v =0, ..., 10 is computed and printed.

USE BSJS_INT
USE UMACH_INT

IMPLICIT NONE

INTEGER N
PARAMETER (N=11)

INTEGER K, NOUT

REAL BS(N), X, XNU
1

XNU = 0.0

X = 2.4048256

CALL BSJS (XNU, X, N, BS)

CALL UMACH (2, NOUT)
DO 10 K=1, N

Declare variables

Compute

Print the results

WRITE (NOUT,99999) XNU+K-1,

10 CONTINUE
99999 FORMAT (' J sub ', F6.3,

END

Output

J sub 0.000 (2.405) = 0
J sub 1.000 (2.405) = 0
J sub 2.000 (2.405) = 0
J sub 3.000 (2.405) = 0
J sub 4.000 (2.405) = 0
J sub 5.000 (2.405) = 0
J sub 6.000 (2.405) = 0
J sub 7.000 (2.405) = 0
J sub 8.000 (2.405) = 0
J sub 9.000 (2.405) = 0
J sub 10.000 (2.405) = 0

o

.000
.519
.432
.199
.065
.016
.003
.001
.000
.000
.000

X, BS(K)

’

F10.3)

=RogueWave

BSJS

Chapter 6: Bessel Functions

176

BSYS

Evaluates a sequence of Bessel functions of the second kind with real nonnegative order and real positive
arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)
It must be at least zero and less than one.

X — Real positive argument for which the sequence of Bessel functions is to be evaluated. (Input)
N — Number of elements in the sequence. (Input)

BSY — Vector of length N containing the values of the function through the series. (Output)
BSY(I) contains the value of the Bessel function of order I - 1 + XNU at x for I =1 to N.

FORTRAN 90 Interface

Generic: CALL BSYS (XNU, X, N, BSY)
Specific: The specific interface names are S_BSYS and D_BSYS.

FORTRAN 77 Interface

Single: CALL BSYS (XNU, X, N, BSY)
Double: The double precision name is DBSYS.
Description

The Bessel function Y, (x) is defined to be

7T 00
Yv<x> = %Iosin(x sin 6 — V@)d@ - %J‘O [e’ + efwcos<v7[>] g X sinh 7 g

The variable v must satisfy 0 < v < 1. If this condition is not met, then BSY is set to -b. In addition, x must be

in [xm,xM] where X,, = 6(16732) and X,, = 16°. 1f x < xpp, then -b (b = AMACH(2), the largest representable

number) is returned; and if x > x4, then zero is returned.

The algorithm is based on work of Cody and others, (see Cody et al. 1976; Cody 1969; NATS FUNPACK 1976).
It uses a special series expansion for small arguments. For moderate arguments, an analytic continuation in
the argument based on Taylor series with special rational minimax approximations providing starting values
is employed. An asymptotic expansion is used for large arguments.

= ROQQ?WQ\{E{ BSYS Chapter 6: Bessel Functions

177

Example

In this example, Y 915625+ 5—1(0.0078125), v =1, 2, 3 is computed and printed.

USE BSYS_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables
INTEGER N
PARAMETER (N=3)

INTEGER K, NOUT
REAL BSY(N), X, XNU

! Compute
XNU = 0.015625
X = 0.0078125
CALL BSYS (XNU, X, N, BSY)

! Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N

WRITE (NOUT,99999) XNU+K-1, X, BSY (K)
10 CONTINUE

99999 FORMAT (' Y sub ', F6.3, ' (', F6.3, ') = ', F10.3)

END

Output

Y sub 0.016 (0.008) = -3.189
Y sub 1.016 (0.008) = -88.096
Y sub 2.016 (0.008) = -22901.732

= R{ng?mq\{q BSYS Chapter 6: Bessel Functions 178

BSIS

Evaluates a sequence of modified Bessel functions of the first kind with real order and real positive
arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)
It must be greater than or equal to zero and less than one.

X — Real argument for which the sequence of Bessel functions is to be evaluated. (Input)
N — Number of elements in the sequence. (Input)

BSI — Vector of length N containing the values of the function through the series. (Output)
BSI(I) contains the value of the Bessel function of order T - 1+ XNU at x for T =1 to N.

FORTRAN 90 Interface

Generic: CALL BSIS (XNU, X, N, BST)
Specific: The specific interface names are S_BSIS and D_BSIS.

FORTRAN 77 Interface

Single: CALL BSIS (XNU, X, N, BST)
Double: The double precision name is DBSIS.
Description

The Bessel function I,(x) is defined to be

T : 00
1 j x cos 6 Sln(‘}”)j —x cosh r—vt
I,(x)=%x]|¢ cos(v@)do————=| e dt
() = B e deos (v0)an -5
The input x must be nonnegative and less than or equal to log(b) (b = AMACH(2), the largest representable
number). The argument v = XNU must satisfy 0 < v < 1.

Function BSIS is based on a code due to Cody (1983), which uses backward recursion.

Example

In this example, I,_1(10.0), v =1, ..., 10 is computed and printed.

USE BSIS_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables
INTEGER N
PARAMETER (N=10)

= ROQQ?WQ\{EF BSIS Chapter 6: Bessel Functions 179

INTEGER K, NOUT

REAL BSI(N), X, XNU

! Compute
XNU = 0.0
X = 10.0

CALL BSIS (XNU, X, N, BSI)
! Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) XNU+K-1, X, BSI(K)
10 CONTINUE

99999 FORMAT (' I sub ', F6.3, ' (', F6.3, ') = ', F10.3)
END

Output
I sub 0.000 (10.000) = 2815.717
I sub 1.000 (10.000) = 2670.988
I sub 2.000 (10.000) = 2281.519
I sub 3.000 (10.000) = 1758.381
I sub 4.000 (10.000) = 1226.491
I sub 5.000 (10.000) = 777.188
I sub 6.000 (10.000) = 449.302
I sub 7.000 (10.000) = 238.026
I sub 8.000 (10.000) = 116.066
I sub 9.000 (10.000) = 52.319

EE Rogypmq\{q BSIS Chapter 6: Bessel Functions 180

BSIES

Evaluates a sequence of exponentially scaled modified Bessel functions of the first kind with nonnegative
real order and real positive arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)
It must be at least zero and less than one.

X — Real positive argument for which the sequence of Bessel functions is to be evaluated. (Input)
It must be nonnegative.

N — Number of elements in the sequence. (Input)

BSI — Vector of length N containing the values of the function through the series. (Output)
BSI(I) contains the value of the Bessel function of order I - 1 + XNU at x for I =1 to N multiplied by

exp(—X).

FORTRAN 90 Interface

Generic: CALL BSIES (XNU, X, N, BSI)
Specific: The specific interface names are S_BSIES and D_BSIES.

FORTRAN 77 Interface

Single: CALL BSIES (XNU, X, N, BST)
Double: The double precision name is DBSIES.
Description

Function BSIES evaluates € "1 .44 (X), fork =1, ..., n. For the definition of I,(x), see BSIS. The algorithm is
based on a code due to Cody (1983), which uses backward recursion.

Example

In this example, I,_1(10.0), v =1, ..., 10 is computed and printed.

USE BSIES_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables
INTEGER N
PARAMETER (N=10)

INTEGER K, NOUT
REAL BSI(N), X, XNU

= Rogygmﬂn\{q BSIES Chapter 6: Bessel Functions

181

! Compute
XNU = 0.0
X = 10.0
CALL BSIES (XNU, X, N, BSI)
! Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) X, XNU+K-1, X, BSI(K)
10 CONTINUE

99999 FORMAT (' exp(-', F6.3, ') * I sub ', F6.3, &
" (', F6.3, ') = ', F6.3)
END

Output

exp(-10.000) * I sub 0.000 (10.000) = 0.128
exp(-10.000) * I sub 1.000 (10.000) = 0.121
exp(-10.000) * I sub 2.000 (10.000) = 0.104
exp(-10.000) * I sub 3.000 (10.000) = 0.080
exp(-10.000) * I sub 4.000 (10.000) = 0.056
exp(-10.000) * I sub 5.000 (10.000) = 0.035
exp(-10.000) * I sub 6.000 (10.000) = 0.020
exp(-10.000) * I sub 7.000 (10.000) = 0.011
exp(-10.000) * I sub 8.000 (10.000) = 0.005
exp(-10.000) * I sub 9.000 (10.000) = 0.002

= Rogypmq\{q BSIES Chapter 6: Bessel Functions 182

BSKS

Evaluates a sequence of modified Bessel functions of the second kind of fractional order.

Required Arguments

XNU — Fractional order of the function. (Input)
XNU must be less than one in absolute value.

X — Argument for which the sequence of Bessel functions is to be evaluated. (Input)
NIN — Number of elements in the sequence. (Input)
BK — Vector of length NIN containing the values of the function through the series. (Output)

FORTRAN 90 Interface

Generic: CALL BSKS (XNU, X, NIN, BK)
Specific: The specific interface names are S_BSKS and D_BSKS.

FORTRAN 77 Interface

Single: CALL BSKS (XNU, X, NIN, BK)
Double: The double precision name is DBSKS.
Description

The Bessel function K, (x) is defined to be

B

|

K,(x)= %em/z[iJv<xezl> - Yv<xe l)] for —z <arg xﬁ%

Currently, v is restricted to be less than one in absolute value. A total of |n| values is stored in the array BK.
For positive n, BK(1) = K,(x), BK(2) = K, 1(x), ..., BK(1) = K1 ,,_1(x). For negative n, BK(1) = K;(x),
BK(2) = Ky_1(%), ..., BR(In) = Ky i1

BSKS is based on the work of Cody (1983).

Comments

1. If NINis positive, BK(1) contains the value of the function of order XNU, BK(2) contains the value of the
function of order XNU + 1, ... and BK(NIN) contains the value of the function of order XNU + NIN - 1.

2. IfNINis negative, BK(1) contains the value of the function of order XNU, BK(2) contains the value of the
function of order XNU - 1, ... and BK(ABS(NIN)) contains the value of the function of order
XNU + NIN + 1.

= ROQQ?WQ\{EF BSKS Chapter 6: Bessel Functions 183

Example

In this example, K;,_1(10.0), v =1, ..., 10 is computed and printed.

USE BSKS_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables
INTEGER NIN
PARAMETER (NIN=10)

INTEGER K, NOUT
REAL BS (NIN), X, XNU
! Compute
XNU = 0.0
X = 10.0

CALL BSKS (XNU, X, NIN, BS)
! Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, NIN
WRITE (NOUT,99999) XNU+K-1, X, BS(K)
10 CONTINUE

99999 FORMAT (' K sub ', F6.3, ' (', F6.3, ') = ', E10.3)
END

Output

K sub 0.000 (10.000) = 0.178E-04
K sub 1.000 (10.000) = 0.186E-04
K sub 2.000 (10.000) = 0.215E-04
K sub 3.000 (10.000) = 0.273E-04
K sub 4.000 (10.000) = 0.379E-04
K sub 5.000 (10.000) = 0.575E-04
K sub 6.000 (10.000) = 0.954E-04
K sub 7.000 (10.000) = 0.172E-03
K sub 8.000 (10.000) = 0.336E-03
K sub 9.000 (10.000) = 0.710E-03

= R{ng?mq\{q BSKS Chapter 6: Bessel Functions 184

BSKES

Evaluates a sequence of exponentially scaled modified Bessel functions of the second kind of fractional order.

Required Arguments

XNU — Fractional order of the function. (Input)
XNU must be less than 1.0 in absolute value.

X — Argument for which the sequence of Bessel functions is to be evaluated. (Input)
NIN — Number of elements in the sequence. (Input)
BKE — Vector of length NIN containing the values of the function through the series. (Output)

FORTRAN 90 Interface

Generic: CALL BSKES (XNU, X, NIN, BKE)
Specific: The specific interface names are S_BSKES and D_BSKES.

FORTRAN 77 Interface

Single: CALL BSKES (XNU, X, NIN, BKE)
Double: The double precision name is DBSKES.
Description

Function BSKES evaluates ¢'K,,;_1(x), for k=1, ..., n. For the definition of K;(x), see BSKS.

Currently, v is restricted to be less than 1 in absolute value. A total of [n| values is stored in the array BKE. For
n positive, BKE(1) contains ¢*K,(x), BKE(2) contains ¢*K;,; 1(x), ..., and BKE(N) contains ¢*K,,, ,,_1(x). For n neg-

ative, BKE(1) contains ¢*K,(x), BKE(2) contains ¢*K,,_1(x), ..., and BKE(|n|) contains 'K, ,, 1 (x). This routine

is particularly useful for calculating sequences for large x provided n < x. (Overflow becomes a problem if
n << x.) n must not be zero, and x must not be greater than zero. Moreover, |v| must be less than 1. Also,
when |n] is large compared with x, |[v+n| must not be so large that

exKV+,,(X) ~ €xr(lv+nl > / [2<X2)lwn‘] overflows.

BSKES is based on the work of Cody (1983).

Comments

1. If NINis positive, BKE(1) contains EXP(X) times the value of the function of order XNU, BKE(2) contains
EXP(X) times the value of the function of order XNU + 1, ..., and BKE(NIN) contains EXP(X) times the
value of the function of order XNU + NIN - 1.

2. IfNINisnegative, BKE(1) contains EXP(X) times the value of the function of order XNU, BKE(2) contains
EXP(X) times the value of the function of order XNU - 1, ..., and BKE(ABS(NIN)) contains EXP(X) times
the value of the function of order XNU + NIN + 1.

= ROQQ?WQ\{EF BSKES Chapter 6: Bessel Functions 185

Example

In this example, K;,_1 /»(2.0), v=1,

USE BSKES_INT
USE UMACH_INT

Declare variables

X, XNU

Compute

(XNU, X, NIN, BKE)

IMPLICIT NONE
1
INTEGER NIN
PARAMETER (NIN=6)
1
INTEGER K, NOUT
REAL BKE (NIN) ,
1
XNU = 0.5
X = 2.0
CALL BSKES
1
CALL UMACH (2, NOUT)
DO 10 K=1, NIN
WRITE (NOUT,99999)
10 CONTINUE
99999 FORMAT (' exp(', F6.3
' (', F6.3, ') =
END
Output
exp(2.000) * K sub 0.500
exp(2.000) * K sub 1.500
exp(2.000) * K sub 2.500
exp(2.000) * K sub 3.500
exp(2.000) * K sub 4.500
exp(2.000) * K sub 5.500

X, XNU+K-1,

’

1

")

NN NN NN

.000
.000
.000
.000
.000
.000

Print the results

* K sub
F8.3)

'
’

N P O

Fé6.

..., 6 is computed and printed.

X, BKE(K)

.886
.329
.880
.530
.735
155.

837

3,

=RogueWave

BSKES

Chapter 6: Bessel Functions

186

CBJS

Evaluates a sequence of Bessel functions of the first kind with real order and complex arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)
XNU must be greater than —1/2.

Z — Complex argument for which the sequence of Bessel functions is to be evaluated. (Input)
N — Number of elements in the sequence. (Input)

CBS — Vector of length N containing the values of the function through the series. (Output)
CBS(I) contains the value of the Bessel function of order XNU+ I - latZ for I=1toN.

FORTRAN 90 Interface

Generic: CALL CBJS (XNU, z, N, CBS)
Specific: The specific interface names are S_CBJS and D_CBJS.

FORTRAN 77 Interface

Single: CALL CBJS (XNU, Z, N, CBS)
Double: The double precision name is DCBJS.
Description

The Bessel function], (z) is defined to be

7r : SIN(VIT) (0 —scinh f—
J(2) = %IOCOS(Z sin @ — vd)dh — (T).[o e zsinh¢ Vi
T
for largz| <%
This code is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987).

This code computes], (z) from the modified Bessel function I, (z), CBIS, using the following relation:

i'I,(—iz) for —5<argz<nx

3z

J(2) =
@) i3Vl (—iz) for m<argz< 3

CBJS implements the Yousif and Melka (Y&M) algorithm (Yousif and Melka (1997)) for approximating J,, (z)
with a Taylor series expansion when x ~ 0 or y ~ 0, where complex argument z = x + iy and
“x ~0” =="|x| <amach (4)”. To be consistent with the existing CBJS argument definitions, the original

Y&M algorithm, which was limited to integral order and to (x ~ 0 and y = 0) or (y ~ 0 and x = 0), has been
generalized to also work for integral and real order v> -1, and for (x ~ 0 and y < 0) and (y ~ 0 and x < 0).

EE ROQQ?WQ\{E{ CBJS Chapter 6: Bessel Functions

187

To deal with the Bessel function discontinuity that occurs at the negative x axis, the following procedure is
used for calculating the Y&M approximation of |, (z) with argument z = x + iy when ((x ~ 0 and y < 0) or
(y ~0and x < 0)):

1. Calculate the Y&M approximation of |, (-z).

2. If (y > 0), use forward rotation, otherwise use backward rotation, to calculate the Bessel function |, (z),
where the “forward” and “backward” rotation transformations are defined as:

forward:], (z) ="', (-2) =i2Y], (-2)

backward:], (z) = eV, (-z) =i Y], (-2)

These definitions are based on Abromowitz and Stegun (1972), eq. 9.1.35:], (ze ™) = e "V] (2),

where m = 1 represents forward transformation and m = -1 represents backward transformation.
These specified rotations insure that the continuous rotation transformation J, (-z) — J,(z) does not

cross the negative x axis, so no discontinuity is encountered.

Comments

Informational Errors

Type Code Description

3 1 One of the continued fractions failed.

4 2 Only the first several entries in CBS are valid.
Example

In this example, Jy314-1(1.2 + 0.51), k =1, ..., 4 is computed and printed.

USE CBJS_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables
INTEGER N
PARAMETER (N=4)

INTEGER K, NOUT
REAL XNU
COMPLEX CBS(N), zZ
! Compute
XNU = 0.3
Z = (1.2, 0.5)

CALL CBJS (XNU, Z, N, CBS)
! Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) XNU+K-1, Z, CBS(K)

EE Rogygmﬂn\{q CBJS Chapter 6: Bessel Functions

188

10 CONTINUE
99999 FORMAT

"))

END

Output

sub
sub
sub
sub

4 aqgq

0.300
1.300
2.300
3.300

(1

—~ o~~~

J sub '

’

(', FO.

1.200,
1.200,
1.200,
1.200,

F6.3,
3, 0

0.500)
0.500)
0.500)
0.500)

(G
F9.3,

F6.3, '
"))

0.774,
0.400,
0.087,
0.008,

’

’

F6.

o O O o

3,

.107)
.159)
.092)
.024)

&

= RogueWave

CBJS

Chapter 6: Bessel Functions

189

CBYS

Evaluates a sequence of Bessel functions of the second kind with real order and complex arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)
XNU must be greater than —-1/2.

Z — Complex argument for which the sequence of Bessel functions is to be evaluated. (Input)
N — Number of elements in the sequence. (Input)

CBS — Vector of length N containing the values of the function through the series. (Output)
CBS(I) contains the value of the Bessel function of order XNU+ I - 1atzforI =1toN.

FORTRAN 90 Interface

Generic: CALL CBYS (XNU, Z, N, CBS)
Specific: The specific interface names are S_CBYS and D_CBYS.

FORTRAN 77 Interface

Single: CALL CBYS (XNU, Z, N, CBS)
Double: The double precision name is DCBYS.
Description

The Bessel function Y (z) is defined to be

Y (2)= %K)[Sin(z sin @ —v0)dd — %J.z)o[ew + €7VZCOS(V7[)]37 sinh g,

for |argz| <7
This code is based on the code BESSEC of Barnett (1981) and Thompson and Barnett (1987).

This code computes Y (z) from the modified Bessel functions I (z) and K(z), CBIS and CBKS, using the fol-

lowing relation:

YV(Zeﬂi/z) — e(Wl)ﬂi/zlv(z) _ %e—Vﬁi/zKV(Z) for - < arg z S%

CBYS implements the Yousif and Melka (Y&M) algorithm (Yousif and Melka(2003)) for approximating Y, (z)
with a Taylor series expansion when x ~ 0 or y ~ 0, where complex argument z = x + iy and

“x ~0” =="|x| <amach (4)"”. To be consistent with the existing CBYS argument definitions, the original
Y&M algorithm, which was limited to integral order and to (x ~ 0 and y = 0) or (y ~ 0 and x = 0), has been
generalized to also work for integral and real order v> -1, and for (x ~ 0 and y < 0) and (y ~ 0 and x < 0).

= ROQQ?WQ\{EF CBYS Chapter 6: Bessel Functions 190

To deal with the Bessel function discontinuity occurring at the negative x axis, the following procedure is
used for calculating the Y&M approximation of Y, (z) with argument z = x + iy when ((x ~0 and y < 0) or
(y ~0and x < 0)):

1.

2.

Calculate the Y&M approximation of Y, (-z).

If (y > 0), use forward rotation, otherwise use backward rotation, to calculate the Bessel function Y, (z),
where the “forward” and “backward” rotation transformations are defined as:

forward: Y, (2) = i72YY, (-2) + 2i cos(viD] , (-2)

backward: Y, (z) = 2V Y, (-2) - 2i cos(viD],(-z)
These definitions are based on Abromowitz and Stegun (1972), eq. 9.1.36:

Y, (ze"TY = e MVITLY | (2) + 2i sin(mvir) cot(vim)], (z), where m = 1 represents forward transformation
and m = -1 represents backward transformation. These specified rotations insure that the continuous
rotation transformation Y, (-z) — Y, (z) does not cross the negative x axis, so no discontinuity is
encountered.

Comments

1.

Workspace may be explicitly provided, if desired, by use of C2YS/DC2Y. The reference is:
CALL C2YS (XNU, Z, N, CBS, FK)

The additional argument is:
FK — complex work vector of length N.

Informational errors

Type Code Description
3 1 One of the continued fractions failed.

4 2 Only the first several entries in CBS are valid.

Example

In this example, Y 3,¢-1(1.2 + 0.5i), k =1, ..., 4 is computed and printed.

USE CBYS_INT
USE UMACH_INT

IMPLICIT NONE

Declare variables
INTEGER N
PARAMETER (N=4)

INTEGER K, NOUT

REAL XNU
COMPLEX CBS(N), zZ
Compute
XNU = 0.3
Z = (1.2, 0.5)

= ROQQ?WQ\{E{ CBYS Chapter 6: Bessel Functions

191

Print the results

CALL CBYS (XNU, Z, N, CBS)
!
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) XNU+K-1,
10 CONTINUE
99999 FORMAT (' Y sub ', F6.3, ' ((',
")) = (', F9.3, ',', F9.3,
END
Output
Y sub 0.300 ((1.200, 0.500)) = (
Y sub 1.300 ((1.200, 0.500)) = (
Y sub 2.300 ((1.200, 0.500)) = (
Y sub 3.300 ((1.200, 0.500)) = (

Z,

-0
-0
-1
-1

CBS (K)

.013,
.716,
.048,
.625,

0.380
0.338
0.795
3.684

=RogueWave

CBYS

Chapter 6: Bessel Functions

192

CBIS

Evaluates a sequence of modified Bessel functions of the first kind with real order and complex arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)
XNU must be greater than —1/2.

Z — Complex argument for which the sequence of Bessel functions is to be evaluated. (Input)
N — Number of elements in the sequence. (Input)

CBS — Vector of length N containing the values of the function through the series. (Output)
CBS(I) contains the value of the Bessel function of order XNU+ I - latZ for I=1toN.

FORTRAN 90 Interface

Generic: CALL CBIS (XNU, Z, N, CBS)
Specific: The specific interface names are S_CBIS and D_CBIS.

FORTRAN 77 Interface

Single: CALL CBIS (XNU, Z, N, CBS)
Double: The double precision name is DCBIS.
Description

The modified Bessel function I,(z) is defined to be

IV<Z> — e—vn'i/2Jv<Zeni/2> for — 7 < arg z < %
where the Bessel function [,(z) is defined in BSJS.

This code is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987).

For large arguments, z, Temme’s (1975) algorithm is used to find I,,(z). The I,(z) values are recurred upward

(if this is stable). This involves evaluating a continued fraction. If this evaluation fails to converge, the answer
may not be accurate. For moderate and small arguments, Miller’s method is used.

Comments

Informational Errors

Type Code Description
3 1 One of the continued fractions failed.
4 2 Only the first several entries in CBS are valid.

= ROQQ?WQ\{EF CBIS Chapter 6: Bessel Functions 193

Example

In this example, Iy 3., 1(1.2 + 0.5i), v =1, ..., 4 is computed and printed.

10
99999

Outpu

sub
sub
sub
sub

HHH H

USE CBIS_INT
USE UMACH_INT
IMPLICIT NONE

Declare variables
INTEGER N
PARAMETER (N=4)

INTEGER K, NOUT
REAL XNU
COMPLEX CBS(N), 2z
Compute
XNU = 0.3
Z = (1.2, 0.5)
CALL CBIS (XNU, Z, N, CBS)
Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) XNU+K-1, Z, CBS(K)
CONTINUE
FORMAT (' I sub ', F6.3, ' ((', F6.3, ',', F6.3, &
'Y = (', F9.3, ',', F9.3, "))
END
t
0.300 ((1.200, 0.500)) = (1.163, 0.396)
1.300 ((1.200, 0.500)) = (0.447, 0.332)
2.300 ((1.200, 0.500)) = (0.082, 0.127)
3.300 ((1.200, 0.500)) = (0.006, 0.029)

=RogueWave

CBIS

Chapter 6: Bessel Functions

194

CBKS

Evaluates a sequence of modified Bessel functions of the second kind with real order and complex
arguments.

Required Arguments

XNU — Real argument which is the lowest order desired. (Input)
XNU must be greater than -1/2.

Z — Complex argument for which the sequence of Bessel functions is to be evaluated. (Input)
N — Number of elements in the sequence. (Input)

CBS — Vector of length N containing the values of the function through the series. (Output)
CBS(I) contains the value of the Bessel function of order XNU+ I - latZ forI=1toN.

FORTRAN 90 Interface

Generic: CALL CBKS (XNU, z, N, CBS)
Specific: The specific interface names are S_CBKS and D_CBKS.

FORTRAN 77 Interface

Single: CALL CBKS (XNU, Z, N, CBS)
Double: The double precision name is DCBKS.
Description

The Bessel function K,(z) is defined to be

_ T vmil2| . mil2\ _ 7i/2 _ T
Kv(z) =5e [sz<ze) Yv<ze >] for —r<argz< 5
where the Bessel function [,(z) is defined in CBJS and Y(z) is defined in CBYS.

This code is based on the code BESSCC of Barnett (1981) and Thompson and Barnett (1987).

For moderate or large arguments, z, Temme’s (1975) algorithm is used to find K,(z). This involves evaluating

a continued fraction. If this evaluation fails to converge, the answer may not be accurate. For small z, a
Neumann series is used to compute K,(z). Upward recurrence of the K,(z) is always stable.

Comments
1. Workspace may be explicitly provided, if desired, by use of C2KS/DC2KS. The reference is
CALL C2KS (XNU, %, N, CBS, FK)
The additional argument is

FK — Complex work vector of length N.

= ROQQ?WQ\{EF CBKS Chapter 6: Bessel Functions 195

2. Informational errors

Type Code

3 1

4 2
Example

Description
One of the continued fractions failed.

Only the first several entries in CBS are valid.

In this example, Ky 34, -1(1.2 +0.51), v =1, ..., 4 is computed and printed.

USE UMACH_INT
USE CBKS_INT
IMPLICIT NONE

INTEGER N
PARAMETER (N=4)

Declare variables

INTEGER K, NOUT

REAL XNU

COMPLEX CBS(N), zZ
! Compute

XNU = 0.3

Z = (1.2, 0.5)

CALL CBKS (XNU, Z, N, CBS)
! Print the results

CALL UMACH (2, NOUT)

DO 10 K=1, N

WRITE (NOUT,99999) XNU+K-1, Z, CBS(K)
10 CONTINUE
99999 FORMAT (' K sub ', F6.3, ' ((', F6.3, ',', F6.3, &
'y) = (', F9.3, ',', F9.3, ")")

END
Output
K sub 0.300 ((1.200, 0.500)) = (0.246, -0.200)
K sub 1.300 ((1.200, 0.500)) (0.336, -0.362)
K sub 2.300 ((1.200, 0.500)) (0.587, -1.126)
K sub 3.300 ((1.200, 0.500)) = (0.719, -4.839)

=RogueWave

CBKS

Chapter 6: Bessel Functions

196

I

Chapter 7: Kelvin Functions

Routines

Evaluates berg(X).o BERO
Evaluates beig(x)o BEIO
Evaluates kerg(X)o AKERO
Evaluateskeig(x) AKEIO
Evaluates ber’'pg(x) BERPO
Evaluates beig(x)o BEIPO
Evaluates ker'g(X) AKERPO
Evaluates kei'g(X). .. .o AKEIPO
Evaluates berq(X).o BER1
Evaluates beiq(x) o BEI1
Evaluates kerq(x)o AKER1
Evaluates keiq(X) AKEI1

200
202
204
206
208
210
212
214
216
218
220
222

=RogueWave

Chapter 7: Kelvin Functions

197

Usage Notes

The notation used in this chapter follows that of Abramowitz and Stegun (1964). The Kelvin functions are
related to the Bessel functions by the following relations.

ber,x + ibei,x = J, (xe ™ >

ker x + ikei x = ¢ ""?K, < xe™)

The derivatives of the Kelvin functions are related to the values of the Kelvin functions by the following:

V2 ber'yx = ber,x + bei,x
V2bei'yx = — ber;x + bei;x
V2ker'yx = ker;x + kei;x

V2kei'gx = —ker;x + kei;x

= Rogygmq\{q Usage Notes Chapter 7: Kelvin Functions 198

Plots of ber,,(x), bei, (x), ker,(x) and kei, (x) for n = 0, 1 follow:

150.0

Function
|] berg
/' | beig -
i I | ber,
;'.:' b911 T
75.0 /
ll.r?
/
4 / .'
- S
T e a
et ;
=75.0 L N N N N N B R B N B I Y I B B
0.0 2.0 4.0 6.0 8.0 10.0
I
Figure 7.1 — Plot of ber,(x) and bei,(x)
0.4
| Function
ker, —
1 keiq -
7] ker,
0.2 - ki, -
= 0.0 e
_ i _..ﬂ"
-024 i
-0.4 : i 7 T T 1 T T T T T T 1
0.0 2.5 5.0 7.5 10.0
X

Figure 7.2 — Plot of ker,(x) and kei,(x)

Usage Notes Chapter 7: Kelvin Functions 199

=RogueWave

BERO

This function evaluates the Kelvin function of the first kind, ber, of order zero.

Function Return Value

BERO — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
ABS(X) must be less than 119.

FORTRAN 90 Interface

Generic:

Specific:

FORTRAN 77 Interface

Single:
Double:

Description

The Kelvin function ber(x) is defined to be R]O(xeg'm/ 4). The Bessel function Jo(x) is defined in BSJ0. Func-

BERO (%)

The specific interface names are S_BERO and D_BERO.

BERO (x)

The double precision name is DBERO.

tion BERO is based on the work of Burgoyne (1963).

Example

In this example, ber(0.4) is computed and printed.

USE BERO_INT
USE UMACH_INT

IMPLICIT

INTEGER
REAL

X
VALUE

NONE

NOUT
VALUE, X

0.4
BERO (X)

CALL UMACH (2, NOUT)

WRITE (NOUT,99999) X, VALUE
(" BERO(',

99999 FORMAT
END

F6.3,

Declare variables

Compute

Print the results

', F6.3)

=RogueWave

BERO

Chapter 7: Kelvin Functions

200

Output

BERO(0.400) = 1.000

EE Rogygmq\{e; BERO Chapter 7: Kelvin Functions 201

BEIO

This function evaluates the Kelvin function of the first kind, bei, of order zero.

Function Return Value
BEI0 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

ABS(X) must be less than 119.

FORTRAN 90 Interface
Generic: BEIO (X)

Specific: The specific interface names are S_BEIO and D_BEIO0.

FORTRAN 77 Interface

Single: BEIO (x)
Double: The double precision name is DBEIO.
Description

The Kelvin function beiy(x) is defined to be J]0(xe3m/ 4). The Bessel function Jo(x) is defined in BSJO0. Function

BEIO is based on the work of Burgoyne (1963).

In BEIO, x must be less than 119.

Example

In this example, beiy(0.4) is computed and printed.

USE BEIO_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = 0.4
VALUE = BEIO (X)

! Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

=RogueWave

Chapter 7: Kelvin Functions

202

99999 FORMAT (' BEIO(', F6.3, ') = ', F6.3)

END
Output
BEIO(0.400) = 0.040

EE Rogygmg\{q BEIO Chapter 7: Kelvin Functions 203

AKERO

This function evaluates the Kelvin function of the second kind, ker, of order zero.

Function Return Value
AKERO0 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

FORTRAN 90 Interface

Generic: AKERO (%)
Specific: The specific interface names are S_AKERO and D_AKERO.

FORTRAN 77 Interface

Single: AKERO (X)
Double: The double precision name is DKERO.
Description

The modified Kelvin function ker(x) is defined to be %Ko(xem/ %). The Bessel function Ky(x) is defined in

BSKO0. Function AKERO is based on the work of Burgoyne (1963). If x < 0, then NaN (not a number) is
returned. If x = 119, then zero is returned.

Example

In this example, ker((0.4) is computed and printed.

USE AKERO_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables
INTEGER NOouT

REAL VALUE, X

! Compute
X = 0.4
VALUE = AKERO (X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' AKERO(', F6.3, ') = ', F6.3)
END

= Rogygmﬂn\{q AKERO Chapter 7: Kelvin Functions 204

Output

AKERO(0.400) = 1.063

EE Rogygmq\{e; AKERO Chapter 7: Kelvin Functions 205

AKEIO

This function evaluates the Kelvin function of the second kind, kei, of order zero.

Function Return Value
AKEI0 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative and less than 119.

FORTRAN 90 Interface

Generic: AKEIO (x)
Specific: The specific interface names are S_AKEIO and D_AKEIO0.

FORTRAN 77 Interface

Single: AKEIO (%)
Double: The double precision name is DKEIO.
Description

The modified Kelvin function keiy(x) is defined to be 3 Ko(xem/ %). The Bessel function Ky(x) is defined in
BSKO0. Function AKEIO is based on the work of Burgoyne (1963).

In AKEIO, x must satisfy 0 < x < 119. If x < 0, then NaN (not a number) is returned. If x > 119, then zero is
returned.
Example

In this example, keij(0.4) is computed and printed.

USE AKEIO_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = 0.4
VALUE = AKEIO (X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

= ROQQ?WQ\{E{ AKEIO Chapter 7: Kelvin Functions

206

99999 FORMAT (' AKEIO(', F6.3, ') = ', F6.3)
END

Output

AKEIO(0.400) = -0.704

= Rogygmg\{q AKEIO Chapter 7: Kelvin Functions 207

BERPO

This function evaluates the derivative of the Kelvin function of the first kind, ber, of order zero.

Function Return Value
BERPO0 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BERPO (%)
Specific: The specific interface names are S_BERP0 and D_BERPO.

FORTRAN 77 Interface

Single: BERPO (xX)
Double: The double precision name is DBERPO.
Description

The function ber’((x) is defined to be

d
—cberg(x)
where ber((x) is a Kelvin function, see BERO. Function BERPO is based on the work of Burgoyne (1963).

If |x| > 119, then NaN (not a number) is returned.

Example

In this example, ber’((0.6) is computed and printed.

USE BERPO_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = 0.6
VALUE = BERPO (X)

! Print the results
CALL UMACH (2, NOUT)

= Rogygmﬂn\{q BERPO Chapter 7: Kelvin Functions 208

WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' BERPO(', F6.3, ') = ', F6.3)
END

Output

BERPO(0.600) = -0.013

= R‘Dgygmq\{eg BERPO Chapter 7: Kelvin Functions 209

BEIPO

This function evaluates the derivative of the Kelvin function of the first kind, bei, of order zero.

Function Return Value
BEIP0 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BEIPO (X)
Specific: The specific interface names are S_BEIPO and D_BEIPO0.

FORTRAN 77 Interface

Single: BEIPO0 (X)
Double: The double precision name is DBEIPO.
Description

The function bei’((x) is defined to be

d. .
—cbeig(x)
where bei((x) is a Kelvin function, see BEI0. Function BEIPO is based on the work of Burgoyne (1963).

If |x| > 119, then NaN (not a number) is returned.

Example

In this example, bei’((0.6) is computed and printed.

USE BEIPO_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = 0.6
VALUE = BEIPO (X)

! Print the results
CALL UMACH (2, NOUT)

= Rogygmﬂn\{q BEIPO Chapter 7: Kelvin Functions 210

WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' BEIPO(', F6.3, ') = ', F6.3)
END

Output

BEIPO(0.600) = 0.300

= Rogygmq\f‘e; BEIPO Chapter 7: Kelvin Functions 211

AKERPO

This function evaluates the derivative of the Kelvin function of the second kind, ker, of order zero.

Function Return Value
AKERPO — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

FORTRAN 90 Interface

Generic: AKERPO (x)
Specific: The specific interface names are S_AKERPO and D_AKERPO.

FORTRAN 77 Interface

Single: AKERPO (X)
Double: The double precision name is DKERPO.
Description

The function ker’((x) is defined to be

d

okerg(x)
where ker((x) is a Kelvin function, see AKERO. Function AKERPO is based on the work of Burgoyne (1963). If
x <0, then NaN (not a number) is returned. If x > 119, then zero is returned.

Example

In this example, ker’((0.6) is computed and printed.

USE AKERPO_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables
INTEGER NOouT

REAL VALUE, X, AKERPO

! Compute
X = 0.6
VALUE = AKERPO (X)

= Rogygmﬂn\{q AKERPO Chapter 7: Kelvin Functions 212

! Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' AKERPO(', F6.3, ') = ', F6.3)
END

Output

AKERPO(0.600) = -1.457

= R‘Dgygmq\{eg AKERPO Chapter 7: Kelvin Functions 213

AKEIPO

This function evaluates the derivative of the Kelvin function of the second kind, kei, of order zero.

Function Return Value
AKEIP0 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

FORTRAN 90 Interface

Generic: AKEIPO (X)
Specific: The specific interface names are S_AKEIPO and D_AKEIPO0.

FORTRAN 77 Interface

Single: AKEIPO (%)
Double: The double precision name is DKEIPO.
Description

The function kei’((x) is defined to be

d, .
rkeio(x)
where keij(x) is a Kelvin function, see AKEI0. Function AKEIPO is based on the work of Burgoyne (1963).

If x < 0, then NaN (not a number) is returned. If x > 119, then zero is returned.

Example

In this example, kei’((0.6) is computed and printed.

USE AKEIPO_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X, AKEIPO
! Compute
X = 0.6
VALUE = AKEIPO (X)

= Rogygmﬂn\{q AKEIPO Chapter 7: Kelvin Functions

214

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' AKEIPO(', F6.3, ') = ', F6.3)
END

Output

AKEIPO(0.600) = 0.348

= R‘Dgygmq\{eg AKEIPO Chapter 7: Kelvin Functions 215

BER1

This function evaluates the Kelvin function of the first kind, ber, of order one.

Function Return Value
BER1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BER1 (X)

Specific: The specific interface names are S_BER1 and D_BERL.

FORTRAN 77 Interface

Single: BER1 (X)
Double: The double precision name is DBER1.
Description

The Kelvin function ber;(x) is defined to be R]1(xe3m/ 4). The Bessel function J1(x) is defined in BSJ1. Func-

tion BER1 is based on the work of Burgoyne (1963).

If |x| > 119, then NaN (not a number) is returned.

Example

In this example, ber(0.4) is computed and printed.

USE BER1_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = 0.4
VALUE = BERI (X)

! Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' BER1(', F6.3, ') = ', F6.3)
END

=RogueWave

BER1

Chapter 7: Kelvin Functions

216

Output

BER1(0.400) = -0.144

EE Rogygmq\{q BER1 Chapter 7: Kelvin Functions 217

BEI1

This function evaluates the Kelvin function of the first kind, bei, of order one.

Function Return Value
BEI1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: BEI1 (X)

Specific: The specific interface names are S_BEI1 and D_BEI1.

FORTRAN 77 Interface

Single: BEI1 (X)
Double: The double precision name is DBEI1.
Description

The Kelvin function bei(x) is defined to be JJ; (xe®™/4). The Bessel function | 1(x) is defined in BSJ1. Function

BEI1 is based on the work of Burgoyne (1963).

If |x| > 119, then NaN (not a number) is returned.

Example

In this example, bei;(0.4) is computed and printed.

USE BEI1_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = 0.4
VALUE = BEI1l (X)

! Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' BEI1(', F6.3, ') = ', F6.3)
END

=RogueWave

BEI1

Chapter 7: Kelvin Functions

218

Output

BEI1(0.400) = 0.139

EE Rogygmq\{e; BEI1 Chapter 7: Kelvin Functions 219

AKER1

This function evaluates the Kelvin function of the second kind, ker, of order one.

Function Return Value
AKER1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

FORTRAN 90 Interface

Generic: AKER1 (X)

Specific:

FORTRAN 77 Interface

Single: AKER1 (X)
Double: The double precision name is DKER1.
Description

The specific interface names are S_AKER1 and D_AKERL.

The modified Kelvin function ker(x) is defined to be ef’”'/z R K | <)ce’”/4 > The Bessel function K;(x) is
defined in BSK1. Function AKER1 is based on the work of Burgoyne (1963).

If x < 0, then NaN (not a number) is returned. If x > 119, then zero is returned.

Example

In this example, ker¢(0.4) is computed and printed.

USE AKER1_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables
INTEGER NOouT
REAL VALUE, X
! Compute
X = 0.4
VALUE = AKERI1 (X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

=RogueWave

AKER1

Chapter 7: Kelvin Functions

220

99999 FORMAT (' AKER1(', F6.3, ') = ', F6.3)
END

Output

AKER1(0.400) = -1.882

= Rogygmg\(e: AKER1 Chapter 7: Kelvin Functions 221

AKEI1

This function evaluates the Kelvin function of the second kind, kei, of order one.

Function Return Value
AKEI1 — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

FORTRAN 90 Interface

Generic: AKET1 (X)

Specific:

FORTRAN 77 Interface

Single: AKEI1 (X)
Double: The double precision name is DKEI1.
Description

The modified Kelvin function kei;(x) is defined to be ¢ 72 § K . < xe™ > The Bessel function K;(x) is defined
in BSK1. Function AKEI1 is based on the work of Burgoyne (1963).

If x < 0, then NaN (not a number) is returned. If x > 119, then zero is returned.

Example

In this example, kei;(0.4) is computed and printed.

USE UMACH_INT
USE AKEI1_INT

IMPLICIT NONE
! Declare variables
INTEGER NOouT
REAL VALUE, X
! Compute
X = 0.4
VALUE = AKEI1l (X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

The specific interface names are S_AKEI1 and D_AKEI1.

=RogueWave

AKEI1

Chapter 7: Kelvin Functions

222

99999 FORMAT (' AKEIl(', F6.3, ') = ', F6.3)
END

Output

AKEI1(0.400) = -1.444

= Rogygmg\{q AKEI1 Chapter 7: Kelvin Functions 223

% Rogygmq\{q AKEI1 Chapter 7: Kelvin Functions 224

I

Chapter 8: Airy Functions

Routines

8.1

Real Airy Functions

Evaluates Ai(X). . ..ot Al
Evaluates Bi(X). oo BI
Evaluates Ai'(X)o AID
Evaluates Bi'(X) e BID
Evaluates exponentially scaled Ai(X)t AIE
Evaluates exponentially scaled Bi(x) i BIE
Evaluates exponentially scaled Ai"(X) AIDE
Evaluates exponentially scaled Bi'(x) BIDE

Complex Airy Functions

Evaluates Ai(Z).ot CAl
Evaluates Bi(Z). CBI
Evaluates Ai'(Z) oo CAID
Evaluates Bi'(Z)o CBID

226
228
230
232
234
236
238
240

242
244
246
248

=RogueWave

Chapter 8: Airy Functions

225

Al

This function evaluates the Airy function.

Function Return Value
AI — Function value. (Output)

Required Arguments
X — Argument for which the Airy function is desired. (Input)

FORTRAN 90 Interface
Generic: AT (X)
Specific: The specific interface names are S_AT and D_AT.

FORTRAN 77 Interface

Single: AT (X)
Double: The double precision name is DAT.
Description

The Airy function Ai(x) is defined to be

. _ 1 " 13 _ [x 2 312
Al(x)—fJ‘OCOS<xt+§l‘ >dt— %K1/3<§x)

The Bessel function K (x) is defined in BSKS.

If x < — 1.31¢ %3, then the answer will have no precision. If x < — 1.31¢ ', the answer will be less accurate
than half precision. Here, € = AMACH(4) is the machine precision. Finally, x should be less than x,,, so the

answer does not underflow. Very approximately, x;,,,, = {-1.5 In s}, where s = AMACH (1), the smallest repre-

sentable positive number. If underflows are a problem for large x, then the exponentially scaled routine ATE
should be used.

Comments

Informational Error

Type Code Description

2 1 The function underflows because X is greater than XMAX, where
XMAX = (-3/2 In(amacr(1))) /3.

= ROQQ?WQ\{EF Al Chapter 8: Airy Functions 226

Example

In this example, Ai(—4.9) is computed and printed.

USE AI_INT
USE UMACH_INT

IMPLICIT

INTEGER
REAL

X
VALUE =

CALL UMACH
WRITE (NOUT,99999)

99999 FORMAT

END
Output
AT (-4.900) =

")

X, VALUE

Declare variables

Compute

Print the results

, F6.3)

=RogueWave

Al

Chapter 8: Airy Functions

227

Bl

This function evaluates the Airy function of the second kind.

Function Return Value
BI — Function value. (Output)

Required Arguments

X — Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface

Generic: BI (X)
Specific: The specific interface names are S_BI and D_BI.

FORTRAN 77 Interface

Single: BI (X)
Double: The double precision name is DBI.
Description

The Airy function of the second kind Bi(x) is defined to be

0 00
Bi(x) = %IO exp<xt — %t?’)a’t + %IO sin<xt + %f’ >dt
It can also be expressed in terms of modified Bessel functions of the first kind, I,(x), and Bessel functions of
the first kind, J,,(x) (see BSIS and BSJS):

. 2 312 2 312
B1(x>=\/§[ll/3<§ >+Il/3<§x >] for x>0

and

Bi(x) = V‘% [J—1/3<%|X|3/2> —J1/3<%|x|3/2>] for x <0

Let € = AMACH(4), the machine precision. If x < — 1.31¢ 2?, then the answer will have no precision. If
x < —1.31 3, the answer will be less accurate than half precision. In addition, x should not be so large that

exp [(2 /3)x”] overflows. If overflows are a problem, consider using the exponentially scaled form of the
Airy function of the second kind, BIE, instead.

EE ROQQ?WQ\{E{ BI Chapter 8: Airy Functions

228

Example

In this example, Bi(—4.9) is computed and printed.

USE BI_INT
USE UMACH_INT

IMPLICIT

INTEGER
REAL

X
VALUE =

CALL UMACH
WRITE (NOUT,99999)

99999 FORMAT

END
Output
BI(-4.900) =

")

X, VALUE

Declare variables

Compute

Print the results

, F6.3)

=RogueWave

Chapter 8: Airy Functions

229

AID

This function evaluates the derivative of the Airy function.

Function Return Value
AID — Function value. (Output)

Required Arguments

X — Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface

Generic: AID (X)
Specific: The specific interface names are S_AID and D_AID.

FORTRAN 77 Interface

Single: AID (X)
Double: The double precision name is DAID.
Description

The function Ai’(x) is defined to be the derivative of the Airy function, Ai(x) (see AI).

If x < — 1.31¢ %3, then the answer will have no precision. If x < — 1.31¢ %, the answer will be less accurate
than half precision. Here, € = AMACH(4) is the machine precision. Finally, x should be less than x,,, so that the

answer does not underflow. Very approximately, x,,,x = {-1.5 In s}, where s = AMACH(1), the smallest repre-
sentable positive number. If underflows are a problem for large x, then the exponentially scaled routine AIDE
should be used.

Comments

Informational Error

Type Code Description

2 1 The function underflows because X is greater than XMAX, where
XMAX = -3/2 In(aMACH(1)).

Example
In this example, Ai’(—4.9) is computed and printed.

USE AID_INT
USE UMACH_INT

EE ROQQ?WQ\{E{ AID Chapter 8: Airy Functions

230

IMPLICIT NONE
!
INTEGER NOUT
REAL VALUE, X
!
X = -4.9
VALUE = AID(X)

CALL UMACH (2, NOUT)

WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' AID(', F6.3,
END

Output

ATD(-4.900) = 0.147

")

Declare variables

Compute

Print the results

', F6.3)

=RogueWave

AID

Chapter 8: Airy Functions

231

BID

This function evaluates the derivative of the Airy function of the second kind.

Function Return Value
BID — Function value. (Output)

Required Arguments

X — Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface

Generic: BID (X)

Specific: The specific interface names are S_BID and D_BID.

FORTRAN 77 Interface

Single: BID (X)
Double: The double precision name is DBID.
Description

The function Bi’(x) is defined to be the derivative of the Airy function of the second kind, Bi(x) (see BI).

If x < — 1.31¢ %3, then the answer will have no precision. If x < — 1.31¢ %, the answer will be less accurate

than half precision. In addition, x should not be so large that exp [(2 /3)x3/2] overflows. If overflows are a
problem, consider using BIDE instead. Here, € = AMACH(4) is the machine precision.

Example

In this example, Bi’ (—4.9) is computed and printed.

USE BID_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X
! Compute
X = -4.9
VALUE = BID(X)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

= ROQQ?WQ\{EF BID Chapter 8: Airy Functions 232

99999 FORMAT (' BID(', F6.3, ') = ', F6.3)
END

Output

BID(-4.900) = 0.827

= Rogygmg\{q BID Chapter 8: Airy Functions 233

AlE

This function evaluates the exponentially scaled Airy function.

Function Return Value

AIE — Function value. (Output)
The Airy function for negative arguments and the exponentially scaled Airy function,

ecAi(X), for positive arguments where

;= %Xs/z

Required Arguments

X — Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface

Generic: ATIE (X)
Specific: The specific interface names are S_AIE and D_ATIE.

FORTRAN 77 Interface

Single: ATE (X)
Double: The double precision name is DAIE.
Description

The exponentially scaled Airy function is defined to be

Ai(x) if x<0
3/2

AlE(x) =
(> Ai(x) if x>0

e[2/3]x

If x < — 1.31¢ %3, then the answer will have no precision. If x < — 1.31¢ %, then the answer will be less accu-
rate than half precision. Here, € = AMACH(4) is the machine precision.

Example

In this example, ATE(0.49) is computed and printed.

USE AIE_INT
USE UMACH_INT

IMPLICIT NONE

= ROQQ?WQ\{EF AIE Chapter 8: Airy Functions 234

INTEGER NOUT

REAL VALUE, X
!

X = 0.49

VALUE = AIE(X)

CALL UMACH (2, NOUT)

WRITE (NOUT,99999)

99999 FORMAT (' AIE(',
END

Output

ATE(0.490) = 0.294

F6.3,

")

X, VALUE

Declare variables

Compute

Print the results

', F6.3)

=RogueWave

AIE

Chapter 8: Airy Functions

235

BIE

This function evaluates the exponentially scaled Airy function of the second kind.

Function Return Value

BIE — Function value. (Output)
The Airy function of the second kind for negative arguments and the exponentially scaled Airy func-

tion of the second kind, e%Bi(x), for positive arguments where

C= _%Xyz

Required Arguments

X — Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface

Generic: BIE (X)
Specific: The specific interface names are S_BIE and D_BIE.

FORTRAN 77 Interface

Single: BIE (X)
Double: The double precision name is DBIE.
Description

The exponentially scaled Airy function of the second kind is defined to be

Bi(x) if x<0
3/2

BIE(x) =
() Bi(x) if x>0

o123

If x < — 1.31¢ %3, then the answer will have no precision. If x < — 1.31¢ %, then the answer will be less accu-
rate than half precision. Here, € = AMACH(4) is the machine precision.

Example

In this example, BIE(0.49) is computed and printed.

USE BIE_INT
USE UMACH_INT

IMPLICIT NONE

EE ROQQ?WQ\{E{ BIE Chapter 8: Airy Functions

236

INTEGER NOUT

REAL VALUE, X
!

X = 0.49

VALUE = BIE(X)

CALL UMACH (2, NOUT)

WRITE (NOUT,99999)

99999 FORMAT (' BIE(',
END

Output

BIE(0.490) = 0.675

F6.3,

")

X, VALUE

Declare variables

Compute

Print the results

', F6.3)

=RogueWave

Chapter 8: Airy Functions

237

AIDE

This function evaluates the exponentially scaled derivative of the Airy function.

Function Return Value

AIDE — Function value. (Output)
The derivative of the Airy function for negative arguments and the exponentially scaled derivative of

the Airy function, eCAI’(%), for positive arguments where
_ _2y32
¢=—-3X

Required Arguments

X — Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface

Generic: AIDE (X)
Specific: The specific interface names are S_AIDE and D_AIDE.

FORTRAN 77 Interface

Single: AIDE (X)
Double: The double precision name is DAIDE.
Description

The exponentially scaled derivative of the Airy function is defined to be

AP’ () if x<0

AIDE(x) =)
< > e[2/3]x3 2Ai’(x) if x>0

If x < — 1.31¢ %3, then the answer will have no precision. If x < — 1.31¢ %, then the answer will be less accu-
rate than half precision. Here, € = AMACH(4) is the machine precision.

Example

In this example, AIDE(0.49) is computed and printed.

USE AIDE_INT
USE UMACH_INT

IMPLICIT NONE

= ROQQ?WQ\{EF AIDE Chapter 8: Airy Functions 238

Declare variables

INTEGER NOUT
REAL VALUE, X

Compute
X = 0.49

VALUE = AIDE (X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' AIDE(', F6.3, ') = ', F6.3)
END

Output

AIDE(0.490) = -0.284

=RogueWave

AIDE

Chapter 8: Airy Functions

239

BIDE

This function evaluates the exponentially scaled derivative of the Airy function of the second kind.

Function Return Value

BIDE — Function value. (Output)
The derivative of the Airy function of the second kind for negative arguments and the exponentially

scaled derivative of the Airy function of the second kind, eCBi’(X), for positive arguments where

(: _%X3/2

Required Arguments

X — Argument for which the Airy function value is desired. (Input)

FORTRAN 90 Interface

Generic: BIDE (X)
Specific: The specific interface names are S_BIDE and D_BIDE.

FORTRAN 77 Interface

Single: BIDE (X)
Double: The double precision name is DBIDE.
Description

The exponentially scaled derivative of the Airy function of the second kind is defined to be

Bi’(x) if x<0

BIDE(x) = 32
(> e_[m]x Bi’(x) ifx >0

If x < — 1.31¢ %3, then the answer will have no precision. If x < — 1.31¢ %, then the answer will be less accu-

rate than half precision. Here, € = AMACH(4) is the machine precision.

Example
In this example, BIDE(0.49) is computed and printed.

USE BIDE_INT
USE UMACH_INT

IMPLICIT NONE

EE ROQQ?WQ\{E{ BIDE Chapter 8: Airy Functions

240

Declare variables

INTEGER NOUT
REAL VALUE, X

Compute
X = 0.49

VALUE = BIDE (X)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' BIDE(', F6.3, ') = ', F6.3)
END

Output

BIDE(0.490) = 0.430

=RogueWave

BIDE

Chapter 8: Airy Functions

241

CAl

This function evaluates the Airy function of the first kind for complex arguments.

Function Return Value
CAI — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the Airy function is desired. (Input)

Optional Arguments

SCALING — Logical argument specifying whether or not the scaling function will be applied to the Ai(z)
function value. (Input)
Default: SCALING = . false.

FORTRAN 90 Interface

Generic: CAI (2)
Specific: The specific interface names are C_CAI and Z_CAT.
Description

The Airy function Ai(z) is a solution of the differential equation

dw _
dz*

zw

The mathematical development and algorithm, 838, used here are found in the work by Fabijonas et al. Func-
tion CAI returns the complex values of Ai(z).

An optional argument, SCALING, defines a scaling function s(z) that multiplies the results. This scaling func-

tion is
Scaling Action
.false. S(Z) =1
.true. 231572
s(z) ="

= ROQQ?WQ\{E{ CAl Chapter 8: Airy Functions

242

Comments

Informational Errors

Type Code Description

2 1 The real part of (2/3) X 26/2) was too large in the region where the function
is exponentially small; function values were set to zero to avoid underflow.

Try supplying the optional argument SCALING.

2 2 The real part of (2/3) x 28/2 was too large in the region where the function
is exponentially large; function values were set to zero to avoid underflow.
Try supplying the optional argument SCALING.
Example

In this example, Ai(0.49, 0.49) is computed and printed.

USE CAI_INT
USE UMACH_INT
IMPLICIT NONE
! Declare variables

INTEGER NOUT
COMPLEX Y, 2, W
! Compute
W = CMPLX(0.49,0.49)
Y = CAI (W)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99998) W, Y

99998 FORMAT(12x,"CAI(",F6.3 ", ",F6.3 ") = (",F6.3, ", ",F6.3,")")
End

Output

CAI(0.490, 0.490) = (0.219, -0.113)

= Rogygmq\{q CAl Chapter 8: Airy Functions 243

CBl

This function evaluates the Airy function of the second kind for complex arguments.

Function Return Value
CBI — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the Airy function value is desired. (Input)

Optional Arguments

SCALING — Logical argument specifying whether or not the scaling function will be applied to the Ai(z)
function value used to compute Bi(z). (Input)
Default: SCALING = . false.

FORTRAN 90 Interface

Generic: CBI (2)
Specific: The specific interface names are C_CBI and Z_CBI.
Description

The Airy function of the second kind Bi(z) is expressed using the connection formula
B1 (Z> — e_ﬂl/6A1(Ze_27l'l/3) + eﬂl/6A1(Zez7l'l/3)

using function CAT for Ai(z).

An optional argument, SCALING, defines a scaling function s(z) that multiplies the results. This scaling func-

tion is
Scaling Action
.false. S(Z) =1
.true. 23 Z3/2
s(z) =&

The values for Bi(z) are returned with the scaling for Ai(z).

= Rogygmﬂn\{q CBI Chapter 8: Airy Functions 244

Comments

Informational Errors
Type Code Description

2 1 The real part of (2/3) X 2/2) was too large in the region where the function
is exponentially small; function values were set to zero to avoid underflow.
Try supplying the optional argument SCALING.

2 2 The real part of (2/3) X 28/? was too large in the region where the function
is exponentially large; function values were set to zero to avoid underflow.
Try supplying the optional argument SCALING.

Example

In this example, Bi(0.49, 0.49) is computed and printed.

USE CBI_INT
USE UMACH_INT
IMPLICIT NONE

! Declare variables
INTEGER NOouT
COMPLEX Y, Z, W

! Compute
W CMPLX(0.49,0.49)
Y CBI (W)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99998) W, Y

99998 FORMAT(12x,"CBI(",F6.3 ", ",F6.3 ") = (",F6.3, ", ",F6.3,")")
End

Output

CBI(0.490, 0.490) = (0.802, 0.243)

EE Rogygmq\{q CBI Chapter 8: Airy Functions

245

CAID

This function evaluates the derivative of the Airy function of the first kind for complex arguments.

Function Return Value
CAID — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the Airy function value is desired. (Input)

Optional Arguments

SCALING — Logical argument specifying whether or not the scaling function will be applied to the Ai’(z)
function value. (Input)
Default: SCALING = . false.

FORTRAN 90 Interface

Generic: C_CAID(Z)
Specific: The specific interface names are C_CAID and Z_CAID.
Description

The function Ai’(z) is defined to be the derivative of the Airy function, Ai(z) (see CAT).

An optional argument, SCALING, defines a scaling function s(z) that multiplies the results. This scaling func-

tion is
Scaling Action
.false. S(Z) =1
.true. / 23/2
s(z) =
Comments
Informational Errors
Type Code Description
2 1 The real part of (2/3) X 28/2) was too large in the region where the function

is exponentially small; function values were set to zero to avoid underflow.
Try supplying the optional argument SCALING.

2 2 The real part of (2/3) X 26/2) was too large in the region where the function
is exponentially large; function values were set to zero to avoid underflow.
Try supplying the optional argument SCALING.

= ROQQ?WQ\{EF CAID Chapter 8: Airy Functions 246

Example

In this example, Ai (0.49, 0.49) and Ai’(0.49, 0.49) are computed and printed.
USE CAID_INT
USE CAI_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables

INTEGER NOUT
COMPLEX Y, Z2, W, 2
! Compute
W = CMPLX(0.49,0.49)
Y = CAI(W)
Z = CAID (W)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99998) W, Y
WRITE (NOUT,99997) W, Z

99997 FORMAT (12x, "CAID(",F6.3 ", ",F6.3 ") = (",F6.3, ", ",F6.3,")")

99998 FORMAT (12x,"CAI(",F6.3 ", ", F6.3 ") = (",F6.3, ", ",F6.3,")")
End
Output
CAI(0.490, 0.490) = (0.219, -0.113)
CAID(0.490, 0.490) = (-0.240, 0.064)

= R{nggmq\{q CAID Chapter 8: Airy Functions 247

CBID

This function evaluates the derivative of the Airy function of the second kind for complex arguments.

Function Return Value
CBID — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the Airy function value is desired. (Input)

Optional Arguments

SCALING — Logical argument specifying whether or not the scaling function will be applied to the Ai’(z)
function value used to compute Bi’(z). (Input)
Default: SCALING = . false.

FORTRAN 90 Interface

Generic: CBID(2)
Specific: The specific interface names are C_CBID and Z_CBID.
Description

The function Bi’(z) is defined to be the derivative of the Airy function of the second kind, Bi(z), (see CBI),
expressed using the connection formula

using function CAID for Ai'(z).

An optional argument, SCALING, defines a scaling function s(z) that multiplies the results. This scaling func-

tion is
Scaling Action
.false. S(Z) =1
.true. 23 3/2
s(z) = *F

The values for Bi’(z) are returned with the scaling for Ai’(z).

= Rogygmﬂn\{q CBID Chapter 8: Airy Functions 248

Comments

Informational Errors
Type Code Description

2 1 The real part of (2/3) X 2/2) was too large in the region where the function
is exponentially small; function values were set to zero to avoid underflow.
Try supplying the optional argument SCALING.

2 2 The real part of (2/3) X 28/? was too large in the region where the function
is exponentially large; function values were set to zero to avoid underflow.
Try supplying the optional argument SCALING.

Example

In this example, Bi’(0.49, 0.49) is computed and printed.

USE CBID_INT
USE UMACH_INT
IMPLICIT NONE

! Declare variables
INTEGER NOouT
COMPLEX Y, Z, W

! Compute
W CMPLX(0.49,0.49)
Y CBID (W)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99998) W, Y

99998 FORMAT(12x,"CBID(",F6.3 ", ",F6.3 ") = (",F6.3, ", ",F6.3,")")
End

Output

CBID(0.490, 0.490) = (0.411, 0.180)

= Rogygmq\{q CBID Chapter 8: Airy Functions 249

% Rogygmq\{q CBID Chapter 8: Airy Functions 250

I

Chapter 9: Elliptic Integrals

Routines

Evaluates the complete elliptic integral of the first kind, K(x)............... ELK
Evaluates the complete elliptic integral of the second kind, E(x)............ ELE
Evaluates Carlson’s elliptic integral of the first kind, Re(x, ¥,). ELRF
Evaluates Carlson’s elliptic integral of the second kind, Rp(x, ¥,). ELRD
Evaluates Carlson’s elliptic integral of the third kind, Ry(x, y,2z) ELRJ
Evaluates a special case of Carlson’s elliptic integral, Re(x, y, 2) ELRC

255
257
259
261
263
265

=RogueWave

Chapter 9: Elliptic Integrals

251

Usage Notes

The notation used in this chapter follows that of Abramowitz and Stegun (1964) and Carlson (1979).

The complete elliptic integral of the first kind is
/2
—-1/2
K(m =r 1—msin’0) do
(m) =1, ()
and the complete elliptic integral of the second kind is

/2
E(m) = IO (1-m sin0)"do

Instead of the parameter m, the modular angle o is sometimes used with m = sin? &. Also used is the modulus k

with k2 = m.

/2 1/2
E(k) = IO (1- K sin’0) do

= Rp(0,1 - #41) - 1R,y (0,1 - K1)

Carlson Elliptic Integrals

The Carlson elliptic integrals are defined by Carlson (1979) as follows:

RF(X y,z) IO[<t+x)<t+y><t+z>]l/2

00

°[<f+X)(f+y>]

Rc(x J/) I

172

00

0[(t+x)(t+y)(t+z)(t+p)]

dt
Fo(x2.2) = IO[(Z+x><t+y)(t+z>3]l/2

RJ(x v, Z, p) J

12

= Rogygmq\{q Usage Notes Chapter 9: Elliptic Integrals

252

The standard Legendre elliptic integrals can be written in terms of the Carlson functions as follows (these
relations are from Carlson (1979)):

F(g.k) = 15(1 - Ksin20) a0
= (sinqﬁ)RF(coszqﬁ, 1 - kzsin2¢, 1>
E(g.k) =15(1 - k2sin20) % do
= (sin¢)RF<cos2¢, 1 - kzsinng, 1> - %k2<sin¢)3 RD<cosz¢, 1 - kzsinzqﬁ, 1>
[1(4. k. n) =1(1+nsin20) (1-sin’0) “do
= (sin ¢)RF<0052¢, 1 —kzsinzqﬁ, 1> —%(sin ¢)3Rj<cosz¢, 1 —kzsinzgzﬁ, I,1+n sin2¢>

D(p,k) = Jsi?o(1 — sin’0) " do

= %(sin¢)3RD<cosz¢, 1 - K*sin’¢, 1)
K(k) = [22(1 - ¥sin20) a0

= Rp(0, 1-#% 1)

E(k) = [52(1 - Ksin20) o

= R(0,1-#,1) - 2Rp(0,1 - K2, 1)

The function R(x, y) is related to inverse trigonometric and inverse hyperbolic functions.

= Rogygmq\{q Usage Notes Chapter 9: Elliptic Integrals 253

In x = (x—l)Rc[<1§x>,x] 0<x< oo

sin 'y = xR, (1 - x%,1) ~l<x<l
sinh71x=xR<1+x2,1> —0 < x< ®
cos 'x=V1 -2 R(:21) 0<x<l1
cosh 'y =V~ 1 R,(:%,1) 1<x< oo
tan_1x=xRC<1,1+x2> -0 <x< o
tanh"x = xR, (1,1 - x?) ~l<x<1
cot 'x=Ro(2+ 1) 0<x< w
coth 'x = R<xx—1> l<x< o

= R{ng?mq\{q Usage Notes Chapter 9: Elliptic Integrals 254

ELK

This function evaluates the complete elliptic integral of the kind K(x).

Function Return Value
ELK — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
X must be greater than or equal to 0 and less than 1.

FORTRAN 90 Interface

Generic: ELK (X)
Specific: The specific interface names are S_ELK and D_ELK.

FORTRAN 77 Interface

Single: ELK (X)
Double: The double precision name is DELK.
Description

The complete elliptic integral of the first kind is defined to be

/2
do
K(x :.[for 0<x<1
() 0 [l—x sin2(9]1/2

The argument x must satisfy 0 < x < 1; otherwise, ELK is set to b = AMACH(2), the largest representable float-
ing-point number.

The function K(x) is computed using the routine ELRF and the relation K(x) = Rg(0, 1 - x, 1).

= Rogygmﬂn\{q ELK Chapter 9: Elliptic Integrals

255

3.0
| [xx) —
/ E(x)
2.5
- rd
-
1-5 _’
1.0 L T 1 T T T T T T 1
0.0 0.25 0.5 0.75 1.0
€T
Figure 9.1 — Plot of K(x) and E(x)
Example
In this example, K(0) is computed and printed.
USE ELK_INT
USE UMACH_INT
IMPLICIT NONE
! Declare variables
INTEGER NOUT
REAL VALUE, X
1 Compute
X = 0.0
VALUE = ELK(X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' ELK(', F6.3, ') = ', F6.3)
END
Output
ELK(0.000) = 1.571
= R‘Dgygmq\{eg ELK Chapter 9: Elliptic Integrals 256

ELE

This function evaluates the complete elliptic integral of the second kind E(x).

Function Return Value
ELE — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)
X must be greater than or equal to 0 and less than or equal to 1.

FORTRAN 90 Interface

Generic: ELE (X)
Specific: The specific interface names are S_ELE and D_ELE.

FORTRAN 77 Interface

Single: ELE (X)
Double: The double precision name is DELE.
Description

The complete elliptic integral of the second kind is defined to be

/2 1/2
E(x) = '[0 [1-xsin?0] a0 for0<x<1

The argument x must satisfy 0 < x < 1; otherwise, ELE is set to b = AMACH(2), the largest representable float-
ing-point number.

The function E(x) is computed using the routines ELRF and ELRD. The computation is done using the relation
E(x) =Rp(0,1-x,1) = FRp(0,1 —x,1)

For a plot of E(x), see Figure 9.1, “Plot of K(x) and E(x).”

Example
In this example, E(0.33) is computed and printed.

USE ELE_INT
USE UMACH_INT

IMPLICIT NONE

= ROQQ?WQ\{EF ELE Chapter 9: Elliptic Integrals 257

INTEGER NOUT

REAL VALUE, X
1

X = 0.33

VALUE = ELE (X)

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' ELE(', F6.3, ') =
END

Output

ELE(0.330) = 1.432

Declare variables

Compute

Print the results

', F6.3)

= RogueWave

ELE

Chapter 9: Elliptic Integrals

258

ELRF

This function evaluates Carlson’s incomplete elliptic integral of the first kind Rp(X, Y, 2).

Function Return Value
ELRF — Function value. (Output)

Required Arguments

X — First variable of the incomplete elliptic integral. (Input)
It must be nonnegative

Y — Second variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Z — Third variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

FORTRAN 90 Interface
Generic: ELRF (X, Y, Z)
Specific: The specific interface names are S_ELRF and D_ELRF.

FORTRAN 77 Interface

Single: ELRF (X, Y, Z)
Double: The double precision name is DELRF.
Description

The Carlson’s complete elliptic integral of the first kind is defined to be

_1f” di
RF(X,y,Z) 2-[0[<t+x)<t+y)<t+z)]l/2

The arguments must be nonnegative and less than or equal to b/5. In addition, x + y, x + z, and y + z must be
greater than or equal to 5s. Should any of these conditions fail, ELRF is set to b. Here, b = AMACH(2) is the larg-
est and s = AMACH(1) is the smallest representable floating-point number.

The function ELRF is based on the code by Carlson and Notis (1981) and the work of Carlson (1979).

Example

In this example, Rp(0, 1, 2) is computed and printed.

USE ELRF_INT
USE UMACH_INT

= ROQQ?WQ\{EF ELRF Chapter 9: Elliptic Integrals 259

IMPLICIT NONE
! Declare variables
INTEGER NOouT

REAL VALUE, X, Y, Z
! Compute

X = 0.0

Y =1.0

Z =2.0

VALUE = ELRF(X, Y, 2Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, Y, Z, VALUE
99999 FORMAT (' ELRF(', F6.3, ',', F6.3, ',', F6.3, ') = ', F6.3)
END

Output

ELRF(0.000, 1.000, 2.000) = 1.311

= R{ng?mq\{q ELRF Chapter 9: Elliptic Integrals 260

ELRD

This function evaluates Carlson’s incomplete elliptic integral of the second kind Rp(X, Y, Z).

Function Return Value
ELRD — Function value. (Output)

Required Arguments

X — First variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Y — Second variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Z — Third variable of the incomplete elliptic integral. (Input)
It must be positive.

FORTRAN 90 Interface
Generic: ELRD (X, Y, Z)
Specific: The specific interface names are S_ELRD and D_ELRD.

FORTRAN 77 Interface

Single: ELRD (X, Y, Z)
Double: The double precision name is DELRD.
Description

The Carlson’s complete elliptic integral of the second kind is defined to be

B dt
0[(t+x)(t+y)(t+z)3

The arguments must be nonnegative and less than or equal to 0.69(-In E)l/ 9572/3 where € = AMACH(4) is the
machine precision, s = AMACH(1) is the smallest representable positive number. Furthermore, x + y and z must

Rp(x, y. z) :%J.]1/2

be greater than max{3s2/3, 3/b?/3), where b = AMACH(2) is the largest floating-point number. If any of these
conditions are false, then ELRD is set to b.

The function ELRD is based on the code by Carlson and Notis (1981) and the work of Carlson (1979).

Example

In this example, Rp(0, 2, 1) is computed and printed.

= ROQQ?WQ\{EF ELRD Chapter 9: Elliptic Integrals 261

USE ELRD_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X, Y, Z
! Compute
X = 0.0
Y = 2.0
Z =1.0

VALUE = ELRD(X, Y, 2Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, Y, Z, VALUE
99999 FORMAT (' ELRD(', F6.3, ',', F6.3, ',', F6.3, ') = ', F6.3)
END

Output

ELRD(0.000, 2.000, 1.000) = 1.797

= R{ng?mq\{q ELRD Chapter 9: Elliptic Integrals 262

ELRJ

This function evaluates Carlson’s incomplete elliptic integral of the third kind R;(X, Y, Z, RHO)

Function Return Value
ELRJ — Function value. (Output)

Required Arguments
X — First variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Y — Second variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Z — Third variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

RHO — Fourth variable of the incomplete elliptic integral. (Input)
It must be positive.

FORTRAN 90 Interface
Generic: ELRJ (X, Y, Z, RHO)
Specific: The specific interface names are S_ELRJ and D_ELRJ.

FORTRAN 77 Interface

Single: ELRJ (X, Y, Z, RHO)
Double: The double precision name is DELRJ.
Description

The Carlson’s complete elliptic integral of the third kind is defined to be

00

dt
[(42 (4 2) (4 2) (14 Y]

The arguments must be nonnegative. In addition, x + y, x + z, y + z and p must be greater than or equal to

RJ(x, Y, Z, p) = %j 172

(5s)”3 and less than or equal to .3(b/5)1/3, where s = AMACH(1) is the smallest representable floating-point
number. Should any of these conditions fail, ELRJ is set to b = AMACH(2), the largest floating-point number.

The function ELRJ is based on the code by Carlson and Notis (1981) and the work of Carlson (1979).

EE ROQQ?WQ\{E{ ELR) Chapter 9: Elliptic Integrals

263

Example

In this example, R](Z, 3,4, 5) is computed and printed.

USE ELRJ_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables
INTEGER NOouT
REAL RHO, VALUE, X, Y, Z

! Compute
X =
Y =
7 =
RHO = .0
VALUE = ELRJ(X, Y, Z, RHO)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, Y, Z, RHO, VALUE

U W N
o O O

99999 FORMAT (' ELRJ(', F6.3, ',', F6.3, ',', F6.3, ',', F6.3, &
"y = ', F6.3)
END
Output
ELRJ(2.000, 3.000, 4.000, 5.000) = 0.143

EE Rogypmq\{q ELR) Chapter 9: Elliptic Integrals 264

ELRC

This function evaluates an elementary integral from which inverse circular functions, logarithms and inverse
hyperbolic functions can be computed.

Function Return Value
ELRC — Function value. (Output)

Required Arguments

X — First variable of the incomplete elliptic integral. (Input)
It must be nonnegative and satisfy the conditions given in Comments.

Y — Second variable of the incomplete elliptic integral. (Input)
It must be positive and satisfy the conditions given in Comments.

FORTRAN 90 Interface

Generic: ELRC (X, Y)
Specific: The specific interface names are S_ELRC and D_ELRC.

FORTRAN 77 Interface

Single: ELRC (X, Y)
Double: The double precision name is DELRC.
Description

The special case of Carlson’s complete elliptic integral of the first kind is defined to be

Rc(x, y) = %J.

00

di
[(42427

The argument x must be nonnegative, y must be positive, and x + y must be less than or equal to b/5 and
greater than or equal to 5s. If any of these conditions are false, then ELRC is set to b. Here, b = AMACH(2) is the
largest and s = AMACH(1) is the smallest representable floating-point number.

1/2

The function ELRC is based on the code by Carlson and Notis (1981) and the work of Carlson (1979).

Comments

The sum X + Y must be greater than or equal to ARGMIN and both X and Y must be less than or equal to
ARGMAX. ARGMIN = s * 5 and ARGMAX = b/5, where s is the machine minimum (AMACH(1)) and b is the
machine maximum (AMACH(2)).

= ROQQ?WQ\{E{ ELRC Chapter 9: Elliptic Integrals

265

Example

In this example, R(2.25, 2.0) is computed and printed.

USE ELRC_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
REAL VALUE, X, Y
! Compute
X = 0.0
Y =1.0

VALUE = ELRC(X, Y)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, Y, VALUE

99999 FORMAT (' ELRC(', F6.3, ',', F6.3, ') = ', F6.3)
END

Output

ELRC(0.000, 1.000) = 1.571

= Rogypmq\{q ELRC Chapter 9: Elliptic Integrals 266

—=— Chapter 10: Elliptic and Related
e — I
~——= Functions
Routines
10.1 Weierstrass Elliptic and Related Functions
Lemninscatic case CWPL 269
Lemninscatic case derivative. CWPLD 271
Equianharmonic case. i e CwPQ 273
Equianharmonic case derivative CWPQD 275
10.2 Jacobi Elliptic Functions
Jacobi function sn(x, m) (realargument) EJSN 277
Jacobi function cn(x, m) (realargument) EJCN 280
Jacobi function dn(x, m) (realargument) EJDN 283

= RogueWave

Chapter 10: Elliptic and Related Functions

267

Usage Notes

Elliptic functions are doubly periodic, single-valued complex functions of a single variable that are analytic,
except at a finite number of poles. Because of the periodicity, we need consider only the fundamental period
parallelogram. The irreducible number of poles, counting multiplicities, is the order of the elliptic function.
The simplest, non-trivial, elliptic functions are of order two.

The Weierstrass elliptic functions, £(z, w, w’) have a double pole at z = 0 and so are of order two. Here, 2 w
and 2 w’ are the periods.

The Jacobi elliptic functions each have two simple poles and so are also of order two. The period of the func-
tions is as follows:

Function Periods

sn(x, m) 4K(m) 2iK'(m)
cn(x, m) 4K(m) 4iK'(m)
dn(x, m) 2K(m) 4iK'(m)

The function K(m) is the complete elliptic integral, see ELK, and K'(m) = K(1 — m).

= ROQEI?WH\{E: Usage Notes Chapter 10: Elliptic and Related Functions 268

CWPL

This function evaluates the Weierstrass’ £ function in the lemniscatic case for complex argument with unit
period parallelogram.

Function Return Value
CWPL — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: CWPL (2)
Specific: The specific interface names are C_CWPL and Z_CWPL.

FORTRAN 77 Interface

Complex: CWPL (Z)
Double complex: The double complex name is ZWPL.

Description

The Weierstrass’ function, £(z) = £(z | w, w’), is an elliptic function of order two with periods 2 w and
2 w’ and a double pole at z = 0. CWPL(Z) computes £(z | W, W) with2 w=1and 2 w’ =1i.

The input argument is first reduced to the fundamental parallelogram of all z satisfying -1/2 < Rz <1/2
and -1/2 < 9z <1/2. Then, a rational approximation is used.

All arguments are valid with the exception of the lattice points z = m + ni, which are the poles of CWPL. If the
argument is a lattice point, then b = AMACH(2), the largest floating-point number, is returned. If the argument

has modulus greater than 10& 1, then NaN (not a number) is returned. Here, € = AMACH(4) is the machine
precision.

Function CWPL is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

Example
In this example, £(0.25 + 0.257) is computed and printed.

USE CWPL_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables
INTEGER NOouT

= ROQQ?WQ\{EF CWPL Chapter 10: Elliptic and Related Functions 269

COMPLEX VALUE, Z
! Compute
Z (0.25, 0.25)
VALUE CWPL (Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE

99999 FORMAT (' CWPL(', F6.3, ',', F6.3, ') = (', &
F6.3, ',', F6.3, ")'")
END
Output
CWPL(0.250, 0.250) = (0.000,-6.875)

= R‘Dgygmq\{eg CWPL Chapter 10: Elliptic and Related Functions 270

CWPLD

This function evaluates the first derivative of the Weierstrass’ § function in the lemniscatic case for complex
argument with unit period parallelogram.

Function Return Value
CWPLD — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: CWPLD (2)
Specific: The specific interface names are C_CWPLD and Z_CWPLD.

FORTRAN 77 Interface

Complex: CWPLD (Z)
Double complex: The double complex name is ZWPLD.

Description

The Weierstrass’ £ function, £(z) = $(z | w, w’), is an elliptic function of order two with periods 2w and 2w’
and a double pole at z = 0. CWPLD(Z) computes the derivative of £(z | w, w’) with2 w =1and 2 W’ =i. CWPL
computes §(z | w, w’).

The input argument is first reduced to the fundamental parallelogram of all z satisfying -1/2 < Rz < 1/2
and -1/2 < 3z < 1/2. Then, a rational approximation is used.

All arguments are valid with the exception of the lattice points z = m + ni, which are the poles of CWPL. If the
argument is a lattice point, then b = AMACH(2), the largest floating-point number, is returned.

Function CWPLD is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

Example
In this example, £(0.25 + 0.25i) is computed and printed.

USE CWPLD_INT
USE UMACH_INT

IMPLICIT NONE

! Declare variables
INTEGER NOUT
COMPLEX VALUE, Z

= Rogygmﬂn\{q CWPLD Chapter 10: Elliptic and Related Functions 271

! Compute
Z (0.25, 0.25)
VALUE CWPLD (Z)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE

99999 FORMAT (' CWPLD(', F6.3, ',', F6.3, ') = (', &
F6.3, ',', F6.3, ')")
END
Output
CWPLD(0.250, 0.250) = (36.054,36.054)

= Rogygmq\f‘e; CWPLD Chapter 10: Elliptic and Related Functions 272

CWPQ

This function evaluates the Weierstrass’ £ function in the equianharmonic case for complex argument with
unit period parallelogram.

Function Return Value
CWPQ — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: CWPQ (2)
Specific: The specific interface names are C_CWPQ and Z_CWPQ.

FORTRAN 77 Interface
Complex: CWPQ (Z)

Double complex: The double complex name is ZWPQ.

Description

The Weierstrass’ function, £(z) = £(z | w, w’), is an elliptic function of order two with periods 2 w and
2 w’ and a double pole at z = 0. CWPQ(Z) computes £(z | w, w’) with

4o=1-i3 and 40'=1+iV3

The input argument is first reduced to the fundamental parallelogram of all z satisfying

~1/2< Rz<1/2 and —V3/4< Jz<+3/4
Then, a rational approximation is used.

All arguments are valid with the exception of the lattice points

z=m<1—l’\/§> +n(1+i\/§>
which are the poles of CWPQ. If the argument is a lattice point, then b = AMACH(2), the largest floating-point

number, is returned. If the argument has modulus greater than 10e !, then NaN (not a number) is returned.
Here, € = AMACH(4) is the machine precision.

Function CWPQ is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

= Rogygmﬂn\{q CWPQ Chapter 10: Elliptic and Related Functions 273

Example
In this example, £(0.25 + 0.14437567i) is computed and printed.

USE CWPQ_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOUT
COMPLEX VALUE, Z

! Compute
Z = (0.25, 0.14437567)

VALUE = CWPQ(Z)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE

99999 FORMAT (' CWPQ(', F6.3, ',', F6.3, ') = (', &
F7.3, ',', F7.3, "))
END
Output
CWPQ(0.250, 0.144) = (5.895,-10.216)

= ROQEJ?WH\{E: CWPQ Chapter 10: Elliptic and Related Functions 274

CWPQD

This function evaluates the first derivative of the Weierstrass’ § function in the equianharmonic case for com-
plex argument with unit period parallelogram.

Function Return Value
CWPQD — Complex function value. (Output)

Required Arguments

Z — Complex argument for which the function value is desired. (Input)

FORTRAN 90 Interface
Generic: CWPQD (2)
Specific: The specific interface names are C_CWPQD and Z_CWPQD.

FORTRAN 77 Interface
Complex: CWPQD (Z)
Double complex: The double complex name is ZWPQD.

Description

The Weierstrass’ function, £(z) = £(z | w, w’), is an elliptic function of order two with periods 2 w and
2 w’ and a double pole at z = 0. CWPQD(Z) computes the derivative of £(z | w, w’) with

40=1-i3 and 40'=1+iV3
CWPQ computes £(z | w, w’).
The input argument is first reduced to the fundamental parallelogram of all z satisfying
~1/2< Rz<1/2 and —V3/4< Tz<v3/4
Then, a rational approximation is used.

All arguments are valid with the exception of the lattice points

z=m(1-i3) +n(1+i3)

which are the poles of CWPQ. If the argument is a lattice point, then b = AMACH(2), the largest floating-point
number, is returned.

Function CWPQD is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

= Rogygmﬂn\{q CWPQD Chapter 10: Elliptic and Related Functions 275

Example

In this example, £(0.25 + 0.14437567i) is computed and printed.

USE CWPQD_INT
USE UMACH_INT

IMPLICIT NONE
1
INTEGER NOUT
COMPLEX VALUE, 2
!
Z = (0.25, 0.14437567)

VALUE = CWPQD(Z)

Declare variables

Compute

Print the results

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (' CWPQD(', F6.3, ',', F6.3, ') = (', &
F6.3, ',', F6.3, '")")
END
Output
CWPQD(0.250, 0.144) = (0.028,85.934)
= R{nggmq\{q CWPQD Chapter 10: Elliptic and Related Functions 276

EJSN

This function evaluates the Jacobi elliptic function sn(x, m).

Function Return Value
EJSN — Real or complex function value. (Output)

Required Arguments
X — Real or complex argument for which the function value is desired. (Input)

AM — Parameter of the elliptic function (m = K?). (Input)

FORTRAN 90 Interface

Generic: EJSN (X, AM)
Specific: The specific interface names are S_EJSN, D_EJSN, C_EJSN, and Z_EJSN

FORTRAN 77 Interface

Single: EJSN (X, AM)
Double: The double precision name is DEJSN.
Complex: The complex name is CEJSN.

Double Complex: The double complex name is ZEJSN.

Description

The Jacobi elliptic function sn(x, m) = sin ¢, where the amplitude ¢ is defined by the following:

x:r do
0(1—m sin2¢9>

%)

The function sn(x, m) is computed by first applying, if necessary, a Jacobi transformation so that the parame-
ter, m, is between zero and one. Then, a descending Landen (Gauss) transform is applied until the parameter
is small. The small parameter approximation is then applied.

= Rogygmﬂn\{q EJSN Chapter 10: Elliptic and Related Functions 277

Comments

Informational errors

Type Code Description

3 2 The result is accurate to less than one half precision because |x| is too large.

3 2 The result is accurate to less than one half precision because |REAL (z)] is too
large.

3 3 The result is accurate to less than one half precision because |AIMAG ()] is
too large.

3 5 Landen transform did not converge. Result may not be accurate. This should

never occur.

Examples

Example 1

In this example, sn(1.5, 0.5) is computed and printed.

USE EJSN_INT
USE UMACH_INT

IMPLICIT NONE
Declare variables

INTEGER NOouT
REAL AM, VALUE, X
Compute
AM = 0.5
X =1.5
VALUE = EJSN (X, AM)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, AM, VALUE

99999 FORMAT (' EJSN(', F6.3, ',', F6.3, ') = ', F6.3)
END

Output

EJSN(1.500, 0.500) = 0.968

Example 2

In this example, sn(1.5 + 0.3, 0.5) is computed and printed.

USE EJSN_INT
USE UMACH_INT

IMPLICIT NONE
Declare variables
INTEGER NOouT

= Rogygmq\{q EJSN Chapter 10: Elliptic and Related Functions

278

REAL AM
COMPLEX VALUE, Z
! Compute
Z (1.5, 0.3)
AM = 0.5
VALUE = EJSN(Z, AM)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) 2z, AM, VALUE

99999 FORMAT (' EJSN((', F6.3, ',', F6.3, '), ', F6.3, ') = (', &
F6.3, ',', F6.3, ')"')
END
Output
EJSN((1.500, 0.300), 0.500) = (0.993, 0.054)

= R‘Dgygmq\{eg EJSN Chapter 10: Elliptic and Related Functions 279

EJCN

This function evaluates the Jacobi elliptic function cn(x, m).

Function Return Value
EJCN — Real or complex function value. (Output)

Required Arguments
X — Real or complex argument for which the function value is desired. (Input)

AM — Parameter of the elliptic function (m = k). (Input)

FORTRAN 90 Interface

Generic: EJCN (X, AM)
Specific: The specific interface names are S_EJCN, D_EJCN, C_EJCN, and Z_EJCN.

FORTRAN 77 Interface

Single: EJCN (X, AM)
Double: The double precision name is DEJCN.
Complex: The complex name is CEJCN.

Double Complex: The double complex name is ZEJCN.

Description
The Jacobi elliptic function cn(x, m) = cos ¢, where the amplitude ¢ is defined by the following:

L I v do
0(1—m sin219>1/2

The function cn(x, m) is computed by first applying, if necessary, a Jacobi transformation so that the parame-
ter, m, is between zero and one. Then, a descending Landen (Gauss) transform is applied until the parameter
is small. The small parameter approximation is then applied.

= Rogygmﬂn\{q EJCN Chapter 10: Elliptic and Related Functions 280

Comments

Informational errors

Type Code Description

3 2 The result is accurate to less than one half precision because |x| is too large.

3 2 The result is accurate to less than one half precision because |REAL (z)] is too
large.

3 3 The result is accurate to less than one half precision because |AIMAG (2z)] is
too large.

3 5 Landen transform did not converge. Result may not be accurate. This should

never occur.
Examples

Example 1

In this example, cn(1.5, 0.5) is computed and printed.

USE EJCN_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables

INTEGER NOuUT
REAL AM, VALUE, X
! Compute
AM = 0.5
X =1.5
VALUE = EJCN (X, AM)

! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, AM, VALUE

99999 FORMAT (' EJCN(', F6.3, ',', F6.3, ') = ', F6.3)
END

Output

EJCN(1.500, 0.500) = 0.250

Example 2

In this example, cn(1.5 + 0.37, 0.5) is computed and printed.

USE EJCN_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables
INTEGER NOouT

= Rogygmq\{q EJCN Chapter 10: Elliptic and Related Functions 281

REAL AM
COMPLEX VALUE, Z
! Compute
Z (1.5, 0.3)
AM = 0.5
VALUE = EJCN(Z, AM)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) 7z, AM, VALUE

99999 FORMAT (' EJCN((', F6.3, ',', F6.3, '), ', F6.3, ') = (', &
F6.3, ',', F6.3, ')")
END
Output
EJCN((1.500, 0.300), 0.500) = (0.251,-0.212)

= R‘Dgygmq\{eg EJCN Chapter 10: Elliptic and Related Functions 282

EJDN

This function evaluates the Jacobi elliptic function dn(x, m).

Function Return Value
EJDN — Real or complex function value. (Output)

Required Arguments
X — Real or complex argument for which the function value is desired. (Input)

AM — Parameter of the elliptic function (m = K?). (Input)

FORTRAN 90 Interface

Generic: EJDN (X, AM)
Specific: The specific interface names are S_EJDN, D_EJDN, C_EJDN, and Z_EJDN.

FORTRAN 77 Interface

Single: EJDN (X, AM)
Double: The double precision name is DEJDN.
Complex: The complex precision name is CEJDN.

Double Complex: The double complex precision name is ZEJDN.

Description
The Jacobi elliptic function dn(x, m) = (1 - m sin? $)”*, where the amplitude ¢ is defined by the following:
L I v do
. 1/2
0(1 —m 31n20>

The function dn(x, m) is computed by first applying, if necessary, a Jacobi transformation so that the parame-
ter, m, is between zero and one. Then, a descending Landen (Gauss) transform is applied until the parameter
is small. The small parameter approximation is then applied.

= Rogygmﬂn\{q EJDN Chapter 10: Elliptic and Related Functions 283

Comments

Informational errors

Type Code Description

3 2 The result is accurate to less than one half precision because |x| is too large.

3 2 The result is accurate to less than one half precision because |REAL (z)] is too
large.

3 3 The result is accurate to less than one half precision because |AIMAG ()] is
too large.

3 5 Landen transform did not converge. Result may not be accurate. This should

never occur.

Examples

Example 1

In this example, dn(1.5, 0.5) is computed and printed.

USE EJDN_INT
USE UMACH_INT

IMPLICIT NONE
Declare variables

INTEGER NOouT
REAL AM, VALUE, X
Compute
AM = 0.5
X =1.5

VALUE = EJDN (X, AM)

Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, AM, VALUE

99999 FORMAT (' EJDN(', F6.3, ',', F6.3, ') = ', F6.3)
END

Output

EJDN(1.500, 0.500) = 0.729

Example 2

In this example, dn(1.5 + 0.3i, 0.5) is computed and printed.

USE EJDN_INT
USE UMACH_INT

IMPLICIT NONE
Declare variables
INTEGER NOouT

= Rogygmq\{q EJDN Chapter 10: Elliptic and Related Functions

284

REAL AM
COMPLEX VALUE, Z
! Compute
Z (1.5, 0.3)
AM = 0.5
VALUE = EJDN(Z, AM)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) Z, AM, VALUE

99999 FORMAT (' EJDN((', F6.3, ',', F6.3, '), ', F6.3, ') = (', &
F6.3, ',', F6.3, ')"')
END
Output
EJDN((1.500, 0.300), 0.500) = (0.714,-0.037)

= R‘Dgygmq\{eg EJDN Chapter 10: Elliptic and Related Functions 285

% Rogygmqv.‘e" EJDN Chapter 10: Elliptic and Related Functions 286

—=— Chapter 11: Probability Distribution

—= Functions and Inverses

Routines

111 Discrete Random Variables: Cumulative Distribution Functions and Probability
Density Function
Binomial cumulative distribution function. BINDF 294
Binomial probability density function L L. BINPR 296
Geometric cumulative distribution function GEODF 299
Inverse of Geometric cumulative distribution function GEOIN 301
Geometric probability density function. GEOPR 303
Hypergeometric cumulative distribution function HYPDF 305
Hypergeometric probability density function HYPPR 307
Poisson cumulative distribution function POIDF 309
Poisson probability density function. Ll POIPR 311
Discrete uniform cumulative distribution function. UNDDF 314
Inverse of discrete uniform cumulative distribution function. UNDIN 316
Discrete uniform probability density function UNDPR 318
11.2 Continuous Random Variables: Distribution Functions and Their Inverses

Kolmogorov-Smirnov one-sided statistic cumulative distribution function . . AKS1DF 320
Kolmogorov-Smirnov two-sided statistic cumulative distribution function . . AKS2DF 323
Lognormal cumulative distribution function ALNDF 326
Inverse of the lognormal cumulative distribution function ALNIN 328
Lognormal probability density function. ALNPR 330
Normal (Gaussian) cumulative distribution function. ANORDF 332
Inverse of the normal cumulative distribution function. ANORIN 334
Normal (Gaussian) probability density function ANORPR 336
Beta cumulative distribution function L. BETDF 338
Inverse of the beta cumulative distribution function. BETIN 341
Beta probability density function Ll BETPR 343
Noncentral beta cumulative distribution function BETNDF 345

=RogueWave

Chapter 11: Probability Distribution Functions and Inverses

287

Inverse of the noncentral beta cumulative distribution function.......... BETNIN

Noncentral beta probability density function BETNPR
Bivariate normal cumulative distribution function. BNRDF
Chi-squared cumulative distribution function. CHIDF
Inverse of the chi-squared cumulative distribution function. CHIIN
Chi-squared probability density function CHIPR
Noncentral chi-squared cumulative distribution function CSNDF
Inverse of the noncentral chi-squared cumulative distribution function CSNIN
Noncentral chi-squared probability density function CSNPR
Exponential distribution cumulative function EXPDF
Inverse of the exponential cumulative distribution function EXPIN
Exponential probability density function. EXPPR
Extreme value cumulative distribution function EXVDF
Inverse of the Extreme value cumulative distribution function. EXVIN
Extreme value probability density function. EXVPR
F cumulative distribution function. FDF
Inverse of the F cumulative distribution function FIN
F probability density function FPR
Noncentral F cumulative distribution function FNDF
Inverse of the noncentral F cumulative distribution function FNIN
Noncentral F probability density function. FNPR
Gamma cumulative distribution function, GAMDF
Inverse of the gamma cumulative distribution function GAMIN
Gamma probability density function. L GAMPR
Rayleigh’s cumulative distribution function RALDF
Inverse of the Rayleigh’s cumulative distribution function................ RALIN
Rayleigh’s probability density function. RALPR
Student’s t cumulative distribution function TDF
Inverse of the Student’s t cumulative distribution function. TIN
Student’s t probability density function. TPR
Noncentral Student’s t cumulative distribution function. TNDF
Inverse of the noncentral Student’s t cumulative distribution function. TNIN
Noncentral Student's t probability density function TNPR
Uniform cumulative distribution function UNDF
Inverse of the uniform cumulative distribution function UNIN
Uniform probability density function. UNPR
Weibull cumulative distribution function. L. WBLDF
Inverse of the Weibull cumulative distribution function WBLIN
Weibull probability density function WBLPR

348
351
354
356
359
361
363
366
368
371
373
375
377
379
381
383
386
388
390
393
396
399
402
404
406
408
409
411
413
415
417
420
422
424
426
428
430
432
434

=RogueWave

Chapter 11: Probability Distribution Functions and Inverses

288

11.3 General Continuous Random Variables
Distribution function given ordinates of density GCDF 436
Inverse of distribution function given ordinates of density GCIN 439
Inverse of distribution function given subprogram GFNIN 442

=RogueWave

Chapter 11: Probability Distribution Functions and Inverses 289

Usage Notes

Definitions and discussions of the terms basic to this chapter can be found in Johnson and Kotz (1969, 1970a,
1970b). These are also good references for the specific distributions.

In order to keep the calling sequences simple, whenever possible, the routines in this chapter are written for
standard forms of statistical distributions. Hence, the number of parameters for any given distribution may
be fewer than the number often associated with the distribution. For example, while a gamma distribution is
often characterized by two parameters (or even a third, “location”), there is only one parameter that is neces-
sary, the “shape.” The “scale” parameter can be used to scale the variable to the standard gamma distribution.
For another example, the functions relating to the normal distribution, ANORDF and ANORIN, are for a normal
distribution with mean equal to zero and variance equal to one. For other means and variances, it is very
easy for the user to standardize the variables by subtracting the mean and dividing by the square root of the
variance.

The distribution function for the (real, single-valued) random variable X is the function F defined for all real x
by
F(x) = Prob(X < x)

where Prob(-) denotes the probability of an event. The distribution function is often called the cumulative dis-
tribution function (CDF).

For distributions with finite ranges, such as the beta distribution, the CDF is 0 for values less than the left
endpoint and 1 for values greater than the right endpoint. The routines in this chapter return the correct val-
ues for the distribution functions when values outside of the range of the random variable are input, but
warning error conditions are set in these cases.

Discrete Random Variables

For discrete distributions, the function giving the probability that the random variable takes on specific val-
ues is called the probability function, defined by

p(x) = Prob(X = x)
The “PR” routines in this chapter evaluate probability functions.

The CDF for a discrete random variable is

HOBYIO
N

where A is the set such that k < x. The “DF” routines in this chapter evaluate cumulative distribution func-
tions. Since the distribution function is a step function, its inverse does not exist uniquely.

= ROQEI?WQ\{EF Usage Notes Chapter 11: Probability Distribution Functions and Inverses 290

1.00 5 —

0.75
= -
= - DF
"5 0.50
e
'.CI e
> i

_ FE
0.25 —
0.00
X
Figure 11.1 — Discrete Random Variable

In the plot above, a routine like BINPR in this chapter evaluates the individual probability, given X. A routine
like BINDF would evaluate the sum of the probabilities up to and including the probability at X.

Continuous Distributions

For continuous distributions, a probability function, as defined above, would not be useful because the prob-
ability of any given point is 0. For such distributions, the useful analog is the probability density function (PDF).
The integral of the PDF is the probability over the interval; if the continuous random variable X has PDEF f,
then

b
Prob(a<X§b) ZJ.f<x)dx

The relationship between the CDF and the PDF is

F(x) :f;fo)dz

as shown below.

= R{ng?mq\{q Usage Notes Chapter 11: Probability Distribution Functions and Inverses 291

0.3 —

fz)

=
(&
|

“
|

Frobability Density

0.0

X

Figure | 1.2 — Probability Density Function

The “DF” routines for continuous distributions in this chapter evaluate cumulative distribution functions,
just as the ones for discrete distributions.

For (absolutely) continuous distributions, the value of F(x) uniquely determines x within the support of the
distribution. The “IN” routines in this chapter compute the inverses of the distribution functions; that is,
given F(x) (called “P” for “probability”), a routine like BETIN computes x. The inverses are defined only over
the open interval (0, 1).

1.00 —

0.75 H

Probability
o
in
o
l

0.25

0.00

Figure | 1.3 — Cumulative Probability Distribution Function

= R‘Dgygmq\{eg Usage Notes Chapter 11: Probability Distribution Functions and Inverses 292

There are two routines in this chapter that deal with general continuous distribution functions. The routine
GCDF computes a distribution function using values of the density function, and the routine GCIN computes
the inverse. These two routines may be useful when the user has an estimate of a probability density.

Additional Comments

Whenever a probability close to 1.0 results from a call to a distribution function or is to be input to an inverse
function, it is often impossible to achieve good accuracy because of the nature of the representation of
numeric values. In this case, it may be better to work with the complementary distribution function (one
minus the distribution function). If the distribution is symmetric about some point (as the normal distribu-
tion, for example) or is reflective about some point (as the beta distribution, for example), the complementary
distribution function has a simple relationship with the distribution function. For example, to evaluate the
standard normal distribution at 4.0, using ANORIN directly, the result to six places is 0.999968. Only two of
those digits are really useful, however. A more useful result may be 1.000000 minus this value, which can be
obtained to six significant figures as 3.16713E-05 by evaluating ANORIN at —4.0. For the normal distribution,
the two values are related by ®(x) =1 - ® (—x), where ®(-) is the normal distribution function. Another exam-
ple is the beta distribution with parameters 2 and 10. This distribution is skewed to the right; so evaluating
BETDF at 0.7, we obtain 0.999953. A more precise result is obtained by evaluating BETDF with parameters 10
and 2 at 0.3. This yields 4.72392E-5. (In both of these examples, it is wise not to trust the last digit.)

Many of the algorithms used by routines in this chapter are discussed by Abramowitz and Stegun (1964). The
algorithms make use of various expansions and recursive relationships, and often use different methods in
different regions.

Cumulative distribution functions are defined for all real arguments; however, if the input to one of the dis-
tribution functions in this chapter is outside the range of the random variable, an error of Type 1 is issued,
and the output is set to zero or one, as appropriate. A Type 1 error is of lowest severity, a “note;” and, by
default, no printing or stopping of the program occurs. The other common errors that occur in the routines of
this chapter are Type 2, “alert,” for a function value being set to zero due to underflow; Type 3, “warning,”
for considerable loss of accuracy in the result returned; and Type 5, “terminal,” for incorrect and/ or incon-
sistent input, complete loss of accuracy in the result returned, or inability to represent the result (because of
overflow). When a Type 5 error occurs, the result is set to NaN (not a number, also used as a missing value
code, obtained by IMSL routine AMACH(6). (See the section User Errors in the Reference Material.)

= ROQEI?WQ\{EF Usage Notes Chapter 11: Probability Distribution Functions and Inverses 293

BINDF

This function evaluates the binomial cumulative distribution function.

Function Return Value

BINDF — Function value, the probability that a binomial random variable takes a value less than or equal
to K. (Output)
BINDF is the probability that K or fewer successes occur in N independent Bernoulli trials, each of
which has a PIN probability of success.

Required Arguments

K — Argument for which the binomial distribution function is to be evaluated. (Input)
N — Number of Bernoulli trials. (Input)
PIN — Probability of success on each independent trial. (Input)

FORTRAN 90 Interface

Generic: BINDF (K, N, PIN)
Specific: The specific interface names are S_BINDF and D_BINDF.

FORTRAN 77 Interface

Single: BINDF (K, N, PIN)
Double: The double precision name is DBINDF.
Description

Function BINDF evaluates the cumulative distribution function of a binomial random variable with parame-
ters n and p where n =N and p =PIN. It does this by summing probabilities of the random variable taking on
the specific values in its range. These probabilities are computed by the recursive relationship

<n+1—j)p
i(1-p)

To avoid the possibility of underflow, the probabilities are computed forward from 0, if k is not greater than n
times p, and are computed backward from 7, otherwise. The smallest positive machine number, ¢, is used as

Pr(X=j)= Pr(X=,-1)

the starting value for summing the probabilities, which are rescaled by (1 - p)"¢ if forward computation is

performed and by p"¢ if backward computation is done. For the special case of p = 0, BINDF is set to 1; and
for the case p = 1, BINDF is set to 1 if k = n and to 0 otherwise.

= ROQEI?WQ\{EF BINDF Chapter 11: Probability Distribution Functions and Inverses 294

Comments

Informational errors

Type Code

1 3

1 4
Example

Description

The input argument, K, is less than zero.

The input argument, K, is greater than the number of Bernoulli trials, N.

Suppose X is a binomial random variable with #n =5 and p = 0.95. In this example, we find the probability
that X is less than or equal to 3.

USE UMACH_INT
USE BINDF_INT

IMPLICIT NONE

INTEGER K, N, NOUT

REAL PIN, PR

CALL UMACH (2, NOUT)

K =3
N =5
PIN = 0.95
PR = BINDF (K,N, PIN)
WRITE (NOUT,99999) PR
99999 FORMAT (' The probability that X is less than or equal to 3 is ' &
, F6.4)
END
Output

The probability that X is less than or equal to 3 is 0.0226

=RogueWave

BINDF

Chapter 11: Probability Distribution Functions and Inverses

295

BINPR

This function evaluates the binomial probability density function.

Function Return Value

BINPR Function value, the probability that a binomial random variable takes a value equal to .
(Output)

Required Arguments

K — Argument for which the binomial probability function is to be evaluated. (Input)
N — Number of Bernoulli trials. (Input)
PIN — Probability of success on each independent trial. (Input)

FORTRAN 90 Interface

Generic: BINPR (K, N, PIN)
Specific: The specific interface names are S_BINPR and D_BINPR.

FORTRAN 77 Interface

Single: BINPR (K, N, PIN)
Double: The double precision name is DBINPR.
Description

The function BINPR evaluates the probability that a binomial random variable with parameters n and p
where p =PIN takes on the value k. It does this by computing probabilities of the random variable taking on
the values in its range less than (or the values greater than) k. These probabilities are computed by the recur-
sive relationship

To avoid the possibility of underflow, the probabilities are computed forward from 0, if k is not greater than n
times p, and are computed backward from 7, otherwise. The smallest positive machine number, ¢, is used as

the starting value for computing the probabilities, which are rescaled by (1 - p)"¢ if forward computation is

performed and by p"e if backward computation is done.

For the special case of p = 0, BINPR is set to 0 if k is greater than 0 and to 1 otherwise; and for the casep =1,
BINPR is set to 0 if k is less than 7 and to 1 otherwise.

= ROQEI?WQ\{EF BINPR Chapter 11: Probability Distribution Functions and Inverses 296

Probability

032 n=10,p=0.5 —
n=10,p=02
0.24
0.16 |
0.08 —
0.0 — 1 ——
0 2 6 8 10
k

Comments

Informational errors

Type Code

1 3

1 4
Example

Suppose X is a binomial random variable with N = 5 and PIN = 0.95. In this example, we find the probability

that X is equal to 3.

USE UMACH_INT
USE BINPR_INT
IMPLICIT NONE
INTEGER K, N,

Figure | 1.4 — Binomial Probability Function

Description

The input argument, K, is less than zero.

The input argument, K, is greater than the number of Bernoulli trials, N.

NOUT

REAL PIN, PR

CALL UMACH (2, NOUT)

K =3
N =5
PIN = 0.95

PR = BINPR (K, N, PIN)
WRITE (NOUT,99999) PR
99999 FORMAT (' The probability that X is equal to 3 is ', F6.4)

END

=RogueWave

BINPR

Chapter 11: Probability Distribution Functions and Inverses

297

Output

The probability that X is equal to 3 is 0.0214

=
= Rogygmq\{e; BINPR Chapter 11: Probability Distribution Functions and Inverses 298

GEODF

This function evaluates the discrete geometric cumulative probability distribution function.

Function Return Value

GEODF — Function value, the probability that a geometric random variable takes a value less than or
equal to IX. (Output)

Required Arguments

IX — Argument for which the geometric cumulative distribution function is to be evaluated. (Input)

PIN — Probability parameter for each independent trial (the probability of success for each independent
trial). PIN must be in the open interval (0, 1). (Input)

FORTRAN 90 Interface

Generic: GEODF (IX, PIN)
Specific: The specific interface names are S_GEODF and D_GEODF.

FORTRAN 77 Interface

Single: GEODF (IX, PIN)
Double: The double precision name is DGEODF.
Description

The function GEODF evaluates the discrete geometric cumulative probability distribution function with
parameter p = PIN, defined

[x]
F(XIP)Zqu’, g=1-p, 0<p<l
i=0

The return value is the probability that up to x trials would be observed before observing a success.

Example

In this example, we evaluate the probability function at IX = 3, PIN = 0.25.

USE UMACH_INT
USE GEODF_INT
IMPLICIT NONE
INTEGER NOUT, IX

= Rogygmﬂn\{ﬂj GEODF Chapter 11: Probability Distribution Functions and Inverses

299

REAL PIN, PR
CALL UMACH(2, NOUT)

IX =3

PIN = 0.25e0

PR = GEODF (IX, PIN)

WRITE (NOUT, 99999) IX, PIN, PR

99999 FORMAT (' GEODF(', I2, ', ', F4.2, ') = ', F10.6)
END

Output

GEODF(3, 0.25) = 0.683594

= Rogygmg\{q GEODF Chapter 11: Probability Distribution Functions and Inverses 300

GEOIN

This function evaluates the inverse of the geometric cumulative probability distribution function.

Function Return Value

GEOIN — Integer function value. The probability that a geometric random variable takes a value less than
or equal to the returned value is the input probability, P. (Output)

Required Arguments

P — Probability for which the inverse of the discrete geometric cumulative distribution function is to be
evaluated. P must be in the open interval (0, 1). (Input)

PIN — Probability parameter for each independent trial (the probability of success for each independent
trial). PIN must be in the open interval (0, 1). (Input)

FORTRAN 90 Interface

Generic: GEOIN (P, PIN)
Specific: The specific interface names are S_GEOIN and D_GEOIN.

FORTRAN 77 Interface

Single: GEOIN (P, PIN)
Double: The double precision name is DGEOIN.
Description

The function GEOIN evaluates the inverse distribution function of a geometric random variable with param-
eter PIN. The inverse of the CDF is defined as the smallest integer x such that the geometric CDF is not less
than a given value P,0 < P < 1.

Example
In this example, we evaluate the inverse probability function at PIN = 0.25, P = 0.6835.

USE UMACH_INT

USE GEOIN_INT

IMPLICIT NONE

INTEGER NOUT, IX

REAL P, PIN

CALL UMACH(2, NOUT)

PIN = 0.25

P = 0.6835

IX = GEOIN(P, PIN)

WRITE (NOUT, 99999) P, PIN, IX
99999 FORMAT (' GEOIN(', F4.2, ', ', F6.4 ') = ', I2)

END

= Rogygmﬂn\{q GEOIN Chapter 11: Probability Distribution Functions and Inverses 301

Output

GEOIN(0.6835, 0.25) = 3

=
= Rogygmq\{q GEOIN Chapter 11: Probability Distribution Functions and Inverses 302

GEOPR

This function evaluates the discrete geometric probability density function.

Function Return Value

GEOPR — Function value, the probability that a random variable from a geometric distribution having
parameter PIN will be equal to IX. (Output)

Required Arguments

IX — Argument for which the discrete geometric probability density function is to be evaluated. IX must
be greater than or equal to 0. (Input)

PIN — Probability parameter of the geometric probability function (the probability of success for each
independent trial). PIN must be in the open interval (0, 1). (Input)

FORTRAN 90 Interface

Generic: GEOPR (IX, PIN)
Specific: The specific interface names are S_GEOPR and D_GEOPR.

FORTRAN 77 Interface

Single: GEOPR (IX, PIN)
Double: The double precision name is DGEOPR.
Description

The function GEOPR evaluates the discrete geometric probability density function, defined

f(xIp)=pg", q=1-p, 0<p<l, x=0,1,... HUGE(l), where p = PIN.

Example
In this example, we evaluate the probability density function at IX =3, PIN = 0.25.

USE UMACH_INT

USE GEOPR_INT

IMPLICIT NONE

INTEGER NOUT, IX

REAL PIN, PR

CALL UMACH (2, NOUT)

IX = 3

PIN = 0.25e0

PR = GEOPR(IX, PIN)

WRITE (NOUT, 99999) IX, PIN, PR

= ROQEI?WH\{E: GEOPR Chapter 11: Probability Distribution Functions and Inverses

303

99999 FORMAT (' GEOPR(', I2, ', ', F4.2, ') = ', F6.4)
END

Output

GEOPR(3, 0.25) = 0.1055

= R‘Ogy?mq\{e; GEOPR Chapter 11: Probability Distribution Functions and Inverses 304

HYPDF

This function evaluates the hypergeometric cumulative distribution function.

Function Return Value

HYPDF — Function value, the probability that a hypergeometric random variable takes a value less than
or equal to K. (Output)
HYPDF is the probability that K or fewer defectives occur in a sample of size N drawn from a lot of size
L that contains M defectives.
See Comment 1.

Required Arguments
K — Argument for which the hypergeometric cumulative distribution function is to be evaluated. (Input)

N — Sample size. (Input)
N must be greater than zero and greater than or equal to K.

M — Number of defectives in the lot. (Input)

L — Lot size. (Input)
L must be greater than or equal to N and M.

FORTRAN 90 Interface

Generic: HYPDF (K, N, M, L)
Specific: The specific interface names are S_HYPDF and D_HYPDF.

FORTRAN 77 Interface

Single: HYPDF (K, N, M, L)
Double: The double precision name is DHYPDF.
Description

The function HYPDF evaluates the cumulative distribution function of a hypergeometric random variable
with parameters 7, [, and m. The hypergeometric random variable X can be thought of as the number of items
of a given type in a random sample of size n that is drawn without replacement from a population of size
containing m items of this type. The probability function is

Pr(X=j)=<Zq><in;>
()

n

for j=i,i+1,i+2, ... min(n,m)

where i = max(0, n — I + m).

= Rogygmﬂn\{ﬂj HYPDF Chapter 11: Probability Distribution Functions and Inverses

305

If k is greater than or equal to 7 and less than or equal to min(n, m), HYPDF sums the terms in this expression
for j going from i up to k. Otherwise, HYPDF returns 0 or 1, as appropriate. So, as to avoid rounding in the
accumulation, HYPDF performs the summation differently depending on whether or not k is greater than the
mode of the distribution, which is the greatest integer less than or equal to (m + 1)(n + 1)/(+ 2).

Comments
1. If the generic version of this function is used, the immediate result must be stored in a variable before
use in an expression. For example:
X = HYPDF (K, N, M, L)
Y = SQRT(X)
must be used rather than
Y = SQRT(HYPDF(K, N, M, L))

If this is too much of a restriction on the programmer, then the specific name can be used without this
restriction.

2. Informational errors

Type Code Description

1 5 The input argument, K, is less than zero.

1 6 The input argument, K, is greater than the sample size.
Example

Suppose X is a hypergeometric random variable with N = 100, L. = 1000, and M = 70. In this example, we eval-
uate the distribution function at 7.

USE UMACH_INT

USE HYPDF_INT

IMPLICIT NONE

INTEGER K, L, M, N, NOUT
REAL DF

CALL UMACH (2, NOUT)

K =7
N = 100
L = 1000
M =70

DF = HYPDF (K,N,M,L)
WRITE (NOUT,99999) DF

99999 FORMAT (' The probability that X is less than or equal to 7 is ' &
, F6.4)
END
Output

The probability that X is less than or equal to 7 is 0.5995

= Rogygmq\{q HYPDF Chapter 11: Probability Distribution Functions and Inverses 306

HYPPR

This function evaluates the hypergeometric probability density function.

Function Return Value

HYPPR — Function value, the probability that a hypergeometric random variable takes a value equal to K.
(Output)
HYPPR is the probability that exactly K defectives occur in a sample of size N drawn from a lot of size L
that contains M defectives.
See Comment 1.

Required Arguments
K — Argument for which the hypergeometric probability function is to be evaluated. (Input)

N — Sample size. (Input)
N must be greater than zero and greater than or equal to K.

M — Number of defectives in the lot. (Input)

L — Lot size. (Input)
L must be greater than or equal to N and M.

FORTRAN 90 Interface
Generic: HYPPR (K, N, M, L)
Specific: The specific interface names are S_HYPPR and D_HYPPR.

FORTRAN 77 Interface

Single: HYPPR (K, N, M, L)
Double: The double precision name is DHYPPR.
Description

The function HYPPR evaluates the probability density function of a hypergeometric random variable with
parameters 7, [, and m. The hypergeometric random variable X can be thought of as the number of items of a
given type in a random sample of size n that is drawn without replacement from a population of size [con-
taining m items of this type. The probability density function is

(%)
(L)

where i = max(0, n — I + m). HYPPR evaluates the expression using log gamma functions.

Pr(X =k) = fork=i,i+1,i+2, ... min(n,m)

= Rogygmﬂn\{q HYPPR Chapter 11: Probability Distribution Functions and Inverses 307

Comments

1. If the generic version of this function is used, the immediate result must be stored in a variable before
use in an expression. For example:

X = HYPPR(K, N, M, L)
Y = SQRT(X)
must be used rather than
Y = SQRT(HYPPR(K, N, M, L))

If this is too much of a restriction on the programmer, then the specific name can be used without this
restriction.

2. Informational errors

Type Code Description

1 5 The input argument, K, is less than zero.

1 6 The input argument, K, is greater than the sample size.
Example

Suppose X is a hypergeometric random variable with N = 100, L = 1000, and M = 70. In this example, we eval-
uate the probability function at 7.

USE UMACH_INT
USE HYPPR_INT

IMPLICIT NONE
INTEGER K, L, M, N, NOUT
REAL PR

CALL UMACH (2, NOUT)

K =7
N = 100
L = 1000
M =70

PR = HYPPR(K,N,M, L)
WRITE (NOUT,99999) PR

99999 FORMAT (' The probability that X is equal to 7 is ', F6.4)
END

Output

The probability that X is equal to 7 is 0.1628

= ROQEI?WH\{E: HYPPR Chapter 11: Probability Distribution Functions and Inverses 308

POIDF

This function evaluates the Poisson cumulative distribution function.

Function Return Value

POIDF — Function value, the probability that a Poisson random variable takes a value less than or equal
to K. (Output)

Required Arguments
K — Argument for which the Poisson cumulative distribution function is to be evaluated. (Input)

THETA — Mean of the Poisson distribution. (Input)
THETA must be positive.

FORTRAN 90 Interface

Generic: POIDF (K, THETA)
Specific: The specific interface names are S_POIDF and D_POIDF.

FORTRAN 77 Interface

Single: POIDF (K, THETA)
Double: The double precision name is DPOIDF.
Description

The function POIDF evaluates the cumulative distribution function of a Poisson random variable with
parameter THETA. THETA, which is the mean of the Poisson random variable, must be positive. The probabil-
ity function (with © = THETA) is

f(x) =e90%/x1, forx=0,1,2,...

The individual terms are calculated from the tails of the distribution to the mode of the distribution and
summed. POIDF uses the recursive relationship

flx+1)=f(x)8/(x + 1), forx=0,1,2,...k-1,
with (0) = e .
Comments
Informational error
Type Code Description
1 1 The input argument, ¥, is less than zero.

= Rogygmﬂn\{q POIDF Chapter 11: Probability Distribution Functions and Inverses 309

Example

Suppose X is a Poisson random variable with 8 = 10. In this example, we evaluate the distribution
function at 7.

USE UMACH_INT

USE POIDF_INT
IMPLICIT NONE
INTEGER K, NOUT
REAL DF, THETA

CALL UMACH (2, NOUT)

K =7
THETA = 10.0
DF = POIDF (K, THETA)
WRITE (NOUT,99999) DF
99999 FORMAT (' The probability that X is less than or equal to ', &
'7 is ', F6.4)
END
Output

The probability that X is less than or equal to 7 is 0.2202

= R{nggmq\{q POIDF Chapter 11: Probability Distribution Functions and Inverses 310

POIPR

This function evaluates the Poisson probability density function.

Function Return Value

POIPR — Function value, the probability that a Poisson random variable takes a value equal to .
(Output)

Required Arguments

K — Argument for which the Poisson probability density function is to be evaluated. (Input)

THETA — Mean of the Poisson distribution. (Input)
THETA must be positive.

FORTRAN 90 Interface

Generic: POIPR (K, THETA)
Specific: The specific interface names are S_POIPR and D_POIPR.

FORTRAN 77 Interface

Single: POIPR (K, THETA)
Double: The double precision name is DPOIPR.
Description

The function POIPR evaluates the probability density function of a Poisson random variable with parameter
THETA. THETA, which is the mean of the Poisson random variable, must be positive. The probability function
(with © = THETA) is

f(x) =e 90k /K1, fork=0,1,2,...

POIPR evaluates this function directly, taking logarithms and using the log gamma function.

= Rogygmq\{q POIPR Chapter 11: Probability Distribution Functions and Inverses 311

0.375

=]
(]
|
@ T
L
o=

Probability
=
0
]
on
|

=
w
1

0.075

0.0 -4t - | |I L

Figure 1 1.5 — Poisson Probability Function

Comments
Informational error

Type Code Description

1 1 The input argument, K, is less than zero.

Example
Suppose X is a Poisson random variable with 8 = 10. In this example, we evaluate the probability function at
7.
USE UMACH_INT
USE POIPR_INT
IMPLICIT NONE
INTEGER K, NOUT
REAL PR, THETA
1
CALL UMACH (2, NOUT)
K =7
THETA = 10.0
PR = POIPR(K, THETA)
WRITE (NOUT,99999) PR
99999 FORMAT (' The probability that X is equal to 7 is ', F6.4)
END

= R{ng?mq\{q POIPR Chapter 11: Probability Distribution Functions and Inverses 312

Output

The probability that X is equal to 7 is 0.0901

=
= Rogygmq\{e; POIPR Chapter 11: Probability Distribution Functions and Inverses 313

UNDDF

This function evaluates the discrete uniform cumulative distribution function.

Function Return Value

UNDDF — Function value, the probability that a uniform random variable takes a value less than or equal
to IX. (Output)

Required Arguments

IX — Argument for which the discrete uniform cumulative distribution function is to be evaluated.
(Input)
N — Scale parameter. N must be greater than 0. (Input)

FORTRAN 90 Interface

Generic: UNDDF (IX, N)
Specific: The specific interface names are S_UNDDF and D_UNDDEF.

FORTRAN 77 Interface

Single: UNDDF (IX, N)
Double: The double precision name is DUNDDF.
Description

The notation below uses the floor and ceiling function notation, | .| and|.].

The function UNDDF evaluates the discrete uniform cumulative probability distribution function with scale
parameter N, defined

F<x|N>=%, 1<x<N

Example

In this example, we evaluate the probability function at IX =3, N =5.

USE UMACH_INT

USE UNDDF_INT
IMPLICIT NONE
INTEGER NOUT, IX, N
REAL PR

CALL UMACH(2, NOUT)
IX =3

N =5

PR = UNDDF (IX, N)

= Rogygmq\{q UNDDF Chapter 11: Probability Distribution Functions and Inverses 314

WRITE (NOUT, 99999) IX, N, PR

99999 FORMAT (' UNDDF(', I2, ', ', I2, ') = ', F6.4)
END

Output

UNDDF(3, 5) = 0.6000

= R‘Ogy?mq\{es UNDDF Chapter 11: Probability Distribution Functions and Inverses 315

UNDIN

This function evaluates the inverse of the discrete uniform cumulative distribution function.

Function Return Value

UNDIN — Integer function value. The probability that a uniform random variable takes a value less than

or equal to the returned value is the input probability, P. (Output)

Required Arguments

P — Probability for which the inverse of the discrete uniform cumulative distribution function is to be
evaluated. P must be nonnegative and less than or equal to 1.0. (Input)

N — Scale parameter. N must be greater than 0. (Input)

FORTRAN 90 Interface

Generic: UNDIN (P, N)

Specific: The specific interface names are S_UNDIN and D_UNDIN.

FORTRAN 77 Interface

Single: UNDIN (P, N)
Double: The double precision name is DUNDIN.
Description

The notation below uses the floor and ceiling function notation, | .| and|.].

The function UNDIN evaluates the inverse distribution function of a discrete uniform random variable with

scale parameter N, defined

Example

In this example, we evaluate the inverse probability function at P = 0.6, N = 5.

USE UMACH_INT

USE UNDIN_INT
IMPLICIT NONE
INTEGER NOUT, N, IX
REAL P

CALL UMACH (2, NOUT)
P = 0.60

N =5

IX = UNDIN(P, N)

WRITE (NOUT, 99999) IX
= Rogygmq\{q UNDIN Chapter 11: Probability Distribution Functions and Inverses 316

99999 FORMAT (' UNDIN(', F4.2, ', ', I2 ') = ', I2)
END

Output

UNDIN(0.60, 5) = 3

= Rogygmq\{e; UNDIN Chapter 11: Probability Distribution Functions and Inverses 317

UNDPR

This function evaluates the discrete uniform probability density function.

Function Return Value

UNDPR — Function value, the probability that a random variable from a uniform distribution having
scale parameter N will be equal to IX. (Output)

Required Arguments
IX — Argument for which the discrete uniform probability density function is to be evaluated. (Input)
N — Scale parameter. N must be greater than 0. (Input)

FORTRAN 90 Interface

Generic: UNDPR (IX, N)
Specific: The specific interface names are S_UNDPR and D_UNDPR.

FORTRAN 77 Interface

Single: UNDPR (IX, N)
Double: The double precision name is DUNDPR.
Description

The discrete uniform PDF is defined for positive integers x in the range 1,...N, N > 0. It has the value

y=f(x|N>=%, 1SXSN,andy=O, x > N. Allowing values of x resultingin y =0, x> N is

a convenience.

Example

In this example, we evaluate the discrete uniform probability density function at IX =3, N =5.
USE UMACH_INT
USE UNDPR_INT
IMPLICIT NONE
INTEGER NOUT, IX, N
REAL PR
CALL UMACH(2, NOUT)
IX = 3
N =5
PR = UNDPR(IX, N)
WRITE (NOUT, 99999) IX, N, PR
99999 FORMAT (' UNDPR(', I2, ', ', I2, ') = ', F6.4)
END

= ROQEI?WH\{E: UNDPR Chapter 11: Probability Distribution Functions and Inverses

318

Output

UNDPR(3, 5) = 0.2000

=
= Rogygmq\{q UNDPR Chapter 11: Probability Distribution Functions and Inverses 319

AKS1DF

This function evaluates the cumulative distribution function of the one-sided Kolmogorov-Smirnov good-

ness of fit D* or D test statistic based on continuous data for one sample.

Function Return Value
AKS1DF — The probability of a smaller D. (Output)

Required Arguments
NOBS — The total number of observations in the sample. (Input)

D — The D* or D" test statistic. (Input)
D is the maximum positive difference of the empirical cumulative distribution function (CDF) minus
the hypothetical CDF or the maximum positive difference of the hypothetical CDF minus the empiri-
cal CDFE.

FORTRAN 90 Interface

Generic: AKS1DF (NOBS, D)
Specific: The specific interface names are S_AKS1DF and D_AKS1DF.

FORTRAN 77 Interface

Single: AKS1DF (NOBS, D)
Double: The double precision name is DKS1DF.
Description

Routine AKS1DF computes the cumulative distribution function (CDF) for the one-sided

Kolmogorov-Smirnov one-sample D" or D" statistic when the theoretical CDF is strictly continuous. Let F(x)
denote the theoretical distribution function, and let S,,(x) denote the empirical distribution function obtained

from a sample of size NOBS. Then, the D statistic is computed as
D" = sup[F(x) =S, (x)]
X

while the one-sided D" statistic is computed as

D = sup[S,,,(x) —F(x)]

= Rogygmﬂn\{q AKS1DF Chapter 11: Probability Distribution Functions and Inverses 320

Exact probabilities are computed according to a method given by Conover (1980, page 350) for sample sizes
of 80 or less. For sample sizes greater than 80, Smirnov’s asymptotic result is used, that is, the value of the

CDFis taken as | — e_z"dz, where d is D* or D™ (Kendall and Stuart, 1979, page 482). This asymptotic expres-
sion is conservative (the value returned by AKS1DF is smaller than the exact value, when the sample size
exceeds 80).

Comments
1. Workspace may be explicitly provided, if desired, by use of AK21DF/DK21DF. The reference is:
AK2DF (NOBS, D, WK)
The additional argument is:
WK — Work vector of length 3 * NOBS + 3 if NOBS < 80. WK is not used if NOBS is greater than 80.

2. Informational errors

Type Code Description

1 2 Since the D test statistic is less than zero, the distribution function is zero at D.

1 3 Since the D test statistic is greater than one, the distribution function is one at
D.

3. IfNOBS < 80, then exact one-sided probabilities are computed. In this case, on the order of NOBS? oper-
ations are required. For NOBS > 80, approximate one-sided probabilities are computed. These
approximate probabilities require very few computations.

4. An approximate two-sided probability for the D = max (D*, D") statistic can be computed as twice the
AKS1DF probability for D(minus one, if the probability from AKS1DF is greater than 0.5).

Programming Notes

Routine AKS1DF requires on the order of NOBS? operations to compute the exact probabilities, where an
operation consists of taking ten or so logarithms. Because so much computation is occurring within each
“operation,” AKS1DF is much slower than its two-sample counterpart, function AKS2DF.

Example

In this example, the exact one-sided probabilities for the tabled values of D* or D", given, for example, in
Conover (1980, page 462), are computed. Tabled values at the 10% level of significance are used as input to
AKS1DF for sample sizes of 5 to 50 in increments of 5 (the last two tabled values are obtained using the
asymptotic critical values of

1.07/VNOBS

The resulting probabilities should all be close to 0.90.

USE UMACH_INT
USE AKS1DF_INT
IMPLICIT NONE

= ROQEI?WQ\{EF AKS1DF Chapter 11: Probability Distribution Functions and Inverses 321

INTEGER I, NOBS, NOUT
REAL D(10)

DATA D/0.447, 0.323, 0.266, 0.232, 0.208, 0.190, 0.177, 0.165, &
0.160, 0.151/

1

CALL UMACH (2, NOUT)
!

DO 10 1I=1, 10

NOBS = 5*I
1
WRITE (NOUT,99999) D(I), NOBS, AKS1DF(NOBS,D(I))
1
99999 FORMAT (' One-sided Probability for D = ', F8.3, with NOBS
, '= ', I2, ' is ', F8.4)
10 CONTINUE

END
Output
One-sided Probability for D = 0.447 with NOBS = 5 is 0.9000
One-sided Probability for D = 0.323 with NOBS = 10 is 0.9006
One-sided Probability for D = 0.266 with NOBS = 15 is 0.9002
One-sided Probability for D = 0.232 with NOBS = 20 is 0.9009
One-sided Probability for D = 0.208 with NOBS = 25 is 0.9002
One-sided Probability for D = 0.190 with NOBS = 30 is 0.8992
One-sided Probability for D = 0.177 with NOBS = 35 is 0.9011
One-sided Probability for D = 0.165 with NOBS = 40 is 0.8987
One-sided Probability for D = 0.160 with NOBS = 45 is 0.9105
One-sided Probability for D = 0.151 with NOBS = 50 is 0.9077

= ROQ}J?WH\{E: AKS1DF Chapter 11: Probability Distribution Functions and Inverses 322

AKS2DF

This function evaluates the cumulative distribution function of the Kolmogorov-Smirnov goodness of fit D
test statistic based on continuous data for two samples.

Function Return Value
AKS2DF — The probability of a smaller D. (Output)

Required Arguments

NOBSX — The total number of observations in the first sample. (Input)
NOBSY — The total number of observations in the second sample. (Input)

D — The D test statistic. (Input)
D is the maximum absolute difference between empirical cumulative distribution functions (CDFs) of
the two samples.

FORTRAN 90 Interface

Generic: AKS2DF (NOBSX, NOBSY, D)
Specific: The specific interface names are S_AKS2DF and D_AKS2DF.

FORTRAN 77 Interface

Single: AKS2DF (NOBSX, NOBSY, D)
Double: The double precision name is DKS2DF.
Description

Function AKS2DF computes the cumulative distribution function (CDF) for the two-sided
Kolmogorov-Smirnov two-sample D statistic when the theoretical CDF is strictly continuous. Exact probabil-
ities are computed according to a method given by Kim and Jennrich (1973). Approximate asymptotic
probabilities are computed according to methods also given in this reference.

Let F,,(x) and G,,(x) denote the empirical distribution functions for the two samples, based on #n = NOBSX and
m = NOBSY observations. Then, the D statistic is computed as

D= sup|F,(x)—G,(x) |

Comments
1. Workspace may be explicitly provided, if desired, by use of AK22DF/DK22DF. The reference is:
AK22DF (NOBSX, NOBSY, D, WK)
The additional argument is:
WK — Work vector of length max(NOBSX, NOBSY) + 1.

= Rogygmﬂn\{q AKS2DF Chapter 11: Probability Distribution Functions and Inverses 323

2. Informational errors

Type Code Description
1 2

zero at D.
1 3

one at D.

Programming Notes

Function AKS2DF requires on the order of NOBSX

Since the D test statistic is less than zero, then the distribution function is

Since the D test statistic is greater than one, then the distribution function is

* NOBSY operations to compute the exact probabilities,

where an operation consists of an addition and a multiplication. For NOBSX * NOBSY less than 10000, the

exact probability is computed. If this is not the case, then the Smirnov approximation discussed by Kim and

Jennrich (1973) is used if the minimum of NOBSX and NOBSY is greater than ten percent of the maximum of
NOBSX and NOBSY, or if the minimum is greater than 80. Otherwise, the Kolmogorov approximation dis-

cussed by Kim and Jennrich (1973) is used.

Example

Function AKS2DF is used to compute the probability of a smaller D statistic for a variety of sample sizes

using values close to the 0.95 probability value.

USE UMACH_INT
USE AKS2DF_INT

IMPLICIT NONE

INTEGER I, NOBSX(10), NOBSY(10), NOUT

REAL D(10)
1

DATA NOBSX/5, 20, 40, 70, 110, 200, 200, 200, 100, 100/

DATA NOBSY/10, 10, 10, 10, 10, 20, 40, 60, 80, 100/

DATA D/0.7, 0.55, 0.475, 0.4429, 0.4029, 0.2861, 0.2113, 0.1796, &

0.18, 0.18/

I

CALL UMACH (2, NOUT)
!

DO 10 T=1, 10
1

WRITE (NOUT,99999) D(I), NOBSX(I), NOBSY(I), &
AKS2DF (NOBSX (I) ,NOBSY(I),D(I))
1
99999 FORMAT (' Probability for D = ', F5.3, ' with NOBSX = ', I3, &
" and NOBSY = ', I3, ' is ', F9.6, '.')
10 CONTINUE

END
Output
Probability for D = 0.700 with NOBSX = 5 and NOBSY = 10 is 0.980686.
Probability for D = 0.550 with NOBSX = 20 and NOBSY = 10 is 0.987553.

= Roguewvuve AKS2DF

Chapter 11: Probability Distribution Functions and Inverses

324

Probability for D = 0.475 with NOBSX = 40 and NOBSY = 10 is 0.972423.
Probability for D = 0.443 with NOBSX = 70 and NOBSY = 10 is 0.961646.
Probability for D = 0.403 with NOBSX = 110 and NOBSY = 10 is 0.928667.
Probability for D = 0.286 with NOBSX = 200 and NOBSY = 20 is 0.921126.
Probability for D = 0.211 with NOBSX = 200 and NOBSY = 40 is 0.917110.
Probability for D = 0.180 with NOBSX = 200 and NOBSY = 60 is 0.914520.
Probability for D = 0.180 with NOBSX = 100 and NOBSY = 80 is 0.908185.
Probability for D = 0.180 with NOBSX = 100 and NOBSY = 100 is 0.946098.
= Rogygmq\{q AKS2DF Chapter 11: Probability Distribution Functions and Inverses 325

ALNDF

This function evaluates the lognormal cumulative probability distribution function.

Function Return Value

ALNDF — Function value, the probability that a standard lognormal random variable takes a value less
than or equal to X. (Output)

Required Arguments

X — Argument for which the lognormal cumulative distribution function is to be evaluated. (Input)
AMU — Location parameter of the lognormal cumulative distribution function. (Input)

SIGMA — Shape parameter of the lognormal cumulative distribution function. SIGMA must be greater
than 0. (Input)

FORTRAN 90 Interface

Generic: ALNDF (X, AMU, SIGMA)
Specific: The specific interface names are S_ALNDF and D_ALNDF.

FORTRAN 77 Interface

Single: ALNDF (X, AMU, STGMA)
Double: The double precision name is DLNDF.
Description

The function ALNDF evaluates the lognormal cumulative probability distribution function, defined as

F(x|uo)
(o)

1 xl
- o 271'(";76

dt
()
= ﬁ l_oj(x>e V2o du
Example
In this example, we evaluate the probability distribution function at X = 0.7137, AMU = 0.0, SIGMA = 0.5.

USE UMACH_INT
USE ALNDF_INT

= Rogygmﬂn\{ﬂj ALNDF Chapter 11: Probability Distribution Functions and Inverses

326

IMPLICIT NONE

INTEGER NOUT

REAL X, AMU, SIGMA, PR

CALL UMACH(2, NOUT)

X = .7137

AMU = 0.0

SIGMA = 0.5

PR = ALNDF (X, AMU, SIGMA)

WRITE (NOUT, 99999) X, AMU, SIGMA, PR
99999 FORMAT (' ALNDF(', F¥F6.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)

END

Output

ALNDF(0.71, 0.00, 0.50) = 0.2500

= R‘Dgygmq\{eg ALNDF Chapter 11: Probability Distribution Functions and Inverses 327

ALNIN

This function evaluates the inverse of the lognormal cumulative probability distribution function.

Function Return Value

ALNIN — Function value, the probability that a lognormal random variable takes a value less than or
equal to the returned value is the input probability P. (Output)

Required Arguments
P — Probability for which the inverse of the lognormal distribution function is to be evaluated. (Input)
AMU — Location parameter of the lognormal cumulative distribution function. (Input)

SIGMA — Shape parameter of the lognormal cumulative distribution function. SIGMA must be greater
than 0. (Input)

FORTRAN 90 Interface

Generic: ALNIN (P, AMU, SIGMA)
Specific: The specific interface names are S_ALNIN and D_ALNIN.

FORTRAN 77 Interface

Single: ALNIN (P, AMU, SIGMA)
Double: The double precision name is DLNIN.
Description

The function ALNIN evaluates the inverse distribution function of a lognormal random variable with location
parameter AMU and scale parameter SIGMA. The probability that a standard lognormal random variable takes
a value less than or equal to the returned value is P.

Example

In this example, we evaluate the inverse probability function at P = 0.25, AMU = 0.0, SIGMA = 0.5.

USE UMACH_INT
USE ALNIN_INT

IMPLICIT NONE

INTEGER NOUT

REAL X, AMU, SIGMA, P
CALL UMACH (2, NOUT)

P = .25

AMU = 0.0

SIGMA = 0.5

X = ALNIN(P, AMU, SIGMA)
WRITE (NOUT, 99999) P, AMU, SIGMA, X

= Rogygmﬂn\{q ALNIN Chapter 11: Probability Distribution Functions and Inverses 328

99999 FORMAT (' ALNIN(', F6.3, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END

Output

ALNIN(0.250, 0.00, 0.50) = 0.7137

= R‘Ogy?mq\{es ALNIN Chapter 11: Probability Distribution Functions and Inverses 329

ALNPR

This function evaluates the lognormal probability density function.

Function Return Value
ALNPR — Function value, the value of the probability density function. (Output)

Required Arguments

X — Argument for which the lognormal probability density function is to be evaluated. (Input)
AMU — Location parameter of the lognormal probability function. (Input)
SIGMA — Shape parameter of the lognormal probability function. SIGMA must be greater than 0. (Input)

FORTRAN 90 Interface

Generic: ALNPR (X, AMU, SIGMA)
Specific: The specific interface names are S_ALNPR and D_ALNPR.

FORTRAN 77 Interface

Single: ALNPR (X, AMU, STGMA)
Double: The double precision name is DLNPR.
Description

The function ALNPR evaluates the lognormal probability density function, defined as

o)

1
USIE

Example
In this example, we evaluate the probability function at X = 1.0, AMU = 0.0, SIGMA = 0.5.

USE UMACH_INT

USE ALNPR_INT

IMPLICIT NONE

INTEGER NOUT

REAL X, AMU, SIGMA, PR
CALL UMACH(2, NOUT)

X =1.0

AMU =
SIGMA

.0
0.5

I o

= Rogygmq\{q ALNPR Chapter 11: Probability Distribution Functions and Inverses 330

PR = ALNPR(X, AMU, SIGMA)
WRITE (NOUT, 99999) X, AMU, SIGMA, PR

99999 FORMAT (' ALNPR(', F6.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END

Output

ALNPR(1.00, 0.00, 0.50) = 0.7979

= Rogygmg\{q ALNPR Chapter 11: Probability Distribution Functions and Inverses 331

ANORDF

This function evaluates the standard normal (Gaussian) cumulative distribution function.

Function Return Value

ANORDF — Function value, the probability that a normal random variable takes a value less than or
equal to X. (Output)

Required Arguments

X — Argument for which the normal cumulative distribution function is to be evaluated. (Input)

FORTRAN 90 Interface

Generic: ANORDF (X)
Specific: The specific interface names are S_ANORDF and D_ANORDF.

FORTRAN 77 Interface

Single: ANORDF (X)
Double: The double precision name is DNORDF.
Description

Function ANORDF evaluates the cumulative distribution function, @, of a standard normal (Gaussian) ran-
dom variable, that is,

X
2
d(x) = ﬁj_we_t 1t

The value of the distribution function at the point x is the probability that the random variable takes a value
less than or equal to x.

The standard normal distribution (for which ANORDF is the distribution function) has mean of 0 and variance

of 1. The probability that a normal random variable with mean and variance G is less than y is given by
ANORDF evaluated at (y - W)/0.

®(x) is evaluated by use of the complementary error function, erfc. (See ERFC, IMSL MATH/LIBRARY Spe-
cial Functions). The relationship is:

d(x) = erfe(—x/v2.0) /2

= Rogygmﬂn\{q ANORDF Chapter 11: Probability Distribution Functions and Inverses 332

ANORDF(z)
1

Figure 11.6 — Standard Normal Distribution Function

Example

Suppose X is a normal random variable with mean 100 and variance 225. In this example, we find the proba-
bility that X is less than 90, and the probability that X is between 105 and 110.

USE UMACH_INT
USE ANORDF_INT

IMPLICIT NONE
INTEGER NOUT
REAL P, X1, X2

CALL UMACH (2, NOUT)

X1 = (90.0-100.0)/15.0
P = ANORDF (X1)
WRITE (NOUT,99998) P
99998 FORMAT (' The probability that X is less than 90 is ', F6.4)
X1 = (105.0-100.0)/15.0
X2 = (110.0-100.0)/15.0
P = ANORDF (X2) - ANORDF (X1)
WRITE (NOUT,99999) P
99999 FORMAT (' The probability that X is between 105 and 110 is ', &
F6.4)
END
Output

The probability that X is less than 90 is 0.2525
The probability that X is between 105 and 110 is 0.1169

= R{ng?mq\{q ANORDF Chapter 11: Probability Distribution Functions and Inverses 333

ANORIN

This function evaluates the inverse of the standard normal (Gaussian) cumulative distribution function.

Function Return Value

ANORIN — Function value. (Output)
The probability that a standard normal random variable takes a value less than or equal to ANORIN is
p.

Required Arguments

P — Probability for which the inverse of the normal cumulative distribution function is to be evaluated.
(Input)
P must be in the open interval (0.0, 1.0).

FORTRAN 90 Interface

Generic: ANORIN (P)
Specific: The specific interface names are S_ANORIN and D_ANORIN.

FORTRAN 77 Interface

Single: ANORIN (P)
Double: The double precision name is DNORIN.
Description

Function ANORIN evaluates the inverse of the cumulative distribution function, @, of a standard normal
(Gaussian) random variable, that is, ANORIN(P) = @ -1 (p), where

Y2
D(x) = ﬁ‘[we_t "t

The value of the distribution function at the point x is the probability that the random variable takes a value
less than or equal to x. The standard normal distribution has a mean of 0 and a variance of 1.

Example

In this example, we compute the point such that the probability is 0.9 that a standard normal random vari-
able is less than or equal to this point.

USE UMACH_INT

USE ANORIN_INT
IMPLICIT NONE
INTEGER NOUT
REAL P, X

= Rogygmﬂn\{q ANORIN Chapter 11: Probability Distribution Functions and Inverses 334

CALL UMACH (2, NOUT)
P =20.9
X = ANORIN (P)
WRITE (NOUT,99999) X
99999 FORMAT (' The 90th percentile of a standard normal is ', F6.4)
END

Output

The 90th percentile of a standard normal is 1.2816

= Rogygmg\{q ANORIN Chapter 11: Probability Distribution Functions and Inverses 335

ANORPR

This function evaluates the standard normal probability density function.

Function Return Value
ANORPR — Function value, the value of the probability density function. (Output)

Required Arguments

X — Argument for which the normal probability density function is to be evaluated. (Input)

FORTRAN 90 Interface

Generic: ANORPR (X)
Specific: The specific interface names are S_NORPR and D_NORPR.

FORTRAN 77 Interface

Single: ANORPR (X)
Double: The double precision name is DNORPR.
Description

The function ANORPR evaluates the normal probability density function, defined as

f(x)=ﬁe , — o <Xx

Example
In this example, we evaluate the probability function at X = 0.5.

USE UMACH_INT

USE ANORPR_INT

IMPLICIT NONE

INTEGER NOUT

REAL X, PR

CALL UMACH(2, NOUT)

X = 0.5

PR = ANORPR (X)

WRITE (NOUT, 99999) X, PR
99999 FORMAT (' ANORPR(', F4.2, ') = ', F6.4)

END

= ROQEI?WH\{E: ANORPR Chapter 11: Probability Distribution Functions and Inverses

336

Output

ANORPR(0.50) = 0.3521

=
= Rogygmq\{q ANORPR Chapter 11: Probability Distribution Functions and Inverses 337

BETDF

This function evaluates the beta cumulative distribution function.

Function Return Value

BETDF — Probability that a random variable from a beta distribution having parameters PIN and QIN
will be less than or equal to X. (Output)

Required Arguments

X — Argument for which the beta distribution function is to be evaluated. (Input)

PIN — First beta distribution parameter. (Input)
PIN must be positive.

QIN — Second beta distribution parameter. (Input)
QIN must be positive.

FORTRAN 90 Interface

Generic: BETDF (X, PIN, QIN)
Specific: The specific interface names are S_BETDF and D_BETDF.

FORTRAN 77 Interface

Single: BETDF (X, PIN, QIN)
Double: The double precision name is DBETDF.
Description

Function BETDF evaluates the cumulative distribution function of a beta random variable with parameters
PIN and QIN. This function is sometimes called the incomplete beta ratio and, with p = PIN and q = QIN, is
denoted by I (p, 9). It is given by

I(p.g) = 1"((5)1—*(2)) I fp (1 _l)q 1dt

where I'(+) is the gamma function. The value of the distribution function I,(p, q) is the probability that the ran-

dom variable takes a value less than or equal to x.

The integral in the expression above is called the incomplete beta function and is denoted by B.(p, q). The con-
stant in the expression is the reciprocal of the beta function (the incomplete function evaluated at one) and is

denoted by B(p, 9).

Function BETDF uses the method of Bosten and Battiste (1974).

= Rogygmﬂn\{q BETDF Chapter 11: Probability Distribution Functions and Inverses 338

1.0 = e
B “ r g9
] — 0505
] T) 0.5 3.0
] ; / 1.0 1.0
087 / 3.0 7.0
i s .f -
= / ~
067 >
H § / -
I _ -
E 1/ ! /’/
= 0.4 1 //
0.2 - //
0 -O .I - Ll I | I L] I L] L Ll | I L 1 I 1 L] Ll
0.0 0.2 0.4 0.6 0.8 1.0
xr
Figure 11.7 — Beta Distribution Function
Comments
Informational errors
Type Code Description
1 1 Since the input argument X is less than or equal to zero, the distribution func-
tion is equal to zero at x.
1 2 Since the input argument X is greater than or equal to one, the distribution

function is equal to one at X.

Example

Suppose X is a beta random variable with parameters 12 and 12. (X has a symmetric distribution.) In this
example, we find the probability that X is less than 0.6 and the probability that X is between 0.5 and 0.6.
(Since X is a symmetric beta random variable, the probability that it is less than 0.5 is 0.5.)

USE UMACH_INT

USE BETDF_INT

IMPLICIT NONE

INTEGER NOUT

REAL P, PIN, QIN, X

CALL UMACH (2, NOUT)

PIN = 12.0
QIN = 12.0
X = 0.6
P = BETDF (X, PIN, QIN)
WRITE (NOUT,99998) P
99998 FORMAT (' The probability that X is less than 0.6 is ', F6.4)
X = 0.5

= R{nggmq\{q BETDF Chapter 11: Probability Distribution Functions and Inverses 339

P = P - BETDF (X, PIN,QIN)
WRITE (NOUT,99999) P
99999 FORMAT (' The probability that X is between 0.5 and 0.6 is ', &
F6.4)
END

Output

The probability that X is less than 0.6 is 0.8364
The probability that X is between 0.5 and 0.6 is 0.3364

= R‘Dgygmq\{eg BETDF Chapter 11: Probability Distribution Functions and Inverses 340

BETIN

This function evaluates the inverse of the beta cumulative distribution function.

Function Return Value

BETIN — Function value. (Output)
The probability that a beta random variable takes a value less than or equal to BETIN is P.

Required Arguments

P — Probability for which the inverse of the beta distribution function is to be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

PIN — First beta distribution parameter. (Input)
PIN must be positive.

QIN — Second beta distribution parameter. (Input)
QIN must be positive.

FORTRAN 90 Interface

Generic: BETIN (P, PIN, QIN)
Specific: The specific interface names are S_BETIN and D_BETIN.

FORTRAN 77 Interface

Single: BETIN (P, PIN, QIN)
Double: The double precision name is DBETIN.
Description

The function BETIN evaluates the inverse distribution function of a beta random variable with parameters
PIN and QIN, thatis, with P = P, p = PIN, and g = QIN, it determines x (equal to BETIN (P, PIN, QIN)), such

that
T(p+q) r 1 gl
P===A5| (-0 ar
Mo Jo" 7Y
where ['(-) is the gamma function. The probability that the random variable takes a value less than or equal to
xis P.

= Rogygmq\{q BETIN Chapter 11: Probability Distribution Functions and Inverses 341

Comments

Informational errors

Type Code Description

3 1 The value for the inverse Beta distribution could not be found in 100 itera-
tions. The best approximation is used.

Example

Suppose X is a beta random variable with parameters 12 and 12. (X has a symmetric distribution.) In this
example, we find the value x such that the probability that X < x;is 0.9.

USE UMACH_INT

USE BETIN_INT

IMPLICIT NONE

INTEGER NOUT

REAL P, PIN, QIN, X

CALL UMACH (2, NOUT)

PIN = 12.0
QIN = 12.0
P = 0.9
X = BETIN(P, PIN, QIN)
WRITE (NOUT, 99999) X
99999 FORMAT (' X is less than ', F6.4, ' with probability 0.9.'")
END
Output

X is less than 0.6299 with probability 0.9.

= R{ng?mq\{q BETIN Chapter 11: Probability Distribution Functions and Inverses 342

BETPR

This function evaluates the beta probability density function.

Function Return Value
BETPR — Function value, the value of the probability density function. (Output)

Required Arguments

X — Argument for which the beta probability density function is to be evaluated. (Input)

PIN — First beta distribution parameter. (Input)
PIN must be positive.

QIN — Second beta distribution parameter. (Input)
QIN must be positive.

FORTRAN 90 Interface

Generic: BETPR (X, PIN, QIN)
Specific: The specific interface names are S_BETPR and D_BETPR.

FORTRAN 77 Interface

Single: BETPR (X, PIN, QIN)
Double: The double precision name is DBETPR.
Description

The function BETPR evaluates the beta probability density function with parameters PIN and QIN. Using
x =X,a =PINand b = QIN, the beta distribution is defined as

f(xlab) = %(1-xY"'x, abp>0, 0<x<]1

The reciprocal of the beta function used as the normalizing factor is computed using IMSL function BETA
(see Chapter 4, “Gamma Functions and Related Functions”).

Example

In this example, we evaluate the probability function at X = 0.75, PIN = 2.0, QIN = 0.5.
USE UMACH_INT
USE BETPR_INT

IMPLICIT NONE
INTEGER NOUT

= ROQEI?WH\{E: BETPR Chapter 11: Probability Distribution Functions and Inverses

343

REAL X, PIN, QIN, PR
CALL UMACH(2, NOUT)

X = .75
PIN = 2.0
QIN = 0.5

PR = BETPR(X, PIN, QIN)
WRITE (NOUT, 99999) X, PIN, QIN, PR

99999 FORMAT (' BETPR(', F4.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END

Output

BETPR(0.75, 2.00, 0.50) = 1.1250

= R‘Dgygmq\{eg BETPR Chapter 11: Probability Distribution Functions and Inverses 344

BETNDF

This function evaluates the noncentral beta cumulative distribution function (CDF).

Function Return Value

BETNDF — Probability that a random variable from a beta distribution having shape parameters SHAPE1
and SHAPE2 and noncentrality parameter LAMBDA will be less than or equal to X. (Output)

Required Arguments
X — Argument for which the noncentral beta cumulative distribution function is to be evaluated. (Input)
X must be non-negative and less than or equal to 1.

SHAPE1 — First shape parameter of the noncentral beta distribution. (Input)
SHAPE1 must be positive.

SHAPE2 — Second shape parameter of the noncentral beta distribution. (Input)
SHAPE2 must be positive.

LAMBDA — Noncentrality parameter. (Input)
LAMBDA must be non-negative.

FORTRAN 90 Interface

Generic: BETNDF (X, SHAPE1, SHAPE2, LAMBDA)
Specific: The specific interface names are S_ BETNDF and D_BETNDEF.
Description

The noncentral beta distribution is a generalization of the beta distribution. If Z is a noncentral chi-square
random variable with noncentrality parameter A and 2, degrees of freedom, and Y is a chi-square random

variable with 2&, degrees of freedom which is statistically independent of Z, then

Z _ _ o f
+Y a1f+a2

X = 7
is a noncentral beta-distributed random variable and

(122 azX
- aIY_ (X1<1_X>

F

is a noncentral F-distributed random variable. The CDF for noncentral beta variable X can thus be simply
defined in terms of the noncentral F CDF:

CDFncﬂ<x,a1,a2,l) = CDFnCF(f,2a1,2a2,1>

= Rogygmﬂn\{ﬂj BETNDF Chapter 11: Probability Distribution Functions and Inverses

345

where CDF' ncﬂ(xﬁ‘laa‘za}L) is a noncentral beta CDF with x = %, & = SHAPE1, o, = SHAPE2, and noncentral-
ity parameter A = LAMBDA; CDF, (f,20,,20,,A > is a noncentral F CDF with argument f, numerator and
denominator degrees of freedom 2 and 2, respectively, and noncentrality parameter A and:

f:ﬂ X . - o f
o 1-x a f +a,

(See documentation for function FNDF for a discussion of how the noncentral F CDF is defined and
calculated.)

With a noncentrality parameter of zero, the noncentral beta distribution is the same as the beta distribution.

Example

This example traces out a portion of a noncentral beta distribution with parameters SHAPEL = 50,
SHAPE2 = 5, and LAMBDA = 10.

USE UMACH_INT

USE BETNDF_INT

USE FNDF_INT

IMPLICIT NONE

INTEGER NOUT, T

REAL X, LAMBDA, SHAPEl, SHAPE2, &
BCDFV, FCDFV, F(8)

DATA F /0.0, 0.4, 0.8, 1.2, &
1.6, 2.0, 2.8, 4.0 /
CALL UMACH (2, NOUT)
SHAPE1 = 50.0
SHAPE2 = 5.0
LAMBDA = 10.0
WRITE (NOUT,' (/" SHAPEl: ", F4.0, &
& "; SHAPE2: ", F4.0, &
&"; LAMBDA: ", F4.0 // &
& 6x,"X", 6%, "NCBETCDF (X) ", 3x, "NCBETCDF (X) "/ &
& 14x, "expected")') SHAPEl, SHAPE2, LAMBDA

DO I =1, 8
X = (SHAPE1*F(I)) / (SHAPELl*F(I) + SHAPE2)
FCDFV = FNDF (F(I),2*SHAPEl, 2*SHAPE2, LAMBDA)
BCDFV = BETNDF (X, SHAPEl, SHAPE2, LAMBDA)
WRITE (NOUT, '(2X, F8.6, 2(2X, El12.6))"') &

X, FCDFV, BCDFV
END DO
END

= Rogygmq\{q BETNDF Chapter 11: Probability Distribution Functions and Inverses 346

Output

SHAPEL: 50.; SHAPE2 : .; LAMBDA: 10.

X NCBETCDF (X) NCBETCDF (X)
expected

0.000000 0.000000E+00 0.000000E+00

0.800000 0.488790E-02 0.488790E-02

0.888889 0.202633E+00 0.202633E+00

0.923077 0.521143E+00 0.521143E+00

0.941176 0.733853E+00 0.733853E+00

0.952381 0.850413E+00 0.850413E+00

0.965517 0.947125E+00 0.947125E+00

0.975610 0.985358E+00 0.985358E+00

= R{ng?mg\{q BETNDF Chapter 11: Probability Distribution Functions and Inverses 347

BETNIN

This function evaluates the inverse of the noncentral beta cumulative distribution function (CDF).

Function Return Value
BETNIN — Function value, the value of the inverse of the cumulative distribution function evaluated at P.

The probability that a noncentral beta random variable takes a value less than or equal to BETNIN is P.
(Output)

Required Arguments

P — Probability for which the inverse of the noncentral beta cumulative distribution function is to be eval-
uated. (Input)
P must be non-negative and less than or equal to 1.
SHAPE1 — First shape parameter of the noncentral beta distribution. (Input)
SHAPE1 must be positive.
SHAPE2 — Second shape parameter of the noncentral beta distribution. (Input)
SHAPE2 must be positive.

LAMBDA — Noncentrality parameter. (Input)
LAMBDA must be non-negative.

FORTRAN 90 Interface

Generic: BETNIN (P, SHAPE1, SHAPEZ2, LAMBDA)
Specific: The specific interface names are S_BETNIN and D_BETNIN.
Description

The noncentral beta distribution is a generalization of the beta distribution. If Z is a noncentral chi-square
random variable with noncentrality parameter / and 20, degrees of freedom, and Y is a chi-square random

variable with 2a, degrees of freedom which is statistically independent of Z, then

Z _ _ af
Z+Y o fto,

X =
is a noncentral beta-distributed random variable and

azz a2X
CmY g (1-X)

F

is a noncentral F-distributed random variable. The CDF for noncentral beta variable X" can thus be simply
defined in terms of the noncentral F CDF:

p= CDFncﬂ<x,a1,a2,/1) = CDFncF(f,2a1,2a2,/1>

= ROQEI?WQ\{EF BETNIN Chapter 11: Probability Distribution Functions and Inverses 348

where CDFncﬁ < X000y, 1) is a noncentral beta CDF with x = x, & = SHAPEL, &, = SHAPE2, and noncentral-

ity parameter A = LAMBDA; CDF, . (f2a,,2a,, i) is a noncentral F CDF with argument f, numerator and

denominator degrees of freedom 2« and 2, respectively, and noncentrality parameter A; p = the probability
that F < f = the probability that X < x and:

f:@L- XZL
a1 -x a f+a,

(See the documentation for function FNDF for a discussion of how the noncentral F CDF is defined and calcu-
lated.) The correspondence between the arguments of function BETNIN (P, SHAPE1,SHAPE2,LAMBDA) and
the variables in the above equations is as follows: & = SHAPEL, &, = SHAPE2, A = LAMBDA, and p = P.

Function BETNIN evaluates

x= CDF_lncﬂ<p,al,a2,/1>

by first evaluating

f=CDF 5 (p2ay20,0)

and then solving for x using

Y
arf + o,

(See the documentation for function FNIN for a discussion of how the inverse noncentral F CDF is
calculated.)

Example

This example traces out a portion of an inverse noncentral beta distribution with parameters
SHAPE1l = 50, SHAPE2 = 5,and LAMBDA = 10.

USE UMACH_INT
USE BETNDF_INT
USE BETNIN_INT
USE UMACH_INT
IMPLICIT NONE

INTEGER :: NOUT, I

REAL :: SHAPEl = 50.0, SHAPE2=5.0, LAMBDA=10.0

REAL :: X, CDF, CDFINV

REAL :: FO(8)=(/ 0.0, .4, .8, 1.2, 1.6, 2.0, 2.8, 4.0 /)

CALL UMACH (2, NOUT)

WRITE (NOUT,'(/" SHAPEl: ", F4.0, " SHAPE2: ", F4.0,'// &
'" LAMBDA: ", F4.0 // ' // &
v X P = CDF (X) CDFINV(P)") ") &

SHAPEl, SHAPE2, LAMBDA

= ROQEI?WH\{E: BETNIN Chapter 11: Probability Distribution Functions and Inverses 349

DO I =1, 8
X = (SHAPE1*FO0(I))/(SHAPE2 + SHAPE1*FO(I))
CDF = BETNDF (X, SHAPEl, SHAPE2, LAMBDA)
CDFINV = BETNIN(CDF, SHAPEl, SHAPE2, LAMBDA)
WRITE (NOUT, ' (3(2X, El12.6))') X, CDF, CDFINV

END DO

END

Output
SHAPEl: 50. SHAPE2: 5. LAMBDA: 10.

X P = CDF (X) CDFINV (P)
0.000000E+00 0.000000E+00 0.000000E+00
0.800000E+00 0.488791E-02 0.800000E+00
0.888889E+00 0.202633E+00 0.888889E+00
0.923077E+00 0.521144E+00 0.923077E+00
0.941176E+00 0.733853E+00 0.941176E+00
0.952381E+00 0.850413E+00 0.952381E+00
0.965517E+00 0.947125E+00 0.965517E+00
0.975610E+00 0.985358E+00 0.975610E+00

= R{ng?mq\{q BETNIN Chapter 11: Probability Distribution Functions and Inverses 350

BETNPR

This function evaluates the noncentral beta probability density function.

Function Return Value
BETNPR — Function value, the value of the probability density function. (Output)

Required Arguments
X — Argument for which the noncentral beta probability density function is to be evaluated. (Input)
X must be non-negative and less than or equal to 1.

SHAPE1 — First shape parameter of the noncentral beta distribution. (Input)
SHAPE1 must be positive.

SHAPE2 — Second shape parameter of the noncentral beta distribution. (Input)
SHAPE2 must be positive.

LAMBDA — Noncentrality parameter. (Input)
LAMBDA must be non-negative.

FORTRAN 90 Interface

Generic: BETNPR (X, SHAPE1, SHAPE2, LAMBDA)
Specific: The specific interface names are S_ BETNPR and D_BETNPR.
Description

The noncentral beta distribution is a generalization of the beta distribution. If Z is a noncentral chi-square
random variable with noncentrality parameter | and 20, degrees of freedom, and Y is a chi-square random

variable with 2a, degrees of freedom which is statistically independent of Z, then

Z __ o f
Z+Y a1f+0c2

X =
is a noncentral beta-distributed random variable and

azz azX
- alY_ a1<l—X>

F

is a noncentral F-distributed random variable. The PDF for noncentral beta variable X can thus be simply
defined in terms of the noncentral F PDF:

PDF . 5(%,01,0,2) = PDF oo f 201,201, A)%

= Rogygmﬂn\{ﬂj BETNPR Chapter 11: Probability Distribution Functions and Inverses

351

Where PDF, < x,al,az,i> is a noncentral beta PDF with x = x, &y = SHAPEL, &, = SHAPE2, and noncentral-

ity parameter A = LAMBDA; PDF’, . (f ,2051,2052,/1) is a noncentral F PDF with argument f, numerator and

denominator degrees of freedom 2y and 2, respectively, and noncentrality parameter A; and:

o
_ %
f—qlex,

alf

o a f +ay’

df _ <a2+a1f>2 _ %

dx a0y

S A-x)?

(See the documentation for function FNPR for a discussion of how the noncentral F PDF is defined and

calculated.)

With a noncentrality parameter of zero, the noncentral beta distribution is the same as the beta distribution.

Example

This example traces out a portion of a noncentral beta distribution with parameters SHAPE1 = 50,

SHAPE2 = 5, and LAMBDA = 10.

USE UMACH_INT
USE BETNPR_INT
USE FNPR_INT
IMPLICIT NONE

INTEGER NOUT, T

REAL X, LAMBDA, SHAPEl, SHAPE2, &

BPDFV, FPDFV, DBETNPR, DFNPR, F(8), &

BPDFVEXPECT, DFDX

DATA F /0.0, 0.4, 0.8, 3.2, 5.6, 8.

CALL UMACH (2, NOUT)
SHAPE1l = 50.0

SHAPE2 = 5.0

LAMBDA = 10.0

WRITE (NOUT, ' (/"
'LAMBDA: ",
Xy, /

SHAPEl: ", F4.0,

14x, "expected") ')

DO I =1, 8
X = (SHAPE1l*F(I)) /

DFDX = (SHAPE2/SHAPEl) / (1.0

8, 14.0,

18.0/

; SHAPE2: ", F4.0, "; /&

¥4.0 // 6x,"X",6x,"NCBETPDF (X)",3x, "NCBETPDF'// &
SHAPEL,

SHAPE2, LAMBDA

(SHAPE1*F (I) + SHAPE2)
- X)**2

FPDFV = FNPR(F(I),2*SHAPEl, 2*SHAPE2, LAMBDA)

BPDFVEXPECT = DFDX * FPDFV
BPDFV = BETNPR(X, SHAPEL,
WRITE (NOUT, ' (2X, F8.6,
END DO
END

SHAPE2,
2(2X, E12.6))")

LAMBDA)
X, BPDFVEXPECT, BPDFV

=RogueWave

Chapter 11: Probability Distribution Functions and Inverses

352

Output

SHAPEL: 50.; SHAPE2 : .; LAMBDA: 10.

X NCBETPDF (X) NCBETPDF (X)
expected

0.000000 0.000000E+00 0.000000E+00

0.800000 0.243720E+00 0.243720E+00

0.888889 0.658624E+01 0.658624E+01

0.969697 0.402367E+01 0.402365E+01

0.982456 0.919544E+00 0.919542E+00

0.988764 0.219100E+00 0.219100E+00

0.992908 0.436654E-01 0.436647E-01

0.994475 0.175215E-01 0.175217E-01

= R{ng?mg\{q BETNPR Chapter 11: Probability Distribution Functions and Inverses 353

BNRDF

This function evaluates the bivariate normal cumulative distribution function.

Function Return Value

BNRDF — Function value, the probability that a bivariate normal random variable with correlation RHO
takes a value less than or equal to X and less than or equal to Y. (Output)

Required Arguments

X — One argument for which the bivariate normal distribution function is to be evaluated. (Input)
Y — The other argument for which the bivariate normal distribution function is to be evaluated. (Input)

RHO — Correlation coefficient. (Input)

FORTRAN 90 Interface

Generic: BNRDF (X, Y, RHO)
Specific: The specific interface names are S_BNRDF and D_BNRDF.

FORTRAN 77 Interface

Single: BNRDF (X, Y, RHO)
Double: The double precision name is DBNRDF.
Description

Function BNRDF evaluates the cumulative distribution function F of a bivariate normal distribution with
means of zero, variances of one, and correlation of RHO; that is, with p = RHO, and |p| < 1,

2
2(1 - p?)

—

To determine the probability that U < ugand V < v, where (U, V)! is a bivariate normal random variable

with mean M = (Mg, uV)T and variance-covariance matrix

2
_| °u %ur
2
Ouyy Oy
transform (U, V)T to a vector with zero means and unit variances. The input to BNRDF would be

X = <u0—,uU> /o, Y = (vo—,u,,> l6y,and p =0y / <0Ua,,>.

= Rogygmﬂn\{ﬂj BNRDF Chapter 11: Probability Distribution Functions and Inverses

354

Function BNRDF uses the method of Owen (1962, 1965). Computation of Owen’s T-function is based on code
by M. Patefield and D. Tandy (2000). For |p| = 1, the distribution function is computed based on the univari-
ate statistic, Z = min(x, y), and on the normal distribution function ANORDF.

Example
Suppose (X, Y) is a bivariate normal random variable with mean (0, 0) and variance-covariance matrix
1.0 09 >
0.9 1.0
In this example, we find the probability that X is less than —2.0 and Y is less than 0.0.
USE BNRDF_INT
USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT

REAL P, RHO, X, Y

CALL UMACH (2, NOUT)

X = -2.0
Y = 0.0
RHO = 0.9
P = BNRDF (X,Y,RHO)
WRITE (NOUT,99999) P
99999 FORMAT (' The probability that X is less than -2.0 and Y ', &
'is less than 0.0 is ', F6.4)
END
Output

The probability that X is less than -2.0 and Y is less than 0.0 is 0.0228

= Rogygmq\{q BNRDF Chapter 11: Probability Distribution Functions and Inverses 355

CHIDF

This function evaluates the chi-squared cumulative distribution function.

Function Return Value

CHIDF — Function value, the probability that a chi-squared random variable takes a value less than or
equal to CHSQ. (Output)

Required Arguments

CHSQ — Argument for which the chi-squared distribution function is to be evaluated. (Input)

DF — Number of degrees of freedom of the chi-squared distribution. (Input)
DF must be positive.

Optional Arguments

COMPLEMENT — Logical. If .TRUE., the complement of the chi-squared cumulative distribution function
is evaluated. If .FALSE., the chi-squared cumulative distribution function is evaluated. (Input)
See the Description section for further details on the use of COMPLEMENT.
Default: COMPLEMENT = .FALSE..

FORTRAN 90 Interface

Generic: CHIDF (CHSQ,DF [, ...1)
Specific: The specific interface names are S_CHIDF and D_CHIDF.

FORTRAN 77 Interface

Single: CHIDF (CHSQ, DF)
Double: The double precision name is DCHIDF.
Description

Function CHIDF evaluates the cumulative distribution function, F, of a chi-squared random variable with DF
degrees of freedom, that is, with v=DF, and x = CHSQ,

X

_ 1 —1/2 v2—1
F(x,\/') = mje t tv dt
0

where ['(-) is the gamma function. The value of the distribution function at the point x is the probability that
the random variable takes a value less than or equal to x.

For v> v, = {343 for double precision, 171 for single precision}, CHIDF uses the Wilson-Hilferty approxi-

mation (Abramowitz and Stegun [A&S] 1964, equation 26.4.17) for p in terms of the normal CDEF, which is
evaluated using function ANORDF.

= ROQEI?WQ\{E{ CHIDF Chapter 11: Probability Distribution Functions and Inverses

356

For v < v, , CHIDF uses series expansions to evaluate p: for x < v, CHIDF calculates p using A&S series
6.5.29, and for x > v, CHIDF calculates p using the continued fraction expansion of the incomplete gamma

function given in A&S equation 6.5.31.

If COMPLEMENT = .TRUE., the value of CHIDF at the point xis 1 - p, where 1 - p is the probability that the ran-
dom variable takes a value greater than x. In those situations where the desired end result is 1-p, the user can
achieve greater accuracy in the right tail region by using the result returned by CHIDF with the optional
argument COMPLEMENT set to .TRUE. rather than by using 1 - p where p is the result returned by CHIDF with

COMPLEMENT set to .FALSE..

1.0 —— — ”
] e ’ — 2
e 10

o8- [20
. ! J
4
— I|I

=06 |
2] 4
= 4
g 1
S04
iy
!
0.2 ,
_| ‘r;
0.0 ||"T-||||||||||||||||||||||||||
00 50 100 150 200 250 300
x

Figure 11.8 — Chi-Squared Distribution Function

Comments

Informational error

Type Code Description
1 1 Since the input argument, CHSQ, is less than zero, the distribution function is
zero at CHSQ.
2 3 The normal distribution is used for large degrees of freedom. However, it
has produced underflow. Therefore, the probability, CHIDF, is set to zero.
Example

Suppose X is a chi-squared random variable with 2 degrees of freedom. In this example, we find the proba-

bility that X is less than 0.15 and the probability that X is greater than 3.0.

USE CHIDF_INT
USE UMACH_INT
IMPLICIT NONE

357

= R{ngg\ﬂh’ﬂ\{&: CHIDF Chapter 11: Probability Distribution Functions and Inverses

INTEGER NOUT
REAL CHSQ, DF, P

CALL UMACH (2, NOUT)

DF = 2.0
CHSQ = 0.15
P = CHIDF (CHSQ, DF)
WRITE (NOUT,99998) P
99998 FORMAT (' The probability that chi-squared with 2 df is less ', &
'than 0.15 is ', F6.4)
CHSQ = 3.0
P = CHIDF (CHSQ,DF, complement=.true.)
WRITE (NOUT,99999) P
99999 FORMAT (' The probability that chi-squared with 2 df is greater ' &
, 'than 3.0 is ', F6.4)
END
Output

The probability that chi-squared with 2 df is less than 0.15 is 0.0723
The probability that chi-squared with 2 df is greater than 3.0 is 0.2231

= R{ng?mq\{q CHIDF Chapter 11: Probability Distribution Functions and Inverses 358

CHIIN

This function evaluates the inverse of the chi-squared cumulative distribution function.

Function Return Value

CHIIN — Function value. (Output)
The probability that a chi-squared random variable takes a value less than or equal to CHIIN is P.

Required Arguments

P — Probability for which the inverse of the chi-squared distribution function is to be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

DF — Number of degrees of freedom of the chi-squared distribution. (Input)
DF must be greater than or equal to 0.5.

FORTRAN 90 Interface

Generic: CHIIN (P, DF)
Specific: The specific interface names are S_CHIIN and D_CHIIN.

FORTRAN 77 Interface

Single: CHIIN (P, DF)
Double: The double precision name is DCHIIN.
Description

Function CHIIN evaluates the inverse distribution function of a chi-squared random variable with DF
degrees of freedom, that is, with P = P and v = DF, it determines x (equal to CHIIN(P, DF)), such that

p= 1 J : o 1221 g
2Y2r(v/2) Jo

where ['(-) is the gamma function. The probability that the random variable takes a value less than or equal to
xis P.

For v <40, CHIIN uses bisection (if v < 2 or P > 0.98) or regula falsi to find the point at which the chi-squared
distribution function is equal to P. The distribution function is evaluated using routine CHIDF.

For 40 < v <100, a modified Wilson-Hilferty approximation (Abramowitz and Stegun 1964, equation
26.4.18) to the normal distribution is used, and routine ANORIN is used to evaluate the inverse of the normal
distribution function. For v = 100, the ordinary Wilson-Hilferty approximation (Abramowitz and Stegun
1964, equation 26.4.17) is used.

= ROQEI?WQ\{EF CHIIN Chapter 11: Probability Distribution Functions and Inverses 359

Comments

Informational error

Type Code Description
4 1 Over 100 iterations have occurred without convergence. Convergence is
assumed.
Example

In this example, we find the 99-th percentage points of a chi-squared random variable with 2 degrees of free-
dom and of one with 64 degrees of freedom.

USE UMACH_INT

USE CHIIN_INT
IMPLICIT NONE
INTEGER NOUT
REAL DF, P, X

CALL UMACH (2, NOUT)

P = 0.99
DF = 2.0
X = CHIIN(P,DF)
WRITE (NOUT,99998) X
99998 FORMAT (' The 99-th percentage point of chi-squared with 2 df ' &
, 'is ', F7.3)
DF = 64.0
X = CHIIN(P,DF)
WRITE (NOUT, 99999) X
99999 FORMAT (' The 99-th percentage point of chi-squared with 64 df ' &
, 'is ', F7.3)
END
Output

The 99-th percentage point of chi-squared with 2 df is 9.210
The 99-th percentage point of chi-squared with 64 df is 93.217

= R{ng?mq\{q CHIIN Chapter 11: Probability Distribution Functions and Inverses 360

CHIPR

This function evaluates the chi-squared probability density function.

Function Return Value

CHIPR — Function value, the value of the probability density function. (Output)

Required Arguments

X — Argument for which the chi-squared probability density function is to be evaluated. (Input)

DF — Number of degrees of freedom of the chi-squared distribution. (Input)

FORTRAN 90 Interface

Generic: CHIPR (X, DF)

Specific: The specific interface names are S_CHIPR and D_CHIPR.

FORTRAN 77 Interface

Single: CHIPR (X, DF)
Double: The double precision name is DCHIPR.
Description

The function CHIPR evaluates the chi-squared probability density function. The chi-squared distribution is a

special case of the gamma distribution and is defined as

f<x|v> = T(x|v/2,2> = m(xy/zle_g, x,v>0

Example

In this example, we evaluate the probability function at X = 3.0, DF = 5.0.

USE UMACH_INT

USE CHIPR_INT
IMPLICIT NONE
INTEGER NOUT

REAL X, DF, PR
CALL UMACH(2, NOUT)
X =3.0

DF 5.0

PR = CHIPR(X, DF)

WRITE (NOUT, 99999) X, DF,
99999 FORMAT (' CHIPR(', F4.2,

END

PR
', F4.

=RogueWave

CHIPR

Chapter 11: Probability Distribution Functions and Inverses

361

Output

CHIPR(3.00, 5.00) = 0.1542

=
= Rogygmq\{q CHIPR Chapter 11: Probability Distribution Functions and Inverses 362

CSNDF

This function evaluates the noncentral chi-squared cumulative distribution function.

Function Return Value

CSNDF — Function value, the probability that a noncentral chi-squared random variable takes a value less
than or equal to CHSQ. (Output)

Required Arguments
CHSQ — Argument for which the noncentral chi-squared cumulative distribution function is to be evalu-
ated. (Input)

DF —Number of degrees of freedom of the noncentral chi-squared cumulative distribution. (Input)
DF must be positive and less than or equal to 200,000.

ALAM — The noncentrality parameter. (Input)
ALAM must be nonnegative, and ALAM + DF must be less than or equal to 200,000.

FORTRAN 90 Interface

Generic: CSNDF (CHSQ, DF, ALAM)
Specific: The specific interface names are S_CSNDF and D_CSNDF.

FORTRAN 77 Interface

Single: CSNDF (CHSQ, DF, ALAM)
Double: The double precision name is DCSNDF.
Description

Function CSNDF evaluates the cumulative distribution function of a noncentral chi-squared random variable
with DF degrees of freedom and noncentrality parameter ALAM, that is, with v= DF, A = ALAM, and x = CHSQ,

X
o A2 i v2i)/2—-1 —
M2) [A2 42
F(x|v,/1)=ze (42) |1 £

i=0

i! q 2(v+2i)/2r(vi2i)

where ['(-) is the gamma function. This is a series of central chi-squared distribution functions with Poisson
weights. The value of the distribution function at the point x is the probability that the random variable takes
a value less than or equal to x.

The noncentral chi-squared random variable can be defined by the distribution function above, or alterna-
tively and equivalently, as the sum of squares of independent normal random variables. If Y; have

independent normal distributions with means y; and variances equal to one and

= ROQEI?WQ\{EF CSNDF Chapter 11: Probability Distribution Functions and Inverses 363

X:

n

2

2
i=1

then X has a noncentral chi-squared distribution with n degrees of freedom and noncentrality parameter

n
2
>
i=1

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the same as the

equal to

chi-squared distribution.

Function CSNDF determines the point at which the Poisson weight is greatest, and then sums forward and
backward from that point, terminating when the additional terms are sufficiently small or when a maximum
of 1000 terms have been accumulated. The recurrence relation 26.4.8 of Abramowitz and Stegun (1964) is
used to speed the evaluation of the central chi-squared distribution functions.

. — - A
] s — 00
] / 5.0
_ 10.0
: fj‘
. I.l" !
] /
] /

|Ill I’l
] [
] S

.
LI e e e e
00 100 200 30.0 400 500
£

Figure 11.9 — Noncentral Chi-squared Distribution Function

Example

In this example, CSNDF is used to compute the probability that a random variable that follows the noncentral
chi-squared distribution with noncentrality parameter of 1 and with 2 degrees of freedom is less than or

equal to 8.642.

USE UMACH_INT
USE CSNDF_INT

IMPLICIT NONE
INTEGER NOUT
REAL ALAM, CHSQ, DF, P
= R{ng?mq\{q CSNDF Chapter 11: Probability Distribution Functions and Inverses 364

CALL UMACH (2, NOUT)

DF = 2.0
ALAM = 1.0
CHSQ = 8.642
P = CSNDF (CHSQ, DF, ALAM)
WRITE (NOUT,99999) P
99999 FORMAT (' The probability that a noncentral chi-squared random',6 &
/, ' variable with 2 df and noncentrality 1.0 is less',6 &
/, ' than 8.642 is ', F5.3)
END
Output

The probability that a noncentral chi-squared random
variable with 2 df and noncentrality 1.0 is less
than 8.642 is 0.950

= R{ng?mg\{q CSNDF Chapter 11: Probability Distribution Functions and Inverses 365

CSNIN

This function evaluates the inverse of the noncentral chi-squared cumulative function.

Function Return Value

CSNIN — Function value. (Output)
The probability that a noncentral chi-squared random variable takes a value less than or equal to
CSNINis P.

Required Arguments

P — Probability for which the inverse of the noncentral chi-squared cumulative distribution function is to
be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

DF — Number of degrees of freedom of the noncentral chi-squared distribution. (Input)
DF must be greater than or equal to 0.5 and less than or equal to 200,000.

ALAM — The noncentrality parameter. (Input)
ALAM must be nonnegative, and ALAM + DF must be less than or equal to 200,000.

FORTRAN 90 Interface

Generic: CSNIN (P, DF, ALAM)
Specific: The specific interface names are S_CSNIN and D_CSNIN.

FORTRAN 77 Interface

Single: CSNIN (P, DF, ALAM)
Double: The double precision name is DCSNIN.
Description

Function CSNIN evaluates the inverse distribution function of a noncentral chi-squared random variable
with DF degrees of freedom and noncentrality parameter ALAV; that is, with P = P, v=DF, and A = ALAY, it
determines cy (= CSNIN (P, DF, ALAM)), such that

C,
0
0 67/1/2(}‘/ 2)1 x(v+2i)/2_1e7x/2

pP= ! +20)/2 2 dx
1 02(V i) F(V—; l)

i=0
where ['(+) is the gamma function. The probability that the random variable takes a value less than or equal to
Co isP.

Function CSNIN uses bisection and modified regula falsi to invert the distribution function, which is evalu-
ated using routine CSNDF. See CSNDF for an alternative definition of the noncentral chi-squared random
variable in terms of normal random variables.

= ROQEI?WQ\{E{ CSNIN Chapter 11: Probability Distribution Functions and Inverses

366

Comments

Informational error

Type Code Description
4 1 Over 100 iterations have occurred without convergence. Convergence is
assumed.
Example

In this example, we find the 95-th percentage point for a noncentral chi-squared random variable with 2
degrees of freedom and noncentrality parameter 1.

USE CSNIN_INT

USE UMACH_INT

IMPLICIT NONE

INTEGER NOUT

REAL ALAM, CHSQ, DF, P

CALL UMACH (2, NOUT)

DF = 2.0
ALAM = 1.0
P = 0.95
CHSQ = CSNIN(P,DF,ALAM)

WRITE (NOUT,99999) CHSQ
!

99999 FORMAT (' The 0.05 noncentral chi-squared critical value is ', &

END

Output

The 0.05 noncentral chi-squared critical value is 8.642.

= R{ng?mq\{q CSNIN Chapter 11: Probability Distribution Functions and Inverses 367

CSNPR

This function evaluates the noncentral chi-squared probability density function.

Function Return Value
CSNPR — Function value, the value of the probability density function. (Output)

Required Arguments
X — Argument for which the noncentral chi-squared probability density function is to be evaluated.
(Input)
X must be non-negative.
DF — Number of degrees of freedom of the noncentral chi-squared distribution. (Input)
DF must be positive.

LAMBDA — Noncentrality parameter. (Input)
LAMBDA must be non-negative.

FORTRAN 90 Interface

Generic: CSNPR (X, DF, LAMBDA)
Specific: The specific interface names are S_CSNPR and D_CSNPR.
Description

The noncentral chi-squared distribution is a generalization of the chi-squared distribution. If {X;} are k inde-

pendent, normally distributed random variables with means 4; and variances a;z, then the random variable:

k Xi2
3w
i=1

is distributed according to the noncentral chi-squared distribution. The noncentral chi-squared distribution
has two parameters: k which specifies the number of degrees of freedom (i.e. the number of X;), and A which

is related to the mean of the random variables X; by:

k 2
Hi
=3 (%)
i=1
The noncentral chi-squared distribution is equivalent to a (central) chi-squared distribution with k£ + 2
degrees of freedom, where i is the value of a Poisson distributed random variable with parameter A/2. Thus,

the probability density function is given by:

= Rogygmﬂn\{ﬂj CSNPR Chapter 11: Probability Distribution Functions and Inverses

368

0

*/1/2
F(xkd) = Z <Y rai)

where the (central) chi-squared PDF f(x, k) is given by:

(x/z)k/ze—x/z
f(x,k) = W for x >0, else 0

where ['(+) is the gamma function. The above representation of F(x, k, A) can be shown to be equivalent to the

representation:
—(A+x)/2 k/2 ©
e (x/2)
F(xkA) = N z(ﬁi
i=0
(Ax/4Y

O AT (k2 +7)

Function CSNPR (X, DF, LAMBDA) evaluates the probability density function of a noncentral chi-squared ran-
dom variable with DF degrees of freedom and noncentrality parameter LAMBDA, corresponding to k = DF,

A= LAMBDA, and x = X

Function CSNDF (X, DF, LAMBDA) evaluates the cumulative distribution function incorporating the above

probability density function.

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the same as the central

chi-squared distribution.

Example

This example calculates the noncentral chi-squared distribution for a distribution with 100 degrees of free-

dom and noncentrality parameter A = 40.

USE UMACH_INT
USE CSNPR_INT
IMPLICIT NONE

INTEGER :: NOUT, I
REAL :: X(6)=(/ 0.0, 8.0, 40.0, 136.0, 280.0, 400.0 /)
REAL :: LAMBDA=40.0, DF=100.0, PDFV

CALL UMACH (2, NOUT)
WRITE (NOUT,'(//"DF: ", F4.0, " LAMBDA: ", F4.0 //'// &
v X PDF(X)")') DF, LAMBDA
DO I =1, 6
PDFV = CSNPR(X(I), DF, LAMBDA)

= ROQEI?WH\{E: CSNPR Chapter 11: Probability Distribution Functions and Inverses

369

WRITE
END DO
END
Output
DF: 100. LAMBDA :
X PDF (X)
0. 0.00000E+00
8. 0.00000E+00
40. 0.34621E-13
136. 0.21092E-01
280. 0.40027E-09
400. 0.11250E-21

(NOUT, ' (1X, F5.0,

40.

2X, E12.5)"') X(I), PDFV

=RogueWave

CSNPR

Chapter 11: Probability Distribution Functions and Inverses

370

EXPDF

This function evaluates the exponential cumulative distribution function.

Function Return Value

EXPDF — Function value, the probability that an exponential random variable takes a value less than or
equal to X. (Output)

Required Arguments

X — Argument for which the exponential cumulative distribution function is to be evaluated. (Input)

B — Scale parameter of the exponential distribution function. (Input)

FORTRAN 90 Interface

Generic: EXPDF (X, B)
Specific: The specific interface names are S_EXPDF and D_EXPDF.

FORTRAN 77 Interface

Single: EXPDF (X, B)
Double: The double precision name is DEXPDF.
Description

The function EXPDF evaluates the exponential cumulative distribution function (CDF), defined:

S

F(x|b) = '[0 fapydi=1-e
where

S

falb) = 3e

is the exponential probability density function (PDF).

Example
In this example, we evaluate the probability function at X =2.0, B = 1.0.

USE UMACH_INT
USE EXPDF_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, B, PR

= Rogygmq\{q EXPDF Chapter 11: Probability Distribution Functions and Inverses 371

CALL UMACH(2, NOUT)

X =2.0

B=1.0

PR = EXPDF (X, B)

WRITE (NOUT, 99999) X, B, PR

99999 FORMAT (' EXPDF(', F4.2, ', ', F4.2, ') ="', F6.4)
END

Output

EXPDF (2.00, 1.00) = 0.8647

= Rogygmg\{q EXPDF Chapter 11: Probability Distribution Functions and Inverses 372

EXPIN

This function evaluates the inverse of the exponential cumulative distribution function.

Function Return Value

EXPIN — Function value, the value of the inverse of the cumulative distribution function. (Output)

Required Arguments

P — Probability for which the inverse of the exponential distribution function is to be evaluated. (Input)
B — Scale parameter of the exponential distribution function. (Input)

FORTRAN 90 Interface

Generic: EXPIN (P, B)
Specific: The specific interface names are S_EXPIN and D_EXPIN.

FORTRAN 77 Interface

Single: EXPIN (P, B)
Double: The double precision name is DEXPIN.
Description

The function EXPIN evaluates the inverse distribution function of an exponential random variable with scale
parameter b = B.

Example
In this example, we evaluate the inverse probability function at P = 0.8647, B = 1.0.

USE UMACH_INT
USE EXPIN_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, B, P
CALL UMACH (2, NOUT)

P 0.8647
B=1.0
X = EXPIN(P, B)
WRITE (NOUT, 99999) P, B, X
99999 FORMAT (' EXPIN(', F6.4, ', ', F4.2, ') = ', F6.4)
END

= ROQEI?WH\{E: EXPIN Chapter 11: Probability Distribution Functions and Inverses 373

Output

EXPIN(0.8647, 1.00) = 2.0003

=
= Rogygmq\{e; EXPIN Chapter 11: Probability Distribution Functions and Inverses 374

EXPPR

This function evaluates the exponential probability density function.

Function Return Value
EXPPR — Function value, the value of the probability density function. (Output)

Required Arguments

X — Argument for which the exponential probability density function is to be evaluated. (Input)

B — Scale parameter of the exponential probability density function. (Input)

FORTRAN 90 Interface

Generic:
Specific:

EXPPR (X, B)

The specific interface names are S_EXPPR and D_EXPPR.

FORTRAN 77 Interface

Single:
Double:

Description

The function EXPPR evaluates the exponential probability density function. The exponential distribution is a

EXPPR (X, B)

The double precision name is DEXPPR.

special case of the gamma distribution and is defined as

F(x1b) =T(x| L) =de?, x>0

This relationship is used in the computation of f < x|b >

Example

In this example, we evaluate the probability function at X = 2.0, B = 1.0.

USE UMACH_INT
USE EXPPR_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, B, PR

CALL UMACH (2, NOUT)
X =2.0

B=1.0

PR = EXPPR(X, B)

=RogueWave

EXPPR

Chapter 11: Probability Distribution Functions and Inverses

375

WRITE (NOUT, 99999) X, B, PR

99999 FORMAT (' EXPPR(', F4.2, ', ', F4.2, ') = ', F6.4)
END

Output

EXPPR(2.00, 1.00) = 0.1353

= R‘Ogy?mq\{es EXPPR Chapter 11: Probability Distribution Functions and Inverses 376

EXVDF

This function evaluates the extreme value cumulative distribution function.

Function Return Value

EXVDF — Function value, the probability that an extreme value random variable takes a value less than or
equal to X. (Output)

Required Arguments

X — Argument for which the extreme value cumulative distribution function is to be evaluated. (Input)
AMU — Location parameter of the extreme value probability distribution function. (Input)
BETA — Scale parameter of the extreme value probability distribution function. (Input)

FORTRAN 90 Interface

Generic: EXVDF (X, AMU, BETA)
Specific: The specific interface names are S_EXVDF and D_EXVDF.

FORTRAN 77 Interface

Single: EXVDF (X, AMU, BETA)
Double: The double precision name is DEXVDF.
Description

The function EXVDF evaluates the extreme value cumulative distribution function, defined as
xp
7
Fx|up)=1-¢

The extreme value distribution is also known as the Gumbel minimum distribution.

Example
In this example, we evaluate the probability function at X = 1.0, AMU = 0.0, BETA = 1.0.

USE UMACH_INT

USE EXVDF_INT
IMPLICIT NONE
INTEGER NOUT

REAL X, AMU, B, PR
CALL UMACH (2, NOUT)

X =1.0
AMU = 0.0
B=1.0

= Rogygmq\{q EXVDF Chapter 11: Probability Distribution Functions and Inverses 377

PR = EXVDF (X, AMU, B)
WRITE (NOUT, 99999) X, AMU, B, PR

99999 FORMAT (' EXVDF(', F6.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END

Output

EXVDF(1.00, 0.00, 1.00) = 0.9340

= Rogygmg\{q EXVDF Chapter 11: Probability Distribution Functions and Inverses 378

EXVIN

This function evaluates the inverse of the extreme value cumulative distribution function.

Function Return Value

EXVIN — Function value, the value of the inverse of the extreme value cumulative distribution function.
(Output)

Required Arguments

P — Probability for which the inverse of the extreme value distribution function is to be evaluated. (Input)
AMU — Location parameter of the extreme value probability function. (Input)

BETA — Scale parameter of the extreme value probability function. (Input)

FORTRAN 90 Interface

Generic: EXVIN (P, AMU, BETA)
Specific: The specific interface names are S_EXVIN and D_EXVIN.

FORTRAN 77 Interface

Single: EXVIN (P, AMU, BETA)
Double: The double precision name is DEXVIN.
Description

The function EXVIN evaluates the inverse distribution function of an extreme value random variable with
location parameter AMU and scale parameter BETA.

Example

In this example, we evaluate the inverse probability function at P = 0.934, AMU = 1.0, BETA = 1.0
USE UMACH_INT
USE EXVIN_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, AMU, B, PR
CALL UMACH (2, NOUT)

PR = .934
AMU = 0.0
B =1.0

X = EXVIN(PR, AMU, B)
WRITE (NOUT, 99999) PR, AMU, B, X

99999 FORMAT (' EXVIN(', F6.3, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END

= ROQEI?WH\{E: EXVIN Chapter 11: Probability Distribution Functions and Inverses

379

Output

EXVIN(0.934, 0.00, 1.00) = 0.9999

=
= Rogygmq\{e; EXVIN Chapter 11: Probability Distribution Functions and Inverses 380

EXVPR

This function evaluates the extreme value probability density function.

Function Return Value

EXVPR — Function value, the value of the probability density function. (Output)

Required Arguments

X — Argument for which the extreme value probability density function is to be evaluated. (Input)

AMU — Location parameter of the extreme value probability density function. (Input)

BETA — Scale parameter of the extreme value probability density function. (Input)

FORTRAN 90 Interface

Generic: EXVPR (X, AMU, BETA)

Specific: The specific interface names are S_EXVPR and D_EXVPR.

FORTRAN 77 Interface

Single: EXVPR (X, AMU, BETA)
Double: The double precision name is DEXVPR.
Description

The function EXVPR evaluates the extreme value probability density function, defined as

x—p

Xy

fxlnpy=ple? el —ow<x p<to, >0

The extreme value distribution is also known as the Gumbel minimum distribution.

Example

In this example, we evaluate the extreme value probability density function at X = 2.0, AMU = 0.0, BETA = 1.0.

USE UMACH_INT
USE EXVPR_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, AMU, B, PR
CALL UMACH (2, NOUT)

PR = EXVPR(X, AMU, B)

WRITE (NOUT, 99999) X, AMU, B, PR
= Rogygmq\{q EXVPR Chapter 11: Probability Distribution Functions and Inverses 381

99999 FORMAT (' EXVPR(', F6.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END

Output

EXVPR(-2.00, 0.00, 1.00) = 0.1182

= R‘Ogy?mq\{es EXVPR Chapter 11: Probability Distribution Functions and Inverses 382

FDF

This function evaluates the F cumulative distribution function.

Function Return Value

FDF — Function value, the probability that an F random variable takes a value less than or equal to the
input F. (Output)

Required Arguments
F — Argument for which the F cumulative distribution function is to be evaluated. (Input)

DFN — Numerator degrees of freedom. (Input)
DFN must be positive.

DFD — Denominator degrees of freedom. (Input)
DFD must be positive.

Optional Arguments

COMPLEMENT — Logical. If .TRUE., the complement of the F cumulative distribution function is evalu-
ated. If FALSE., the F cumulative distribution function is evaluated. (Input)
See the Description section for further details on the use of COMPLEMENT.
Default: COMPLEMENT = .FALSE..

FORTRAN 90 Interface

Generic: FDF (F, DFN, DFD [, ...]1)
Specific: The specific interface names are S_FDF and D_FDF.

FORTRAN 77 Interface

Single: FDF (F, DFN, DFD)
Double: The double precision name is DFDF.
Description

Function FDF evaluates the distribution function of a Snedecor’s F random variable with DFN numerator
degrees of freedom and DFD denominator degrees of freedom. The function is evaluated by making a trans-
formation to a beta random variable and then using the routine BETDF. If X is an F variate with v; and v,

degrees of freedom and Y = 1 X/(v, + 11 X), then Y is a beta variate with parameters p = v;/2 and g = v, /2.
The function FDF also uses a relationship between F random variables that can be expressed as follows.

FDF (X, DFN, DFD) = 1.0 - FDF(1.0/X, DFD, DFN)

= Rogygwkﬂn\ter FDF Chapter 11: Probability Distribution Functions and Inverses

383

If COMPLEMENT = . TRUE., the value of FDF at the point x is 1 - p, where 1 - p is the probability that the ran-
dom variable takes a value greater than x. In those situations where the desired end result is 1 - p, the user
can achieve greater accuracy in the right tail region by using the result returned by FDF with the optional
argument COMPLEMENT set to . TRUE. rather than by using 1 - p where p is the result returned by FDF with

COMPLEMENT set to . FALSE..

Comments

Informational error

Type
1

Example

In this example, we find the probability that an F random variable with one numerator and one denominator

1.0 5 e
] e S vl ve
I — — 5 2
J i — |- 510
08 | 7 10 5
I A 5 20
1/
) P/
064 ;
= 41
" 14
2
o041
& 4
0.2 4
0.0 rT 1711717 717 rTrJ17rrrrjJprriurTd
0.0 5.0 10.0 15.0 200
X
Figure 11.10 — F Distribution Function
Code Description
3 Since the input argument F is not positive, the distribution function is zero at
F.

degree of freedom is greater than 648.

USE UMACH_INT
USE FDF_INT
IMPLICIT NONE
INTEGER NOUT

REAL

DFD, DFN, F, P

CALL UMACH (2, NOUT)

F =
DFN =
DFD =
P

648.0

1.0

1.0

FDF (F,DFN, DFD, COMPLEMENT=.TRUE.)

=RogueWave

FDF Chapter 11: Probability Distribution Functions and Inverses

384

WRITE (NOUT, 99999) P
99999 FORMAT (' The probability that an F(1l,1) variate is greater ', &
'than 648 is ', F6.4)
END

Output

The probability that an F(1, 1) variate is greater than 648 is 0.0250

= Rogygmg\{q FDF Chapter 11: Probability Distribution Functions and Inverses 385

FIN

This function evaluates the inverse of the F cumulative distribution function.

Function Return Value

FIN — Function value. (Output)
The probability that an F random variable takes a value less than or equal to FIN is P.

Required Arguments

P — Probability for which the inverse of the F distribution function is to be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

DFN — Numerator degrees of freedom. (Input)
DFN must be positive.

DFD — Denominator degrees of freedom. (Input)
DFD must be positive.

FORTRAN 90 Interface

Generic: FIN (P, DFN, DFD)
Specific: The specific interface names are S_FDF and D_FDF.

FORTRAN 77 Interface

Single: FIN (P, DFN, DFD)
Double: The double precision name is DFDF.
Description

Function FIN evaluates the inverse distribution function of a Snedecor’s F random variable with DFN numer-
ator degrees of freedom and DFD denominator degrees of freedom. The function is evaluated by making a
transformation to a beta random variable and then using the routine BETIN. If X is an F variate with 14 and

Vv, degrees of freedom and Y = v, X/ (W, + 1 X), then Y is a beta variate with parameters p = v4/2 and
q=V,/2.1f P < 0.5, FIN uses this relationship directly, otherwise, it also uses a relationship between F ran-
dom variables that can be expressed as follows, using routine FDF, which is the F cumulative distribution
function:

FDF (F, DFN,DFD) = 1.0 - FDF(1.0/F, DFD, DFN).

= Rogygmﬂn\{q FIN Chapter 11: Probability Distribution Functions and Inverses 386

Comments

Informational error

Type Code Description

4 4 FIN is set to machine infinity since overflow would occur upon modifying
the inverse value for the F distribution with the result obtained from the
inverse beta distribution.

Example

In this example, we find the 99-th percentage point for an F random variable with 1 and 7 degrees of
freedom.

USE UMACH_INT

USE FIN_INT

IMPLICIT NONE

INTEGER NOUT

REAL DFD, DFN, F, P

CALL UMACH (2, NOUT)

P = 0.99
DFN = 1.0
DFD = 7.0
F = FIN(P,DFN, DFD)
WRITE (NOUT,99999) F
99999 FORMAT (' The F(1,7) 0.01 critical wvalue is ', F6.3)
END
Output

The F(1, 7) 0.01 critical value 1is 12.246

= R{ng?mq\{q FIN Chapter 11: Probability Distribution Functions and Inverses 387

FPR

This function evaluates the F probability density function.

Function Return Value
FPR — Function value, the value of the probability density function. (Output)

Required Arguments

F — Argument for which the F probability density function is to be evaluated. (Input)

DFN — Numerator degrees of freedom. (Input)
DFN must be positive.

DFD — Denominator degrees of freedom. (Input)
DFD must be positive.

FORTRAN 90 Interface

Generic: FPR (F, DFN, DFD)
Specific: The specific interface names are S_FPR and D_FDPR

FORTRAN 77 Interface

Single: FPR (F, DFN, DFD)
Double: The double precision name is DFPR.
Description

The function FPR evaluates the F probability density function, defined as

lH<v1+vz> .
o) T o i
2 2

The parameters v; and v, correspond to the arguments DFN and DFD.

Example
In this example, we evaluate the probability function at ¥ = 2.0, DFN = 10.0, DFD = 1.0.
USE UMACH_INT

USE FPR_INT
IMPLICIT NONE

= ROQEI?WH\{E: FPR Chapter 11: Probability Distribution Functions and Inverses

388

INTEGER NOUT
REAL F, DFN, DFD, PR
CALL UMACH(2, NOUT)

F=2.0
DFN = 10.0
DFD = 1.0

PR = FPR(F, DFN, DFD)
WRITE (NOUT, 99999) F, DFN, DFD, PR

99999 FORMAT (' FPR(', F6.2, ', ', F6.2, ', ', F6.2, ') = ', F6.4)
END

Output

FPR(2.00, 10.00, 1.00) = 0.1052

= R‘Dgygmq\{eg FPR Chapter 11: Probability Distribution Functions and Inverses 389

FNDF

This function evaluates the noncentral F cumulative distribution function (CDF).

Function Return Value

FNDF — Probability that a random variable from an F distribution having noncentrality parameter
LAMBDA takes a value less than or equal to the input F. (Output)

Required Arguments
F — Argument for which the noncentral F cumulative distribution function is to be evaluated. (Input)
F must be non-negative.
DF1 — Number of numerator degrees of freedom of the noncentral F distribution. (Input)
DF1 must be positive.
DF2 — Number of denominator degrees of freedom of the noncentral F distribution. (Input)
DF2 must be positive.

LAMBDA — Noncentrality parameter. (Input)
LAMBDA must be non-negative.

FORTRAN 90 Interface

Generic: FNDF (F, DF1, DF2, LAMBDA)
Specific: The specific interface names are S_FNDF and D_FNDF.
Description

If X is a noncentral chi-square random variable with noncentrality parameter A and v, degrees of freedom,
and Y is a chi-square random variable with v, degrees of freedom which is statistically independent of X,
then

F= (X/v1>/<Y/v2>

is a noncentral F-distributed random variable whose CDF is given by

0

CDF(f,vl,vz,/1> = ch

J=0

where
Vi, .M
Cj: C{)J[x<7+],7>

_ 2 Jag_ A
w;=e (/1/2)/]!—2jw

J -1

= Rogygmﬂn\{q FNDF Chapter 11: Probability Distribution Functions and Inverses 390

Ix(a,b) ZBX(a,b)/B<a,b>
x_ - 2, I(j+1-b) ,
B.(ab) = a1y — bl = x@ - —x/
(ab) _([f(H” i jZO(a—FJ)F(I—b)]!
x=v1f/<v2+v1f>
F(a)r'(b)

F(a+b)

B(a,b) = Bl(a,b) =

I(a+1,b)=1.(ab)—-T.(ab)

F(a+b)
I'(a+1)T(b)

Tx(a,b)= xa(l—x)b=Tx<a—1,b)WX
and I'(-) is the gamma function. The above series expansion for the noncentral F CDF was taken from Butler
and Paolella (1999) (see Paolella.pdf), with the correction for the recursion relation given below:

I(a+1b) = I (ab) -T.(ab)

extracted from the AS 63 algorithm for calculating the incomplete beta function as described by Majumder
and Bhattacharjee (1973).

The correspondence between the arguments of function FNDF (F, DF1, DF2, LAMBDA) and the variables in
the above equations is as follows: v; = DF1, v, = DF2, A = LAMBDA, and f = F.

For A =0, the noncentral F distribution is the same as the F distribution.

Example

This example traces out a portion of a noncentral F distribution with parameters DF1 = 100, DF2 = 10, and
LAMBDA = 10.

USE UMACH_INT

USE FNDF_INT

IMPLICIT NONE

INTEGER NOUT, T

REAL X, LAMBDA, DFl, DF2, CDFV, XO0(8)

DATA X0 / 0.0, .4, .8, 1.2, 1.6, 2.0, 2.8, 4.0 /

CALL UMACH (2, NOUT)
DF1 = 100.0

DF2 = 10.0

LAMBDA = 10.0

= ROQEI?WH\{E: FNDF Chapter 11: Probability Distribution Functions and Inverses

391

http://fmwww.bc.edu/CEF99/papers/Paolella.pdf

WRITE (NOUT,'("DFl: ", F4.0, ";
"; LAMBDA: ", F4.0 // " X
DF1l, DF2, LAMBDA
DO I =1, 8
X = X0(I)
CDFV = FNDF (X, DF1l, DF2, LAMBDA)

WRITE
END DO
END
Output
DFl: 100.; DrF2: 10.
X CDF (X)
0.0 0.000000E+00
0.4 0.488790E-02
0.8 0.202633E+00
1.2 0.521143E+00
1.6 0.733853E+00
2.0 0.850413E+00
2.8 0.947125E+00
4.0 0.985358E+00

(NOuT, ' (1X, F5.1,

; LAMBDA: 10.

2X, E12.6)') X, CDFV

=RogueWave

FNDF

Chapter 11: Probability Distribution Functions and Inverses

392

FNIN

This function evaluates the inverse of the noncentral F cumulative distribution function (CDF).

Function Return Value
FNIN — Function value, the value of the inverse of the cumulative distribution function evaluated at p.

The probability that a noncentral F random variable takes a value less than or equal to FNIN is P.
(Output)

Required Arguments

P — Probability for which the inverse of the noncentral F cumulative distribution function is to be evalu-
ated. (Input)
P must be non-negative and less than 1.
DF1 — Number of numerator degrees of freedom of the noncentral F distribution. (Input)
DF1 must be positive.
DF2 — Number of denominator degrees of freedom of the noncentral F distribution. (Input)
DF2 must be positive.
LAMBDA — Noncentrality parameter. (Input)
LAMBDA must be non-negative.

FORTRAN 90 Interface

Generic: FNIN (P, DF1, DF2, LAMBDA)
Specific: The specific interface names are S_FNIN and D_FNIN.
Description

If X is a noncentral chi-square random variable with noncentrality parameter A and v, degrees of freedom,
and Y is a chi-square random variable with v, degrees of freedom which is statistically independent of X,
then

F= <X/v1> / <Y/v2>
is a noncentral F-distributed random variable whose CDF is given by
o0
p= CDF(f,Vl,V2,1> = ZC]
J=0

where:

= Rogygwkﬂn\ter FNIN Chapter 11: Probability Distribution Functions and Inverses

393

_ P A
w;=e ’1/2(/1/2)1/]! =2,

-1
Ix<a,b> =Bx(a,b> /B(a,b)
0 _ 2, TI(j+1-b)
B.(ab) =1 -0 dr = x° : —x’
(a.b) ! 1= x;;(a+]ﬁ(1—b)ﬂx
x=v1f/<v2+v1f>

F(a)r'(b)

F(a+b)

B(a,b) =B1<a,b) =

Ix<a+ l,b) = Ix<a,b> - Tx(a,b)

F<a+b>
IF'(a+1)r(b)

To(ab) = ¥ - x) = To(a—1,6) 4= Ly

and ['(-) is the gamma function, and p = CDF(f) is the probability that F < f. The correspondence between the
arguments of function FNIN (P,DF1,DF2,LAMBDA) and the variables in the above equations is as follows:
Vi =DF1, V, =DF2, A = LAMBDA, and p = P.

Function FNIN evaluates

f= CDF™! (p,vl,vl,/1>

Function FNIN uses bisection and modified regula falsi search algorithms to invert the distribution function
CDE(f), which is evaluated using function FNDF. For sufficiently small p, an accurate approximation of

CDF™" (p) can be used which requires no such inverse search algorithms.

Example

This example traces out a portion of an inverse noncentral F distribution with parameters
DF1 =100, DF2 = 10, and LAMBDA = 10.

USE UMACH_INT
USE FNDF_INT
USE FNIN_INT
IMPLICIT NONE
INTEGER NOUT, T

= ROQEI?WH\{E: FNIN Chapter 11: Probability Distribution Functions and Inverses 394

REAL F, LAMBDA, DF1l, DF2, CDF, CDFINV,FO0(8)
DATA FO / 0.0, .4, .8, 1.2, 1.6, 2.0, 2.8, 4.0 /
CALL UMACH (2, NOUT)
DF1 = 100.0
DF2 = 10.0
LAMBDA = 10.0
WRITE (NOUT,'("DF1l: ", F4.0, "; ", F4.0, &
" LAMBDA : , F4.0 // " F P = CDF(F) CDFINV(P)") ') &
DF1l, DF2, LAMBDA
DO T =1, 8
F = FO(T)
CDF = FNDF(F, DFl, DF2, LAMBDA)
CDFINV = FNIN(CDF, DFl, DF2, LAMBDA)
WRITE (NOUT, '(1X, F5.1, 2(2X, E12.6))') F, CDF, CDFINV
END DO
END
Output
DFl: 100.; DF2: 10.; LAMBDA : 10.
F P = CDF(F) CDFINV (P)
0.0 0.000000E+00 0.000000E+00
0.4 0.488790E-02 0.400000E+00
0.8 0.202633E+00 0.800000E+00
1.2 0.521143E+00 0.120000E+01
1.6 0.733853E+00 0.160000E+01
2.0 0.850413E+00 0.200000E+01
2.8 0.947125E+00 0.280000E+01
4.0 0.985358E+00 0.400000E+01

=RogueWave

FNIN

Chapter 11: Probability Distribution Functions and Inverses

395

FNPR

This function evaluates the noncentral F probability density function.

Function Return Value
FNPR — Function value, the value of the probability density function. (Output)

Required Arguments
F — Argument for which the noncentral F probability density function is to be evaluated. (Input)
F must be non-negative.
DF1 — Number of numerator degrees of freedom of the noncentral F distribution. (Input)
DF1 must be positive.
DF2 — Number of denominator degrees of freedom of the noncentral F distribution. (Input)
DF2 must be positive.

LAMBDA — Noncentrality parameter. (Input)
LAMBDA must be non-negative.

FORTRAN 90 Interface

Generic: FNPR (F, DF1, DF2, LAMBDA)
Specific: The specific interface names are S_FNPR and D_FNPR.
Description

If X is a noncentral chi-square random variable with noncentrality parameter A and v, degrees of freedom,
and Y is a chi-square random variable with v, degrees of freedom which is statistically independent of X,
then

F= (X/v1>/<Y/v2>

is a noncentral F-distributed random variable whose PDF is given by

PDF (fyvph) = ‘I’Z@k
k=0
where
v1/2 v2/2

) ()

vitv, Y2
f<v1f+v2><1 2 F<v2/2>

= Rogygmﬂn\{ﬂj FNPR Chapter 11: Probability Distribution Functions and Inverses

396

+
er<¥+k>

b, =
C (2)
B i f
k= 2<v1f1+vz>

and ['(-) is the gamma function, v; = DF1, V, = DF2, A = LAMBDA, and f = F.
With a noncentrality parameter of zero, the noncentral F distribution is the same as the F distribution.
The efficiency of the calculation of the above series is enhanced by:

calculating each term ® in the series recursively in terms of either the term ®;_; preceding it or
the term @, ; following it, and

& initializing the sum with the largest series term and adding the subsequent terms in order of
decreasing magnitude.

Special cases:

ForR=/f =0:
F([v1+v2]/2)
PDF(f,vl,vz,/1> =Y, =¥ F<v1/2>
For A = 0:
v,/2 Va/2
vif v, Y2 (v, +v,]/2)
PDF(f,Vsz,/l): < : > Evlizz 2 [: 2]
f(v1f+v2> F<v1/2)F<v2/2>
For f =0:
A2 G N (T 4w, Y2y |0V
PDE(f, v, vy, 1) = rl(v12/2) r(vg/[z)1 2) ity =2;
w0 if v, <2

Example

This example traces out a portion of a noncentral F distribution with parameters DF1 = 100, DF2 = 10, and
LAMBDA = 10.

USE UMACH_INT
USE FNPR_INT
IMPLICIT NONE

= ROQEI?WH\{E: FNPR Chapter 11: Probability Distribution Functions and Inverses

397

INTEGER NOUT, T
REAL F, LAMBDA, DFl, DF2, PDFV, X0(8)
DATA X0 /0.0, 0.4, 0.8, 3.2, 5.6,8.8, 14.0, 18.0/

CALL UMACH (2, NOUT)
DF1 = 100.0

DF2 = 10.0

LAMBDA = 10.0

WRITE (NOUT,' ("DF1: ", ¥4.0, "; DF2: ", F4.0, "; LAMBDA'// &
s ", F4.0 //" F PDF (F)")') DF1l, DF2, LAMBDA

DO I =1, 8

F = X0(I)

PDFV = FNPR(F, DFl, DF2, LAMBDA)

WRITE (NOUT,'(1X, F5.1, 2X, E12.6)') F, PDFV
END DO
END

Output
DF1l: 100.; DF2: 10.; LAMBDA: 10.

PDF (F)
.000000E+00
.974879E-01
.813115E+00
.369482E-01
.283023E-02
.276607E-03
.219632E-04
.534831E-05

0 Ul Ww o oo

14.

O O 0o N ok O
O O O O O O o o

= R{ng?mq\{q FNPR Chapter 11: Probability Distribution Functions and Inverses 398

GAMDF

This function evaluates the gamma cumulative distribution function.

Function Return Value

GAMDF — Function value, the probability that a gamma random variable takes a value less than or equal
to X. (Output)

Required Arguments

X — Argument for which the gamma distribution function is to be evaluated. (Input)

A — The shape parameter of the gamma distribution. (Input)
This parameter must be positive.

FORTRAN 90 Interface

Generic: GAMDF (X, 2)
Specific: The specific interface names are S_GAMDF and D_GAMDF.

FORTRAN 77 Interface

Single: GAMDF (X, 2)
Double: The double precision name is DGAMDF.
Description

Function GAMDF evaluates the distribution function, F, of a gamma random variable with shape parameter 4;
that is,

F(x) = %ﬁe_ttaﬂdt

where [(+) is the gamma function. (The gamma function is the integral from 0 to % of the same integrand as
above). The value of the distribution function at the point x is the probability that the random variable takes
a value less than or equal to x.

The gamma distribution is often defined as a two-parameter distribution with a scale parameter b (which
must be positive), or even as a three-parameter distribution in which the third parameter c is a location
parameter. In the most general case, the probability density function over (c, o) is

/(1) = —barl(@e_(’_c)/b(x —o!

If T is such a random variable with parameters a4, b, and ¢, the probability that T < ¢, can be obtained from
GAMDF by setting X = (tg—¢)/b.

= Rogygmﬂn\{q GAMDF Chapter 11: Probability Distribution Functions and Inverses 399

If X is less than a or if X is less than or equal to 1.0, GAMDF uses a series expansion. Otherwise, a continued
fraction expansion is used. (See Abramowitz and Stegun, 1964.)

1.0 = — -
i s L a
] ,-", . . = — 05
1/, _ I R 1.0
! 50
087/ -~ 10.0
] ;
41
41
‘_é:' 0.6 4 |I H
G 4/
= 4l '
=) : ;
=P | /
th4-t f
0.2 ;
0.0 |.||'|'_.‘.i||||||||||||||
0.0 5.0 10.0 15.0 20.0
x
Figure 11.11 — Gamma Distribution Function
Comments
Informational error
Type Code Description
1 2 Since the input argument X is less than zero, the distribution function is set to
Zero.

Example

Suppose X is a gamma random variable with a shape parameter of 4. (In this case, it has an Erlang distribution
since the shape parameter is an integer.) In this example, we find the probability that X is less than 0.5 and the

probability that X is between 0.5 and 1.0.

USE UMACH_INT

USE GAMDF_INT
IMPLICIT NONE
INTEGER NOUT
REAL A, P, X

CALL UMACH (2, NOUT)
A =4.0

X =0.5

P = GAMDF (X,A)

WRITE (NOUT,99998) P

99998 FORMAT (' The probability that X is less than 0.5 is ', F6.4)
X =1.0
P = GAMDF(X,A) - P

= R{ngg\ﬂh’ﬂ\{&: GAMDF Chapter 11: Probability Distribution Functions and Inverses

400

WRITE (NOUT,99999) P

99999 FORMAT (' The probability that X is between 0.5 and 1.0 is ', &
F6.4)
END
Output

The probability that X is less than 0.5 is 0.0018
The probability that X is between 0.5 and 1.0 is 0.0172

= Rogygmg\{q GAMDF Chapter 11: Probability Distribution Functions and Inverses 401

GAMIN

This function evaluates the inverse of the gamma cumulative distribution function.

Function Return Value

GAMIN — Function value. (Output)
The probability that a gamma random variable takes a value less than or equal to GAMIN is P.

Required Arguments

P — Probability for which the inverse of the gamma cumulative distribution function is to be evaluated.
(Input)
P must be in the open interval (0.0, 1.0).

A — The shape parameter of the gamma distribution. (Input)
This parameter must be positive.

FORTRAN 90 Interface

Generic: GAMIN (P, 2)
Specific: The specific interface names are S_GAMIN and D_GAMIN.

FORTRAN 77 Interface

Single: GAMIN (P, 2)
Double: The double precision name is DGAMIN.
Description

Function GAMIN evaluates the inverse distribution function of a gamma random variable with shape param-
eter g, that is, it determines x (= GAMIN (P, A)), such that

X
__ 1 J. —t a-1
P F(a) o8 dt

where ['(-) is the gamma function. The probability that the random variable takes a value less than or equal to
x is P. See the documentation for routine GAMDF for further discussion of the gamma distribution.

Function GAMIN uses bisection and modified regula falsi to invert the distribution function, which is evalu-
ated using routine GAMDF.

= Rogygmﬂn\{ﬂj GAMIN Chapter 11: Probability Distribution Functions and Inverses

402

Comments

Informational error

Type Code Description
4 1 Over 100 iterations have occurred without convergence. Convergence is
assumed.
Example

In this example, we find the 95-th percentage point for a gamma random variable with shape parameter of 4.

USE UMACH_INT

USE GAMIN_INT
IMPLICIT NONE
INTEGER NOUT
REAL A, P, X

CALL UMACH (2, NOUT)
A =4.0

P = 0.95

X = GAMIN(P,A)

WRITE (NOUT,99999) X

99999 FORMAT (' The 0.05 gamma(4) critical value is ', F6.3, &
|‘|)

END

Output

The 0.05 gamma (4) critical value is 7.754.

= R{ng?mq\{q GAMIN Chapter 11: Probability Distribution Functions and Inverses 403

GAMPR

This function evaluates the gamma probability density function.

Function Return Value
GAMPR — Function value, the value of the probability density function. (Output)

Required Arguments

X — Argument for which the gamma probability density function is to be evaluated. (Input)

A — The shape parameter of the gamma distribution. (Input)
This parameter must be positive.

FORTRAN 90 Interface
Generic: GAMPR (X, B)
Specific: The specific interface names are S_GAMPR and D_GAMPR.

FORTRAN 77 Interface

Single: GAMPR (X, 2)
Double: The double precision name is DGAMPR.
Description

The function GAMPR evaluates the gamma probability density function, defined as

F(x|a> bk la><x> e xa>0

Example
In this example, we evaluate the probability function at X = 4.0, A = 5.0.

USE UMACH_INT
USE GAMPR_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, A, PR
CALL UMACH(2, NOUT)
X 4.0
A 5.0
PR = GAMPR (X, A)
WRITE (NOUT, 99999) X, A, PR

99999 FORMAT (' GAMPR(', F4.2, ', ', F4.2, ') = ', F6.4)
END

= ROQEI?WH\{E: GAMPR Chapter 11: Probability Distribution Functions and Inverses

404

Output

GAMPR (4.00, 5.00) = 0.1954

=
= Rogygmq\{q GAMPR Chapter 11: Probability Distribution Functions and Inverses 405

RALDF

This function evaluates the Rayleigh cumulative distribution function.

Function Return Value

RALDF — Function value, the probability that a Rayleigh random variable takes a value less than or equal
to X. (Output)

Required Arguments

X — Argument for which the Rayleigh cumulative distribution function is to be evaluated. (Input)
ALPHA — Scale parameter of the Rayleigh cumulative distribution function. (Input)

FORTRAN 90 Interface

Generic: RALDF (X, ALPHA)
Specific: The specific interface names are S_RALDF and D_RALDF.

FORTRAN 77 Interface

Single: RALDF (X, ALPHA)
Double: The double precision name is DRALDF.
Description

The function RALDF evaluates the Rayleigh cumulative probability distribution function, which is a special
case of the Weibull cumulative probability distribution function, where the shape parameter GAMMA is 2.0

2
X

52
F(x)=1- e
RALDF evaluates the Rayleigh cumulative probability distribution function using the relationship
RALDF (X, ALPHA) = WBLDF (X, SQRT (2.0) *ALPHA, 2.0).

Example

In this example, we evaluate the Rayleigh cumulative distribution function at X = 0.25, ALPHA = 0.5.

USE UMACH_INT

USE RALDF_INT
IMPLICIT NONE
INTEGER NOUT

REAL X, ALPHA, PR
CALL UMACH (2, NOUT)
X = 0.25

ALPHA = 0.5

= Rogygmﬂn\{q RALDF Chapter 11: Probability Distribution Functions and Inverses 406

PR = RALDF (X, ALPHA)
WRITE (NOUT, 99999) X, ALPHA, PR

99999 FORMAT (' RALDF(', F4.2, ', ', F4.2, ') = ', F6.4)
END

Output

RALDF (0.25, 0.50) = 0.1175

= Rogygmg\{q RALDF Chapter 11: Probability Distribution Functions and Inverses 407

RALIN

This function evaluates the inverse of the Rayleigh cumulative distribution function.

Function Return Value

RALIN — Function value, the value of the inverse of the cumulative distribution function. (Output)

Required Arguments

P — Probability for which the inverse of the Rayleigh distribution function is to be evaluated. (Input)
ALPHA — Scale parameter of the Rayleigh cumulative distribution function. (Input)

FORTRAN 90 Interface

Generic: RALIN (P, ALPHA)
Specific: The specific interface names are S_RALIN and D_RALIN.

FORTRAN 77 Interface

Single: RALIN (P, ALPHA)
Double: The double precision name is DRALIN.
Description
The function RALIN evaluates the inverse distribution function of a Rayleigh random variable with scale
parameter ALPHA.
Example

In this example, we evaluate the inverse probability function at P = 0.1175, ALPHA= 0.5.

USE UMACH_INT

USE RALIN_INT

IMPLICIT NONE

INTEGER NOUT

REAL X, ALPHA, P

CALL UMACH(2, NOUT)

P = 0.1175

ALPHA = 0.5

X = RALIN(P, ALPHA)

WRITE (NOUT, 99999) P, ALPHA, X

99999 FORMAT (' RALIN(', F6.4, ', ', F4.2, ') = ', F6.4)
END

Output

RALIN(0.1175, 0.50) = 0.2500

= Rogygmq\{q RALIN Chapter 11: Probability Distribution Functions and Inverses 408

RALPR

This function evaluates the Rayleigh probability density function.

Function Return Value
RALPR — Function value, the value of the probability density function. (Output)

Required Arguments

X — Argument for which the Rayleigh probability density function is to be evaluated. (Input)
ALPHA — Scale parameter of the Rayleigh probability function. (Input)

FORTRAN 90 Interface

Generic: RALPR (X, ALPHA)
Specific: The specific interface names are S_RALPR and D_RALPR.

FORTRAN 77 Interface

Single: RALPR (X, ALPHA)
Double: The double precision name is DRALPR.
Description

The function RALPR evaluates the Rayleigh probability density function, which is a special case of the

Weibull probability density function where GAMMA is equal to 2.0, and is defined as

)

f<x|a>=i2e , x>0
a

Example

In this example, we evaluate the Rayleigh probability density function at X = 0.25, ALPHA = 0.5.
USE UMACH_INT
USE RALPR_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, ALPHA, PR
CALL UMACH (2, NOUT)
X = 0.25
ALPHA = 0.5
PR = RALPR (X, ALPHA)
WRITE (NOUT, 99999) X, ALPHA, PR
99999 FORMAT (' RALPR(', F4.2, ', ', F4.2, ') = ', F6.4)
END

= ROQEI?WH\{E: RALPR Chapter 11: Probability Distribution Functions and Inverses

409

Output
RALPR(0.25, 0.50) = 0.8825

=
= Rogygmq\{q RALPR Chapter 11: Probability Distribution Functions and Inverses 410

TDF

This function evaluates the Student’s t cumulative distribution function.

Function Return Value

TDF — Function value, the probability that a Student’s ¢ random variable takes a value less than or equal
to the input T. (Output)

Required Arguments
T — Argument for which the Student’s ¢ distribution function is to be evaluated. (Input)

DF — Degrees of freedom. (Input)
DF must be greater than or equal to 1.0.

Optional Arguments

COMPLEMENT — Logical. If .TRUE., the complement of the Student’s ¢ cumulative distribution function
is evaluated. If .FALSE., the Student’s t cumulative distribution function is evaluated. (Input)
See the Description section for further details on the use of COMPLEMENT.
Default: COMPLEMENT = .FALSE..

FORTRAN 90 Interface

Generic: TDF (T, DF [, ...])
Specific: The specific interface names are S_TDF and D_TDF.

FORTRAN 77 Interface

Single: TDF (T, DF)
Double: The double precision name is DTDF.
Description

Function TDF evaluates the cumulative distribution function of a Student’s t random variable with DF
degrees of freedom. If the square of T is greater than or equal to DF, the relationship of a t to an F random
variable (and subsequently, to a beta random variable) is exploited, and routine BETDF is used. Otherwise,
the method described by Hill (1970) is used. Let v = DF. If v is not an integer, if v is greater than 19, or if v is
greater than 200, a Cornish-Fisher expansion is used to evaluate the distribution function. If v is less than 20
and ABS(T) is less than 2.0, a trigonometric series (see Abramowitz and Stegun 1964, equations 26.7.3 and
26.7.4, with some rearrangement) is used. For the remaining cases, a series given by Hill (1970) that con-
verges well for large values of T is used.

= ROQEI?WQ\{E{ TDF Chapter 11: Probability Distribution Functions and Inverses 411

If COMPLEMENT = .TRUE., the value of TDF at the point xis 1 - p, where 1 - p is the probability that the ran-
dom variable takes a value greater than x. In those situations where the desired end result is 1- p, the user can
achieve greater accuracy in the right tail region by using the result returned by TDF with the optional argu-
ment COMPLEMENT set to .TRUE. rather than by using 1 - p where p is the result returned by TDF with
COMPLEMENT set to .FALSE..

0.2

Figure 11.12 — Student’s t Distribution Function

Example

In this example, we find the probability that a f random variable with 6 degrees of freedom is greater in abso-
lute value than 2.447. We use the fact that t is symmetric about 0.

USE TDF_INT

USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
REAL DF, P, T

CALL UMACH (2, NOUT)

T = 2.447
DF = 6.0
P = 2.0*TDF(-T,DF)
WRITE (NOUT,99999) P
99999 FORMAT (' The probability that a t(6) variate is greater ', &
'than 2.447 in', /, ' absolute value is ', F6.4)
END
Output

The probability that a t(6) variate is greater than 2.447 in absolute value is 0.0500

= R{ngg\ﬂh’ﬂ\{&: TDF Chapter 11: Probability Distribution Functions and Inverses 412

TIN

This function evaluates the inverse of the Student’s t cumulative distribution function.

Function Return Value

TIN — Function value. (Output)
The probability that a Student’s f random variable takes a value less than or equal to TIN is P.

Required Arguments

P — Probability for which the inverse of the Student’s t cumulative distribution function is to be evalu-
ated. (Input)
P must be in the open interval (0.0, 1.0).

DF — Degrees of freedom. (Input)
DF must be greater than or equal to 1.0.

FORTRAN 90 Interface

Generic: TIN (P, DF)
Specific: The specific interface names are S_TIN and D_TIN.

FORTRAN 77 Interface

Single: TIN (P, DF)
Double: The double precision name is DTIN.
Description

Function TIN evaluates the inverse distribution function of a Student’s t random variable with DF degrees of
freedom. Let v=DF. If vequals 1 or 2, the inverse can be obtained in closed form, if vis between 1 and 2, the
relationship of a t to a beta random variable is exploited and routine BETIN is used to evaluate the inverse;

otherwise the algorithm of Hill (1970) is used. For small values of vgreater than 2, Hill’s algorithm inverts an

integrated expansion in 1/(1 + t2/ V) of the t density. For larger values, an asymptotic inverse Cornish-Fisher
type expansion about normal deviates is used.

Comments

Informational error

Type Code Description

4 3 TIN is set to machine infinity since overflow would occur upon modifying
the inverse value for the F distribution with the result obtained from the
inverse B distribution.

= ROQEI?WQ\{EF TIN Chapter 11: Probability Distribution Functions and Inverses 413

Example
In this example, we find the 0.05 critical value for a two-sided f test with 6 degrees of freedom.

USE TIN_INT

USE UMACH_INT
IMPLICIT NONE
INTEGER NOUT
REAL DF, P, T

CALL UMACH (2, NOUT)
P 0.975
DF = 6.0
T = TIN(P,DF)
WRITE (NOUT,99999) T
99999 FORMAT (' The two-sided t(6) 0.05 critical value is ', F6.3)
END

Output

The two-sided t(6) 0.05 critical value is 2.447

= ROQEJ?\MQ\{E: TIN Chapter 11: Probability Distribution Functions and Inverses 414

TPR

This function evaluates the Student’s t probability density function.

Function Return Value
TPR — Function value, the value of the probability density function. (Output)

Required Arguments

T — Argument for which the Student’s t probability density function is to be evaluated. (Input)

DF — Degrees of freedom. (Input)
DF must be greater than or equal to 1.0.

FORTRAN 90 Interface

Generic: TPR (T, DF)
Specific: The specific interface names are S_TPR and D_TPR

FORTRAN 77 Interface

Single: TPR (T, DF)
Double: The double precision name is DTPR.
Description

The function TPR evaluates the Student’s t probability density function, defined as

21y = (50505 (10 2V i v

Where v = DF.

The normalizing factor uses the Beta function, BETA (see SChapter 4, “Gamma Functions and Related
Functions”).

Example
In this example, we evaluate the probability function at T = 1.5, DF = 10.0.

USE UMACH_INT

USE TPR_INT
IMPLICIT NONE
INTEGER NOUT

REAL T, DF, PR
CALL UMACH (2, NOUT)

= Rogygmq\{q TPR Chapter 11: Probability Distribution Functions and Inverses 415

T =1.5
DF = 10.0
PR = TPR(T, DF)
WRITE (NOUT, 99999) T, DF, PR
99999 FORMAT (' TPR(', F4.2, ', ', F6.2, ') = ', F6.4)
END

Output

TPR(1.50, 10.00) = 0.1274

= Rogygmg\{q TPR Chapter 11: Probability Distribution Functions and Inverses 416

TNDF

This function evaluates the noncentral Student’s t cumulative distribution function.

Function Return Value

TNDF — Function value, the probability that a noncentral Student’s t random variable takes a value less
than or equal to T. (Output)

Required Arguments

T — Argument for which the noncentral Student’s t cumulative distribution function is to be evaluated.
(Input)

IDF — Number of degrees of freedom of the noncentral Student’s ¢ cumulative distribution. (Input)
IDF must be positive.

DELTA — The noncentrality parameter. (Input)

FORTRAN 90 Interface

Generic: TNDF (T, IDF, DELTA)
Specific: The specific interface names are S_TNDF and D_TNDF.

FORTRAN 77 Interface

Single: TNDF (T, IDF, DELTA)
Double: The double precision name is DTNDF.
Description

Function TNDF evaluates the cumulative distribution function F of a noncentral t random variable with IDF
degrees of freedom and noncentrality parameter DELTA; that is, with v= IDF, d = DELTA, and tj =T

W20 —5212

~oNT I (v/2)(v +x)

F(ty) = I (M)/zzr((w +1)/2)()(2)’/2d

where ['(-) is the gamma function. The value of the distribution function at the point #; is the probability that
the random variable takes a value less than or equal to £,

The noncentral t random variable can be defined by the distribution function above, or alternatively and
equivalently, as the ratio of a normal random variable and an independent chi-squared random variable. If w
has a normal distribution with mean d and variance equal to one, 1 has an independent chi-squared distribu-
tion with vdegrees of freedom, and

x=w/Yulv

= ROQEI?WQ\{E{ TNDF Chapter 11: Probability Distribution Functions and Inverses 417

then x has a noncentral ¢ distribution with degrees of freedom and noncentrality parameter .

The distribution function of the noncentral ¢ can also be expressed as a double integral involving a normal
density function (see, for example, Owen 1962, page 108). The function TNDF uses the method of Owen
(1962, 1965), which uses repeated integration by parts on that alternate expression for the distribution

function.
1 D] f(-— I‘..__,-' .5
- I|lll l"l 0
i | N e 5
0.8 - f 10
= [
- : E f
-5
GDJS— | j
o 7 | ;
%] . H
[- | i
2.4 | i
= - || H
. | :
] | i
02 |
i |
a !
0.0 ||||||".|||||||||||||||||
-40 00 40 80 120 160 200
x
Figure 11.13 — Noncentral Student’s t Distribution Function
Comments
Informational error
Type Code Description
4 2 An accurate result cannot be computed due to possible underflow for the
machine precision available. DELTA*SQRT (IDF/ (IDF+T**2)) must be less
than SQRT (-1.9*ALOG (S)), where S=AMACH (1) .
Example

Suppose T is a noncentral ¢ random variable with 6 degrees of freedom and noncentrality parameter 6. In this
example, we find the probability that T is less than 12.0. (This can be checked using the table on page 111 of

Owen 1962, with 77 = 0.866, which yields A=1.664.)

USE UMACH_INT

USE TNDF_INT

IMPLICIT NONE
INTEGER IDF, NOUT
REAL DELTA, P, T

CALL UMACH (2, NOUT)
IDF =6
DELTA 6.0

418

= R{ngg\ﬂh’ﬂ\{&: TNDF Chapter 11: Probability Distribution Functions and Inverses

T =12.0

P = TNDF (T, IDF,DELTA)
WRITE (NOUT,99999) P

99999 FORMAT (' The probability that T is less than 12.0 is ', F6.4)
END

Output

The probability that T is less than 12.0 is 0.9501

= Rogygmg\{q TNDF Chapter 11: Probability Distribution Functions and Inverses 419

TNIN

This function evaluates the inverse of the noncentral Student’s t cumulative distribution function.

Function Return Value

TNIN — Function value. (Output)
The probability that a noncentral Student’s t random variable takes a value less than or equal to TNIN

is P.

Required Arguments

P — Probability for which the inverse of the noncentral Student’s t cumulative distribution function is to
be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

IDF — Number of degrees of freedom of the noncentral Student’s t cumulative distribution. (Input) IDF
must be positive.

DELTA — The noncentrality parameter. (Input)

FORTRAN 90 Interface

Generic: TNIN (P, IDF, DELTA)
Specific: The specific interface names are S_TNIN and D_TNIN.

FORTRAN 77 Interface

Single: TNIN (P, IDF, DELTA)
Double: The double precision name is DTNIN.
Description

Function TNIN evaluates the inverse distribution function of a noncentral f random variable with IDF
degrees of freedom and noncentrality parameter DELTA; that is, with P = P, v= IDF, and & = DELTA, it deter-
mines ty (= TNIN(P, IDF, DELTA)), such that

‘0 V2 5% 0 5 o
P= J‘—oo‘/_l" /v2 : L2 (v+1)/2zr((v +i+ 1)/2)(H)(v+_xx2)l/2dx
T (V)(V X) —

where ['(-) is the gamma function. The probability that the random variable takes a value less than or equal to
tois P. See TNDF for an alternative definition in terms of normal and chi-squared random variables. The func-

tion TNIN uses bisection and modified regula falsi to invert the distribution function, which is evaluated
using routine TNDF.

= Rogygwkﬂn\ter TNIN Chapter 11: Probability Distribution Functions and Inverses

Comments

Informational error

Type Code Description
4 1 Over 100 iterations have occurred without convergence. Convergence is
assumed.
Example

In this example, we find the 95-th percentage point for a noncentral ¢ random variable with 6 degrees of free-
dom and noncentrality parameter 6.

USE TNIN_INT

USE UMACH_INT

IMPLICIT NONE
INTEGER IDF, NOUT
REAL DELTA, P, T

CALL UMACH (2, NOUT)

IDF =6

DELTA = 6.0

P = 0.95

T = TNIN(P, IDF,DELTA)

WRITE (NOUT,99999) T
!

99999 FORMAT (' The 0.05 noncentral t critical value is ', F6.3, &
1 . |)

END

Output

The 0.05 noncentral t critical value is 11.995.

= R{ngg\ﬂh’ﬂ\{&: TNIN Chapter 11: Probability Distribution Functions and Inverses 421

TNPR

This function evaluates the noncentral Student's ¢ probability density function.

Function Return Value
TNPR — Function value, the value of the probability density function. (Output)

Required Arguments
T — Argument for which the noncentral Student's ¢ probability density function is to be evaluated. (Input)

DF — Number of degrees of freedom of the noncentral Student's ¢ distribution. (Input)
DF must be positive.

DELTA — Noncentrality parameter. (Input)

FORTRAN 90 Interface

Generic: TNPR (T, DF, DELTA)
Specific: The specific interface names are S_TNPR and D_TNPR.
Description

The noncentral Student's ¢ distribution is a generalization of the Student's ¢ distribution.

If w is a normally distributed random variable with unit variance and mean & and u is a chi-square random
variable with v degrees of freedom that is statistically independent of w, then

T=w/~Nulv

is a noncentral t-distributed random variable with v degrees of freedom and noncentrality parameter 9, that
is, with v=DF, and & = DELTA. The probability density function for the noncentral t-distribution is:

2 0
vv/Ze 0°/2

7
ﬁf(v/2)(v+ t2><v+1>/2;

f (t,v,é) =
where

o T((rtit 0y 2)[ee](2r (v+))?

! i!

and t=T.

= Rogygmﬂn\{ﬂj TNPR Chapter 11: Probability Distribution Functions and Inverses 422

http://en.wikipedia.org/wiki/Normal_distribution

For & = 0, the PDF reduces to the (central) Student’s t PDF:

F((v+1)/2)(1+ (210))¢
f(60) = . >x/vln<r(v/<2) 2

and, for t = 0, the PDF becomes:

2
CT((v+1)/2)e””
FO0) = = r (72

Example

This example calculates the noncentral Student’s t PDF for a distribution with 2 degrees of freedom and non-
centrality parameter & = 10.

USE TNPR_INT
USE UMACH_INT
IMPLICIT NONE

INTEGER :: NOUT, I
REAL :: X(6)=(/ -.5, 1.5, 3.5, 7.5, 51.5, 99.5 /)
REAL :: DF, DELTA, PDFV

CALL UMACH (2, NOUT)
DF = 2.0
DELTA = 10.0

WRITE (NOUT,' ("DF: ", F4.0, " DELTA: ", F4.0 //' // &
v X PDF (X)")') DF, DELTA

DO I =1, 6

PDFV = TNPR(X(I), DF, DELTA)

WRITE (NOUT, ' (1X, F4.1, 2X, E12.5)') X(I), PDFV
END DO
END

Output

DF:

[S2NC2BNC BNC ENC BN,

2. DELTA: 10.

PDF (X)
.16399E-23
.74417E-09
.28972E-02
.78853E-01
.14215E-02
.20290E-03

O O O O O o

= R{ngg\ﬂh’ﬂ\{&: TNPR Chapter 11: Probability Distribution Functions and Inverses

423

UNDF

This function evaluates the uniform cumulative distribution function.

Function Return Value

UNDF — Function value, the probability that a uniform random variable takes a value less than or equal
to X. (Output)

Required Arguments

X — Argument for which the uniform cumulative distribution function is to be evaluated. (Input)
A — Location parameter of the uniform cumulative distribution function. (Input)

B — Value used to compute the scale parameter (B — 2) of the uniform cumulative distribution function.
(Input)

FORTRAN 90 Interface
Generic: UNDF (X, A, B)
Specific: The specific interface names are S_UNDF and D_UNDF.

FORTRAN 77 Interface

Single: UNDF (X, A, B)
Double: The double precision name is DUNDF.
Description

The function UNDF evaluates the uniform cumulative distribution function with location parameter A and
scale parameter (B — A). The function definition is

0, if x<A4
F(x|4,B) = {54, if A<x<B
1, if x> B

Example

In this example, we evaluate the probability function at X = 0.65, A = 0.25, B = 0.75.

USE UMACH_INT

USE UNDF_INT
IMPLICIT NONE
INTEGER NOUT

REAL X, A, B, PR
CALL UMACH(2, NOUT)
X = 0.65

A = 0.25

= Rogygmﬂn\{ﬂj UNDF Chapter 11: Probability Distribution Functions and Inverses 424

B =0.75
PR = UNDF (X, A, B)
WRITE (NOUT, 99999) X, A, B, PR
99999 FORMAT (' UNDF(', F4.2, ', ', F4.2, ' ', F4.2, ') = ', F6.4)
END

Output

UNDF (0.65, 0.25, 0.75) = 0.8000

= Rogygmg\{q UNDF Chapter 11: Probability Distribution Functions and Inverses 425

UNIN

This function evaluates the inverse of the uniform cumulative distribution function.

Function Return Value

UNIN — Function value, the value of the inverse of the cumulative distribution function. (Output)

Required Arguments

P — Probability for which the inverse of the uniform cumulative distribution function is to be evaluated.
(Input)
A — Location parameter of the uniform cumulative distribution function. (Input)

B — Value used to compute the scale parameter (B — 2) of the uniform cumulative distribution function.
(Input)

FORTRAN 90 Interface
Generic: UNIN (P, &, B)
Specific: The specific interface names are S_UNIN and D_UNIN.

FORTRAN 77 Interface

Single: UNIN (P, A, B)
Double: The double precision name is DUNIN.
Description

The function UNIN evaluates the inverse distribution function of a uniform random variable with location
parameter A and scale parameter (B — A).

Example

In this example, we evaluate the inverse probability function at P = 0.80, 2 = 0.25, B = 0.75.
USE UMACH_INT
USE UNIN_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, A, B, P
CALL UMACH(2, NOUT)

P =0.80
A = 0.25
B =0.75

X = UNIN(P, A, B)
WRITE (NOUT, 99999) P, A, B, X

99999 FORMAT (' UNIN(', F4.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END

= Rogygmq\{q UNIN Chapter 11: Probability Distribution Functions and Inverses 426

Output
UNIN(0.80, 0.25, 0.75) = 0.6500

=
= Rogygmq\{e; UNIN Chapter 11: Probability Distribution Functions and Inverses 427

UNPR

This function evaluates the uniform probability density function.

Function Return Value
UNPR — Function value, the value of the probability density function. (Output)

Required Arguments

X — Argument for which the uniform probability density function is to be evaluated. (Input)
A — Location parameter of the uniform probability function. (Input)

B — Value used to compute the scale parameter (B — 2) of the uniform probability density function.
(Input)

FORTRAN 90 Interface
Generic: UNPR (X, 2, B)
Specific: The specific interface names are S_UNPR and D_UNPR.

FORTRAN 77 Interface

Single: UNPR (X, A, B)
Double: The double precision name is DUNPR.
Description

The function UNPR evaluates the uniform probability density function with location parameter A and scale
parameter (B — A), defined

1
f<x|A,B>= 7 forASX.SB
0 otherwise

Example

In this example, we evaluate the uniform probability density function at X = 0.65, A = 0.25,
B=0.75.

USE UMACH_INT

USE UNPR_INT
IMPLICIT NONE
INTEGER NOUT

REAL X, A, B, PR
CALL UMACH (2, NOUT)

X = 0.65
A = 0.25
B =0.75

= Rogygmq\{q UNPR Chapter 11: Probability Distribution Functions and Inverses 428

PR = UNPR(X, A, B)
WRITE (NOUT, 99999) X, A, B, PR

99999 FORMAT (' UNPR(', F4.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END

Output

UNPR(0.65, 0.25, 0.75) = 2.0000

= Rogygmg\{q UNPR Chapter 11: Probability Distribution Functions and Inverses 429

WBLDF

This function evaluates the Weibull cumulative distribution function.

Function Return Value

WBLDF — Function value, the probability that a Weibull random variable takes a value less than or equal
to X. (Output)

Required Arguments
X — Argument for which the Weibull cumulative distribution function is to be evaluated. (Input)
A — Scale parameter. (Input)
B — Shape parameter. (Input)

FORTRAN 90 Interface
Generic: WBLDF (X, A, B)
Specific: The specific interface names are S_WBLDF and D_WBLDF.

FORTRAN 77 Interface

Single: WBLDF (X, A, B)
Double: The double precision name is DWBLDF.
Description

The function WBLDF evaluates the Weibull cumulative distribution function with scale parameter A and
shape parameter B, defined

F<x|a,b> =1 —e_(%>b

b
To deal with potential loss of precision for small values of (%) , the difference expression for p is re-written
as

u=(%). p=u —<ei;l)

and the right factor is accurately evaluated using EXPRL.

Example

In this example, we evaluate the Weibull cumulative distribution function at x =1.5,A=1.0, B =2.0.

USE UMACH_INT
USE WBLDF_INT

= Rogygmﬂn\{q WBLDF Chapter 11: Probability Distribution Functions and Inverses 430

IMPLICIT NONE
INTEGER NOUT
REAL X, A, B, PR

CALL UMACH(2, NOUT)

X =1.5
A =1.0
B =2.0

PR = WBLDF (X, A, B)
WRITE (NOUT, 99999) X, A, B, PR

99999 FORMAT (' WBLDF(', F4.2, ', ', F4. ', ', F4.2, ') = ', F6.4)
END
Output
WBLDF (1.50, 1.00, 2.00) = 0.8946
= Rogygmg\{q WBLDF Chapter 11: Probability Distribution Functions and Inverses 431

WBLIN

This function evaluates the inverse of the Weibull cumulative distribution function.

Function Return Value

WBLIN — Function value, the value of the inverse of the Weibull cumulative distribution function.
(Output)

Required Arguments

P — Probability for which the inverse of the Weibull cumulative distribution function is to be evaluated.
(Input)

A — Scale parameter. (Input)

B — Shape parameter. (Input)

FORTRAN 90 Interface
Generic: WBLIN (P, A, B)
Specific: The specific interface names are S_WBLIN and D_WBLIN.

FORTRAN 77 Interface

Single: WBLIN (P, A, B)
Double: The double precision name is DWBLIN.
Description

The function WBLIN evaluates the inverse distribution function of a Weibull random variable with scale
parameter A and shape parameter B.

Example

In this example, we evaluate the inverse probability function at P = 0.8946, A =1.0, B = 2.0.
USE UMACH_INT
USE WBLIN_INT
IMPLICIT NONE
INTEGER NOUT
REAL X, A, B, P
CALL UMACH(2, NOUT)

P = 0.8946
A=1.0
B =2.0
X = WBLIN(P, A, B)
WRITE (NOUT, 99999) P, A, B, X
99999 FORMAT (' WBLIN(', ¥F4.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END

= Rogygmq\{q WBLIN Chapter 11: Probability Distribution Functions and Inverses 432

Output
WBLIN(0.8946, 1.00, 2.00) = 1.5000

=
= Rogygmq\{e; WBLIN Chapter 11: Probability Distribution Functions and Inverses 433

WBLPR

This function evaluates the Weibull probability density function.

Function Return Value
WBLPR — Function value, the value of the probability density function. (Output)

Required Arguments

X — Argument for which the Weibull probability density function is to be evaluated. (Input)
A — Scale parameter. (Input)
B — Shape parameter. (Input)

FORTRAN 90 Interface
Generic: WBLPR (X, A, B)
Specific: The specific interface names are S_WBLPR and D_WBLPR.

FORTRAN 77 Interface

Single: WBLPR (X, A, B)
Double: The double precision name is DWBLPR.
Description

The function WBLPR evaluates the Weibull probability density function with scale parameter A and shape
parameter B, defined

_(x\b
f(x|a,b) =%<%>bile <a> , a,b>0

Example
In this example, we evaluate the Weibull probability density function at x =1.5, A =1.0, B = 2.0.

USE UMACH_INT

USE WBLPR_INT
IMPLICIT NONE
INTEGER NOUT

REAL X, A, B, PR’
CALL UMACH(2, NOUT)

X =1.5
A=1.0
B =2.0

PR = WBLPR(X, A, B)
WRITE (NOUT, 99999) X, A, B, PR

= ROQEI?WH\{E: WBLPR Chapter 11: Probability Distribution Functions and Inverses

434

99999 FORMAT (' WBLPR(', F4.2, ', ', F4.2, ', ', F4.2, ') = ', F6.4)
END

Output

WBLPR(1.50, 1.00, 2.00) = 0.3162

= R‘Ogy?mq\{es WBLPR Chapter 11: Probability Distribution Functions and Inverses 435

GCDF

This function evaluates a general continuous cumulative distribution function given ordinates of the density.

Function Return Value

GCDF — Function value, the probability that a random variable whose density is given in F takes a value
less than or equal to X0. (Output)

Required Arguments
X0 —Point at which the cumulative distribution function is to be evaluated. (Input)

X — Array containing the abscissas or the endpoints. (Input)
If 10PT =1 or 3, X is of length 2. If IOPT =2 or 4, X is of length M. For TOPT =1 or 3, X(1) contains the
lower endpoint of the support of the distribution and X(2) is the upper endpoint. For IOPT =2 or 4, X
contains, in strictly increasing order, the abscissas such that X(I) corresponds to F(I).

F — Vector of length M containing the probability density ordinates corresponding to increasing abscissas.
(Input)
If topT=1o0r3,forI=1,2,...,M F(I) corresponds to X(1) + (I - 1) * (X(2) - X(1))/(M-1); otherwise,
F and X correspond one for one.

Optional Arguments
IOPT — Indicator of the method of interpolation. (Input)
Default: TOPT = 1.
IOPT Interpolation Method
1 Linear interpolation with equally spaced abscissas.
2 Linear interpolation with possibly unequally spaced abscissas.
3 A cubic spline is fitted to equally spaced abscissas.
4 A cubic spline is fitted to possibly unequally spaced abscissas.
M —Number of ordinates of the density supplied. (Input)
M must be greater than 1 for linear interpolation (IOPT = 1 or 2) and greater than 3 if a curve is fitted

through the ordinates (IOPT = 3 or 4).
Default: M = size (F,1).

FORTRAN 90 Interface

Generic: GCDF (X0, X, F [,...1)
Specific: The specific interface names are S_GCDF and D_GCDF.

FORTRAN 77 Interface
Single: GCDF (X0, IOPT, M, X, F)
Double: The double precision name is DGCDF.

= ROQEI?WQ\{E{ GCDF Chapter 11: Probability Distribution Functions and Inverses

436

Description

Function GCDF evaluates a continuous distribution function, given ordinates of the probability density func-
tion. It requires that the range of the distribution be specified in X. For distributions with infinite ranges,
endpoints must be chosen so that most of the probability content is included. The function GCDF first fits a

curve to the points given in X and F with either a piecewise linear interpolant or a C! cubic spline interpolant
based on a method by Akima (1970). Function GCDF then determines the area, A, under the curve. (If the dis-
tribution were of finite range and if the fit were exact, this area would be 1.0.) Using the same fitted curve,

GCDF next determines the area up to the point xj (= X0). The value returned is the area up to x(divided by A.

Because of the scaling by A, it is not assumed that the integral of the density defined by X and F is 1.0. For
most distributions, it is likely that better approximations to the distribution function are obtained when IOPT
equals 3 or 4, that is, when a cubic spline is used to approximate the function. It is also likely that better
approximations can be obtained when the abscissas are chosen more densely over regions where the density
and its derivatives (when they exist) are varying greatly.

Comments

1. If IOPT = 3, automatic workspace usage is:
GCDF 6 * M units, or
DGCDF 11 * M units.

2. If TOPT = 4, automatic workspace usage is
GCDF 5 * M units, or
DGCDF 9 * M units.

3. Workspace may be explicitly provided, if desired, by the use of G4DF/DG4DF. The reference is:
GADF (P, IOPT, M, X, F, WK, IWK)

The arguments in addition to those of GCDF are:

WK — Work vector of length 5 * Mif TOPT = 3, and of length 4 * Mif TOPT = 4.
IWK — Work vector of length M.

Example

In this example, we evaluate the beta distribution function at the point 0.6. The probability density function
of a beta random variable with parameters p and g is

I'(p+

f(x) = Mx‘” "M=xT" foro<x<1
r(p)r(s)

where ['(-) is the gamma function. The density is equal to 0 outside the interval [0, 1]. We compute a constant
multiple (we can ignore the constant gamma functions) of the density at 300 equally spaced points and input
this information in X and F. Knowing that the probability density of this distribution is very peaked in the
vicinity of 0.5, we could perhaps get a better fit by using unequally spaced abscissas, but we will keep it sim-
ple. Note that this is the same example as one used in the description of routine BETDF. The result from
BETDF would be expected to be more accurate than that from GCDF since BETDF is designed specifically for
this distribution.

= ROQEI?WQ\{EF GCDF Chapter 11: Probability Distribution Functions and Inverses 437

USE UMACH_INT
USE GCDF_INT

IMPLICIT NONE
INTEGER M
PARAMETER (M=300)

INTEGER I, IOPT, NOUT
REAL F(M), H, P, PIN1l, QIN1l, X(2), X0, XTI

CALL UMACH (2, NOUT)

X0 = 0.6

IOPT = 3
! Initializations for a beta(l2,12)
! distribution.

PIN1 = 11.0

QIN1 = 11.0

XI = 0.0

H = 1.0/(M-1.0)

X(1) = XI

F(1) = 0.0

XTI = XI + H

! Compute ordinates of the probability
! density function.
DO 10 I=2, M -1
F(I) = XI**PIN1*(1.0-XI)**QIN1

XTI = XI + H
10 CONTINUE
X(2) = 1.0
FM) = 0.0

P = GCDF (X0, X, F, IOPT=IOPT)
WRITE (NOUT,99999) P

99999 FORMAT (' The probability that X is less than 0.6 is ', F6.4)
END

Output

The probability that X is less than 0.6 is 0.8364

= R{ng?mq\{q GCDF Chapter 11: Probability Distribution Functions and Inverses 438

GCIN

Evaluates the inverse of a general continuous cumulative distribution function given ordinates of the density.

Required Arguments
P — Probability for which the inverse of the distribution function is to be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

X — Array containing the abscissas or the endpoints. (Input)
If 10PT =1 or 3, X is of length 2. If IOPT =2 or 4, X is of length M. For TOPT =1 or 3, X(1) contains the
lower endpoint of the support of the distribution and X(2) is the upper endpoint. For IOPT =2 or 4, X
contains, in strictly increasing order, the abscissas such that X(I) corresponds to F(I).

F — Vector of length M containing the probability density ordinates corresponding to increasing abscissas.
(Input)
Ifropr=1o0r3,forI=1,2,..., M F(I) corresponds to X(1) + (I - 1) * (X(2) - X(1))/ (M - 1); otherwise,
F and X correspond one for one.

GCIN — Function value. (Output)
The probability that a random variable whose density is given in F takes a value less than or equal to
GCINis P.

Optional Arguments

IOPT — Indicator of the method of interpolation. (Input)
Default: TOPT = 1.

IOPT Interpolation Method

1 Linear interpolation with equally spaced abscissas.

2 Linear interpolation with possibly unequally spaced
abscissas.

3 A cubic spline is fitted to equally spaced abscissas.

4 A cubic spline is fitted to possibly unequally spaced
abscissas.

M — Number of ordinates of the density supplied. (Input)
M must be greater than 1 for linear interpolation (IOPT =1 or 2) and greater than 3 if a curve is fitted

through the ordinates (IOPT = 3 or 4).
Default: M = size (F,1).

FORTRAN 90 Interface

Generic: CALLGCIN (P, X, F [,...])
Specific: The specific interface names are S_GCIN and D_GCIN.

FORTRAN 77 Interface
Single: CALL GCIN (P, IOPT, M, X, F)

= ROQEI?WQ\{E{ GCIN Chapter 11: Probability Distribution Functions and Inverses

439

Double: The double precision function name is DGCIN.

Description

Function GCIN evaluates the inverse of a continuous distribution function, given ordinates of the probability
density function. The range of the distribution must be specified in X. For distributions with infinite ranges,
endpoints must be chosen so that most of the probability content is included.

The function GCIN first fits a curve to the points given in X and F with either a piecewise linear interpolant or

a C! cubic spline interpolant based on a method by Akima (1970). Function GCIN then determines the area, A,
under the curve. (If the distribution were of finite range and if the fit were exact, this area would be 1.0.) It
next finds the maximum abscissa up to which the area is less than AP and the minimum abscissa up to which
the area is greater than AP. The routine then interpolates for the point corresponding to AP. Because of the
scaling by A, it is not assumed that the integral of the density defined by X and F is 1.0.

For most distributions, it is likely that better approximations to the distribution function are obtained when
IOPT equals 3 or 4, that is, when a cubic spline is used to approximate the function. It is also likely that better
approximations can be obtained when the abscissas are chosen more densely over regions where the density
and its derivatives (When they exist) are varying greatly.

Comments
Workspace may be explicitly provided, if desired, by the use of G3IN/DG3IN. The reference is
G3IN(P, IOPT, M, X, F, WK, IWK)
The arguments in addition to those of GCIN are:
WK — Work vector of length 5 * Mif TOPT = 3, and of length 4 * Mif IOPT = 4.
IWK — Work vector of length M.

Example

In this example, we find the 90-th percentage point for a beta random variable with parameters 12 and 12.
The probability density function of a beta random variable with parameters p and g is

T(p+q) , g1
= — — <x<

f(x) F(p)F(q)x (1-x)" " for0<x<1
where ['(-) is the gamma function. The density is equal to 0 outside the interval [0, 1]. With p = g, this is a
symmetric distribution. Knowing that the probability density of this distribution is very peaked in the vicin-
ity of 0.5, we could perhaps get a better fit by using unequally spaced abscissas, but we will keep it simple
and use 300 equally spaced points. Note that this is the same example that is used in the description of rou-
tine BETIN. The result from BETIN would be expected to be more accurate than that from GCIN since BETIN
is designed specifically for this distribution.

USE GCIN_INT
USE UMACH_INT
USE BETA_INT

= ROQEI?WQ\{EF GCIN Chapter 11: Probability Distribution Functions and Inverses 440

IMPLICIT NONE
INTEGER M
PARAMETER (M=300)

INTEGER I, IOPT, NOUT
REAL c, F(M), H, P, PIN, PINl, QIN, QIN1l, &
X(2), X0, XI

CALL UMACH (2, NOUT)

P = 0.9

IOPT = 3
! Initializations for a beta(l2,12)
! distribution.

PIN = 12.0

QIN = 12.0
PIN1 = PIN - 1.0
QIN1 = QIN - 1.0

C = 1.0/BETA (PIN, QIN)
XI = 0.0

H =1.0/(M-1.0)

X(1l) = XI

F(1) = 0.0

XI = XI + H

! Compute ordinates of the probability
! density function.
DO 10 I=2, M -1
F(I) = C*XI**PIN1*(1.0-XI)**QIN1
XI XI + H
10 CONTINUE
X(2) 1.0
F (M) 0.0

X0 = GCIN(P,X,F, IOPT=IOPT)
WRITE (NOUT,99999) X0

99999 FORMAT (' X is less than ', F6.4, ' with probability 0.9.")
END

Output

X is less than 0.6304 with probability 0.9.

= ROQEJ?\MQ\{E: GCIN Chapter 11: Probability Distribution Functions and Inverses 441

GFNIN

This function evaluates the inverse of a general continuous cumulative distribution function given in a
subprogram.

Function Return Value

GFNIN — The inverse of the function F at the point P. (Output)
F(GFNIN) is “close” to P.

Required Arguments

F — User-supplied FUNCTION to be inverted. F must be continuous and strictly monotone. The form is
F(X), where
X — The argument to the function. (Input)
F — The value of the function at X. (Output)
F must be declared EXTERNAL in the calling program.
P — The point at which the inverse of F is desired. (Input)

GUESS — An initial estimate of the inverse of F at P. (Input)

Optional Arguments

EPS — Convergence criterion. (Input)
When the relative change in GFNIN from one iteration to the next is less than EPS, convergence is

assumed. A common value for EPS is 0.0001. Another common value is 100 times the machine epsilon.

Default: EPS = 100 times the machine epsilon.

FORTRAN 90 Interface

Generic: GFNIN (F, P, GUESS [, ...1)
Specific: The specific interface names are S_GFNIN and D_GFNIN.

FORTRAN 77 Interface

Single: GFNIN (F, P, EPS, GUESS)
Double: The double precision name is DGFNIN.
Description

Function GFNIN evaluates the inverse of a continuous, strictly monotone function. Its most obvious use is in
evaluating inverses of continuous distribution functions that can be defined by a FORTRAN function. If the
distribution function cannot be specified in a FORTRAN function, but the density function can be evaluated
at a number of points, then routine GCIN can be used.

Function GFNIN uses regula falsi and/or bisection, possibly with the Illinois modification (see Dahlquist and
Bjorck 1974). A maximum of 100 iterations are performed.

= ROQEI?WQ\{E{ GFNIN Chapter 11: Probability Distribution Functions and Inverses

442

Comments

1. Informational errors

Type Code Description

4 1 After 100 attempts, a bound for the inverse cannot be determined. Try again
with a different initial estimate.

4 2 No unique inverse exists.

4 3 Over 100 iterations have occurred without convergence. Convergence is
assumed.

2. The function to be inverted need not be a distribution function, it can be any continuous, monotonic
function.

Example

In this example, we find the 99-th percentage point for an F random variable with 1 and 7 degrees of free-
dom. (This problem could be solved easily using routine FIN. Compare the example for FIN). The function
to be inverted is the F distribution function, for which we use routine FDF. Since FDF requires the degrees of
freedom in addition to the point at which the function is evaluated, we write another function F that receives
the degrees of freedom via a common block and then calls FDF. The starting point (initial guess) is taken as
two standard deviations above the mean (since this would be a good guess for a normal distribution). It is
not necessary to supply such a good guess. In this particular case, an initial estimate of 1.0, for example,
yields the same answer in essentially the same number of iterations. (In fact, since the F distribution is
skewed, the initial guess, 7.0, is really not that close to the final answer.)

USE UMACH_INT
USE GFNIN_INT
IMPLICIT NONE

INTEGER NOUT
REAL DFD, DFN, F, FO, GUESS, P, SQRT
COMMON /FCOM/ DFN, DFD

INTRINSIC SORT
EXTERNAL F

CALL UMACH (2, NOUT)

P = 0.99
DFN = 1.0
DFD = 7.0

! Compute GUESS as two standard
deviations above the mean.
GUESS = DFD/ (DFD-2.0) + 2.0*SQRT(2.0*DFD*DFD* (DFN+DFD-2.0) / (DFN* &
(DFD-2.0) **2* (DFD-4.0)))

FO = GFNIN (F, P,GUESS)
WRITE (NOUT,99999) FO

99999 FORMAT (' The F(1,7) 0.01 critical value is ', F6.3)
END

REAL FUNCTION F (X)
REAL X

= Rogygmq\{q GFNIN Chapter 11: Probability Distribution Functions and Inverses 443

REAL DFD, DFN, FDF
COMMON /FCOM/ DFN, DFD

EXTERNAL FDF

F = FDF (X,DFN, DFD)

RETURN
END

Output

The F(1,7) 0.01 critical value is 12.246

=RogueWave

GFNIN

Chapter 11: Probability Distribution Functions and Inverses

444

Chapter 12: Mathieu Functions

I

Routines
Evaluate the eigenvalues for the periodic Mathieu functions. MATEE 447
Evaluate even, periodic Mathieu functions. MATCE 450
Evaluate odd, periodic Mathieu functions MATSE 454

= Rogygmg\{q Chapter 12: Mathieu Functions 445

Usage Notes

Mathieu’s equation is

2
%+ (a—2gcos2v)y=0
Vv

It arises from the solution, by separation of variables, of Laplace’s equation in elliptical coordinates, where a
is the separation constant and g is related to the ellipticity of the coordinate system. If we let t = cos v, then
Mathieu’s equation can be written as

<1—t2>%— %+ <a+2q—4qt2>y=0

For various physically important problems, the solution y(t) must be periodic. There exist, for particular val-
ues of 4, periodic solutions to Mathieu’s equation of period kTt for any integer k. These particular values of a
are called eigenvalues or characteristic values. They are computed using the routine MATEE.

There exist sequences of both even and odd periodic solutions to Mathieu’s equation. The even solutions are
computed by MATCE. The odd solutions are computed by MATSE.

= Rogygmq\{q Usage Notes Chapter 12: Mathieu Functions 446

MATEE

Evaluates the eigenvalues for the periodic Mathieu functions.

Required Arguments

Q — Parameter. (Input)
ISYM — Symmetry indicator. (Input)

ISYM Meaning
0 Even
1 Odd

IPER — Periodicity indicator. (Input)

ISYM Meaning
0 pi
1 2 *pi

EVAL — Vector of length N containing the eigenvalues. (Output)

Optional Arguments

N — Number of eigenvalues to be computed. (Input)
Default: N = size (EVAL,1)

FORTRAN 90 Interface

Generic: CALL MATEE (Q, ISYM, IPER, EVAL [, ...])
Specific: The specific interface names are S_MATEE and D_MATEE.

FORTRAN 77 Interface

Single: CALL MATEE (Q, N, ISYM, IPER, EVAL)
Double: The double precision function name is DMATEE.
Description

The eigenvalues of Mathieu’s equation are computed by a method due to Hodge (1972). The desired eigen-
values are the same as the eigenvalues of the following symmetric, tridiagonal matrix:

= Rogygmﬂn\{q MATEE Chapter 12: Mathieu Functions

447

Here,

where

Since the above matrix is semi-infinite, it must be truncated before its eigenvalues can be computed. Routine

[W, gX, 0 O
0 qX) W4 qX 4
0 0 qx, W,

Y = {\/7 if ISYM=IPER=m=0
" 1 otherwise

W, =[m+IPER+2(1-IPER)ISYM]*+V,,

+g if IPER=1, ISYM=0and m=0
Vo=41—¢q if IPER=1, ISYM=1and m=0
0 otherwise

MATEE computes an estimate of the number of terms needed to get accurate results. This estimate can be
overridden by calling M2TEE with NORDER equal to the desired order of the truncated matrix.

The eigenvalues of this matrix are computed using the routine EVLSB found in the IMSL Fortran Math
Library, Chapter 2, “Eigensystem Analysis”.

Com
1.

ments

Workspace may be explicitly provided, if desired, by use of M2TEE/DM2TEE. The reference is
CALL M2TEE (Q, N, ISYM, IPER, EVAL, NORDER, WORKD, WORKE)

The additional arguments are as follows:
NORDER — Order of the matrix whose eigenvalues are computed. (Input)

WORKD — Work vector of size NORDER. (Input/Output)
If EVAL is large enough then EVAL and WORKD can be the same vector.

WORKE — Work vector of size NORDER. (Input/Output)

2. Informational error
Type Code Description
4 1 The iteration for the eigenvalues did not converge.
Example
In this example, the eigenvalues for Q = 5, even symmetry, and T periodicity are computed and printed.

USE UMACH_INT

= ROQQ?WQ\{E{ MATEE Chapter 12: Mathieu Functions

448

USE MATEE_INT

IMPLICIT NONE
! Declare variables
INTEGER N
PARAMETER (N=10)
1
INTEGER ISYM, IPER, K, NOUT
REAL Q, EVAL(N)
! Compute
Q =5.0
ISYM = 0
IPER = 0
CALL MATEE (Q, ISYM, IPER, EVAL)
! Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) 2*K-2, EVAL(K)
10 CONTINUE
99999 FORMAT (' Eigenvalue', 12, = ', F9.4)
END
Output
Eigenvalue 0 = -5.8000
Eigenvalue 2 = 7.4491
Eigenvalue 4 = 17.0966
Eigenvalue 6 = 36.3609
Eigenvalue 8 = 64.1989
Eigenvaluel0 = 100.1264
Eigenvaluel2 = 144.0874
Eigenvalueld = 196.0641
Eigenvaluel6 = 256.0491

Eigenvalue

18 = 324.0386

=RogueWave

MATEE

Chapter 12: Mathieu Functions

449

MATCE

Evaluates a sequence of even, periodic, integer order, real Mathieu functions.

Required Arguments

X — Argument for which the sequence of Mathieu functions is to be evaluated. (Input)

Q — Parameter. (Input)
The parameter Q must be positive.

N — Number of elements in the sequence. (Input)

CE — Vector of length N containing the values of the function through the series. (Output)
CE(T) contains the value of the Mathieu function of order T —1 at X for T =1 to N.

FORTRAN 90 Interface

Generic: CALL MATCE (X, Q, N, CE)
Specific: The specific interface names are S_MATCE and D_MATCE.

FORTRAN 77 Interface

Single: CALL MATCE (X, Q, N, CE)
Double: The double precision name is DMATCE.
Description

The eigenvalues of Mathieu’s equation are computed using MATEE. The function values are then computed
using a sum of Bessel functions, see Gradshteyn and Ryzhik (1965), equation 8.661.

Comments
1. Workspace may be explicitly provided, if desired, by use of M2TCE/DM2TCE. The reference is
CALL M2TCE (X, Q, N, CE, NORDER, NEEDEV, EVALOQ, EVAL1, COEF, WORK, BSJ)
The additional arguments are as follows:

NORDER — Order of the matrix used to compute the eigenvalues. (Input)
It must be greater than N. Routine MATSE computes NORDER by the following call to M3TEE.

CALL M3TEE(Q, N, NORDER)
NEEDEV — Logical variable, if .TRUE., the eigenvalues must be computed. (Input)

EVALO — Real work vector of length NORDER containing the eigenvalues computed by MATEE
with ISYM =0 and IPER =0. (Input/Output)
If NEEDEV is .TRUE., then EVALO is computed by M2TCE; otherwise, it must be set as an input
value.

EVAL1 — Real work vector of length NORDER containing the eigenvalues computed by MATEE
with ISYM=0and IPER = 1. (Input/Output)
If NEEDEV is .TRUE., then EVAL1 is computed by M2TCE; otherwise, it must be set as an input
value.

= ROQQ?WQ\{EF MATCE Chapter 12: Mathieu Functions 450

2.

Examples

Example 1

Type

4

COEF — Real work vector of length NORDER + 4.

WORK — Real work vector of length NORDER + 4.
BSJ — Real work vector of length 2 * NORDER — 2.
Informational error

Code

1

Description

The iteration for the eigenvalues did not converge.

In this example, ce,(x =T1/4,9=1),n =0, ..., 9 is computed and printed.

USE CONST_INT
USE MATCE_INT
USE UMACH_INT

IMPLICIT NONE
! Declare variables
INTEGER N
PARAMETER (N=10)
!
INTEGER K, NOUT
REAL CE(N), Q, X
! Compute
Q =1.0
X = CONST('PI'")
X = 0.25* X
CALL MATCE (X, Q, N, CE)
! Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) K-1, X, Q, CE(K)
10 CONTINUE
99999 FORMAT (' ce sub', I2, ' (', F6.3, ',', F6.3, = ', F6.3)
END
Output
ce sub 0 (0.785, 1.000) = 0.654
ce sub 1 (0.785, 1.000) 0.794
ce sub 2 (0.785, 1.000) = 0.299
ce sub 3 (0.785, 1.000) -0.555
ce sub 4 (0.785, 1.000) -0.989
ce sub 5 (0.785, 1.000) -0.776
ce sub 6 (0.785, 1.000) -0.086
ce sub 7 (0.785, 1.000) 0.654
ce sub 8 (0.785, 1.000) 0.998
ce sub 9 (0.785, 1.000) = 0.746
= Rogygmq\{q MATCE Chapter 12: Mathieu Functions 451

Example 2

In this example, we compute ce,(x, q) for various values of # and x and a fixed value of 4. To avoid having to

recompute the eigenvalues, which depend on g but not on x, we compute the eigenvalues once and pass in
their value to M2TCE. The eigenvalues are computed using MATEE. The routine M3TEE is used to compute
NORDER based on @ and N. The arrays BSJ, COEF and WORK are used as temporary storage in M2 TCE.

USE IMSL_LIBRARIES
IMPLICIT NONE
! Declare variables

INTEGER MAXORD, N, NX
PARAMETER (MAXORD=100, N=4, NX=5)

INTEGER ISYM, K, NORDER, NOUT
REAL BSJ (2*MAXORD-2), CE(N), COEF (MAXORD+4)
REAL EVALO (MAXORD) , EVALI (MAXORD), PI, Q, WORK(MAXORD+4), X

! Compute NORDER
Q=1.0
CALL M3TEE (Q, N, NORDER)

CALL UMACH (2, NOUT)
WRITE (NOUT, 99997) NORDER
! Compute eigenvalues
ISYM = 0
CALL MATEE (Q, ISYM, 0, EVALO)
CALL MATEE (Q, ISYM, 1, EVAL1)

PI = CONST('PI')
! Compute function values

WRITE (NOUT, 99998)

DO 10 K=0, NX
X = (K*PI)/NX
CALL M2TCE(X, Q, N, CE, NORDER, .FALSE., EVALO, EVALl, &

COEF, WORK, BSJ)
WRITE (NOUT,99999) X, CE(1l), CE(2), CE(3), CE(4)
10 CONTINUE

99997 FORMAT (' NORDER = ', I3)

99998 FORMAT (/, 28X, 'Order', /, 20X, '0', 7X, '1', 7X, &
-2 1 , 7X1 1 3 1)
99999 FORMAT (' ce(', F6.3, ') ="', 4F8.3)
END
Output
NORDER = 23
Order
0 1 2 3
ce(0.000) = 0.385 0.857 1.086 1.067
ce(0.628) = 0.564 0.838 0.574 -0.131
ce(1.257) = 0.926 0.425 -0.575 -0.820

= Rogygmq\{q MATCE Chapter 12: Mathieu Functions 452

0.926 -0.425 -0.575 0.820

ce(1.885) =
ce(2.513) = 0.564 -0.838 0.574 0.131
ce(3.142) = 0.385 -0.857 1.086 -1.067

1)

ce(ng

C‘e‘:,

] ce,

-1.2 I I I
0.0 0.1 0.2 0.3 0.4 0.5
x/m

Figure 12.] — Plot of ce,, (x, q = 1)

MATCE Chapter 12: Mathieu Functions 453

=RogueWave

MATSE

Evaluates a sequence of odd, periodic, integer order, real Mathieu functions.

Required Arguments
X — Argument for which the sequence of Mathieu functions is to be evaluated. (Input)

Q — Parameter. (Input)
The parameter Q must be positive.

N — Number of elements in the sequence. (Input)

SE — Vector of length N containing the values of the function through the series. (Output)
SE(I) contains the value of the Mathieu function of order T at X for I =1 to N.

FORTRAN 90 Interface

Generic: CALL MATSE (X, Q, N, SE)
Specific: The specific interface names are S_MATSE and D_MATSE.

FORTRAN 77 Interface

Single: CALL MATSE (X, Q, N, SE)
Double: The double precision function name is DMATSE.
Description

The eigenvalues of Mathieu’s equation are computed using MATEE. The function values are then computed
using a sum of Bessel functions, see Gradshteyn and Ryzhik (1965), equation 8.661.

Comments
1. Workspace may be explicitly provided, if desired, by use of M2TSE/DM2TSE. The reference is
CALL M2TSE (X, Q, N, SE, NORDER, NEEDEV, EVALOQ, EVAL1, COEF, WORK, BSJ)
The additional arguments are as follows:

NORDER — Order of the matrix used to compute the eigenvalues. (Input)
It must be greater than N. Routine MATSE computes NORDER by the following call to M3TEE.

CALL MS3TEE (Q, N, NORDER)
NEEDEV — Logical variable, if .TRUE., the eigenvalues must be computed. (Input)

EVALO — Real work vector of length NORDER containing the eigenvalues computed by MATEE
with ISYM =1 and IPER =0. (Input/Output)
If NEEDEYV is .TRUE., then EVALO is computed by M2TSE; otherwise, it must be set as an input
value.

EVAL1 — Real work vector of length NORDER containing the eigenvalues computed by MATEE
with ISYM=1and IPER = 1. (Input/Output)
If NEEDEV is .TRUE., then EVAL1 is computed by M2TSE; otherwise, it must be set as an input
value.

= ROQQ?WQ\{EF MATSE Chapter 12: Mathieu Functions 454

COEF — Real work vector of length NORDER + 4.

WORK — Real work vector of length NORDER + 4.
BSI — Real work vector of length 2 * NORDER + 1.

2. Informational error

Type Code Description
4 1 The iteration for the eigenvalues did not converge.
Example

In this example, se,(x =T1/4,9=10),n =0, ..., 9 is computed and printed.

1.2 -
-1 == SEI__.] Urder
Dﬂ't 3
i 5—
0.4 —
1]
o D.D—_
T -
o -
0.4 —
-0.8 —
] seg -.$éq
-1.2 L L L L L L L L L L L
0.0 0.1 0.2 0.3 0.4 0.5
x/m
Figure 12.2 — Plot of se,(x,q = I)
USE CONST_INT
USE MATSE_INT
USE UMACH_INT
IMPLICIT NONE
! Declare variables
INTEGER N
PARAMETER (N=10)
!
INTEGER K, NOUT
REAL SE(N), Q, X
! Compute
Q0 =10.0
X = CONST('PI'")
X = 0.25* X
CALL MATSE (X, Q, N, SE)
= R{ng?mq\{q MATSE Chapter 12: Mathieu Functions 455

! Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) K-1, X, Q, SE(K)
10 CONTINUE

99999 FORMAT (' se sub', I2, ' (', F6.3, ',', F6.3, ') = ', F6.3)
END

Output

se sub 0 (0.785,10.000) = 0.250
se sub 1 (0.785,10.000) = 0.692
se sub 2 (0.785,10.000) = 1.082
se sub 3 (0.785,10.000) = 0.960
se sub 4 (0.785,10.000) = 0.230
se sub 5 (0.785,10.000) = -0.634
se sub 6 (0.785,10.000) = -0.981
se sub 7 (0.785,10.000) = -0.588
se sub 8 (0.785,10.000) = 0.219
se sub 9 (0.785,10.000) = 0.871

= R{nggmq\{q MATSE Chapter 12: Mathieu Functions 456

—=— Chapter 13: Miscellaneous Functions

o

p—

Routines
Spencedilogarithm SPENC 460
Initialize a Chebyshevseries INITS 462
Evaluate a Chebyshevseries. i, CSEVL 463

= R‘Dgygmq\{eg Chapter 13: Miscellaneous Functions 457

Usage Notes

Many functions of one variable can be numerically computed using a Chebyshev series,

f(x> :Zj:OAnTn<x> —1<x<1

A Chebyshev series is better for numerical computation than a Taylor series since the Chebyshev polynomi-
als, T,,(x), are better behaved than the monomials, x".

A Taylor series can be converted into a Chebyshev series using an algorithm of Fields and Wimp, (see Luke
(1969), page 292).

Let

ORI

be a Taylor series expansion valid for |x| < 1. Define

A

2 Zw <”+%>k<”+l>kén+k

ALy (1)K
where (a); = ['(a + k)/T(a) is Pochhammer’s symbol.

(Note that (a);1 = (@ + k)(a)y). Then,

7(x) =175 (x) +Z"° A,Tr(x) 0<x<1
n=1
where

7(x)

are the shifted Chebyshev polynomials,

T,(x) =T,(2x—1)

In an actual implementation of this algorithm, the number of terms in the Taylor series and the number of
terms in the Chebyshev series must both be finite. If the Taylor series is an alternating series, then the error in
using only the first M terms is less than |€,; ,1]. The error in truncating the Chebyshev series to N terms is no

©
>
n=N+1

If the Taylor series is valid on |x| < R, then we can write

more than

= Rogygmﬂn\{q Usage Notes Chapter 13: Miscellaneous Functions 458

F() =Y &R (xR

and use €,R" instead of &, in the algorithm to obtain a Chebyshev series in x/R valid for 0 < x < R. Unfortu-
nately, if R is large, then the Chebyshev series converges more slowly.

The Taylor series centered at zero can be shifted to a Taylor series centered at c. Let t = x — ¢, so

£y = £ () =St e) = SraTiatal 1) 7
N zfzogntn - Zf=0£{n<x B c)”

By interchanging the order of the double sum, it can easily be shown that

o3 (1)

By combining scaling and shifting, we can obtain a Chebyshev series valid over any interval [a, b] for which
the original Taylor series converges.

The algorithm can also be applied to asymptotic series,

FO)Y e x| =

by treating the series truncated to M terms as a polynomial in 1/x. The asymptotic series is usually divergent;

but if it is alternating, the error in truncating the series to M terms is less than |& M+ | /R for R < x < .
Normally, as M increases, the error initially decreases to a small value and then increases without a bound.
Therefore, there is a limit to the accuracy that can be obtained by increasing M. More accuracy can be
obtained by increasing R. The optimal value of M depends on both the sequence &; and R. For R fixed, the

optimal value of M can be found by finding the value of M at which & M| / RY starts to increase.

Since we want a routine accurate to near machine precision, the algorithm must be implemented using some-
what higher precision than is normally used. This is best done using a symbolic computation package.

= ROQQ?WQ\{EF Usage Notes Chapter 13: Miscellaneous Functions 459

SPENC

This function evaluates a form of Spence’s integral.

Function Return Value
SPENC — Function value. (Output)

Required Arguments

X — Argument for which the function value is desired. (Input)

FORTRAN 90 Interface

Generic: SPENC (X)
Specific: The specific interface names are S_SPENC and D_SPENC.

FORTRAN 77 Interface

Single: SPENC (X)
Double: The double precision function name is DSPENC.
Description

The Spence dilogarithm function, s(x), is defined to be

“In|1 -yl
s(x) = —jo—n i 4 dy

For |x| < 1, the uniformly convergent expansion
o _k
- X
S (x) = E 2
k=1

Spence’s function can be used to evaluate much more general integral forms. For example,

IZM a(ez+d) _S<a(cz+d>)

o ox+d ad — bc ad — bc

is valid.

dx =log

Example
In this example, s(0.2) is computed and printed.

USE SPENC_INT
USE UMACH_INT

= Rogygmﬂn\{q SPENC Chapter 13: Miscellaneous Functions 460

IMPLICIT NONE

INTEGER NOUT
REAL VALUE, X

X 0.2
VALUE = SPENC (X)

CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' SPENC(', F6.3, ')
END

Output

SPENC(0.200) = 0.211

Declare variables

Compute

Print the results

= ', F6.3)

=RogueWave

SPENC

Chapter 13: Miscellaneous Functions

461

INITS

This function Initializes the orthogonal series so the function value is the number of terms needed to insure
the error is no larger than the requested accuracy.

Function Return Value

INITS — Number of terms needed to insure the error is no larger than ETA. (Output)

Required Arguments
OS — Vector of length NOS containing coefficients in an orthogonal series. (Input)
NOS — Number of coefficients in 0S. (Input)

ETA — Requested accuracy of the series. (Input)
Contrary to the usual convention, ETA is a REAL argument to INITDS.

FORTRAN 90 Interface

Generic: INITS (0S,NOS, ETA)
Specific: The specific interface names are INITS and INITDS.

FORTRAN 77 Interface

Single: INITS (0OS,NOS, ETA)
Double: The double precision function name is INITDS.
Description

Function INITS initializes a Chebyshev series. The function INITS returns the number of terms in the series
s of length 1 needed to insure that the error of the evaluated series is everywhere less than ETA. The number
of input terms n must be greater than 1, so that a series of at least one term and an error estimate can be
obtained. In addition, ETA should be larger than the absolute value of the last coefficient. If it is not, then all
the terms of the series must be used, and no error estimate is available.

Comments

ETA will usually be chosen to be one tenth of machine precision.

= ROQQ?WQ\{EF INITS Chapter 13: Miscellaneous Functions 462

CSEVL

This function evaluates the N-term Chebyshev series.

Function Return Value
CSEVL — Function value. (Output)

Required Arguments

X — Argument at which the series is to be evaluated. (Input)

CS — Vector of length N containing the terms of a Chebyshev series. (Input)
In evaluating CS, only half of the first coefficient is summed.

Optional Arguments

N — Number of terms in the vector CS. (Input)
Default: N = size(CS, 1)

FORTRAN 90 Interface

Generic: CSEVL (X,CS [, ...1)
Specific: The specific interface names are S_CSEVL and D_CSEVL.

FORTRAN 77 Interface

Single: CSEVL (X, CS, N)
Double: The double precision function name is DCSEVL.
Description

Function CSEVL evaluates a Chebyshev series whose coefficients are stored in the array s of length 1 at the
point x. The argument x must lie in the interval[-1, +1]. Other finite intervals can be linearly transformed to
this canonical interval. Also, the number of terms in the series must be greater than zero but less than 1000.
This latter limit is purely arbitrary; it is imposed in order to guard against the possibility of a floating point
number being passed as an argument for 7.

Comments

Informational error

Type Code Description

3 7 X is outside the interval (-1.1, +1.1)

= ROQQ?WQ\{EF CSEVL Chapter 13: Miscellaneous Functions 463

% Rogygmqv.‘e" CSEVL Chapter 13: Miscellaneous Functions 464

Reference Material

I

Routines/Topics
USEr ErTOrS. . oo oo e e 466
ERSET . .. e e e 469
IERCD and NTRTY ... e e e e i e 470
Machine-Dependent Constants i 471
IMACH . . e e 472
AMACH e e 474
IENANCK) L o e e e e 477
UMA CH . e e e 479
Reserved Names 481
Deprecated Features and Deleted Routines 482

EE Rﬂgygmq\{es Reference Material 465

User Errors

IMSL routines attempt to detect user errors and handle them in a way that provides as much information to
the user as possible. To do this, we recognize various levels of severity of errors, and we also consider the
extent of the error in the context of the purpose of the routine; a trivial error in one situation may be serious
in another. IMSL routines attempt to report as many errors as they can reasonably detect. Multiple errors
present a difficult problem in error detection because input is interpreted in an uncertain context after the
first error is detected.

What Determines Error Severity

In some cases, the user’s input may be mathematically correct, but because of limitations of the computer
arithmetic and of the algorithm used, it is not possible to compute an answer accurately. In this case, the
assessed degree of accuracy determines the severity of the error. In cases where the routine computes several
output quantities, if some are not computable but most are, an error condition exists. The severity depends
on an assessment of the overall impact of the error.

Terminal errors

If the user’s input is regarded as meaningless, such as N = -1 when “N” is the number of equations, the rou-
tine prints a message giving the value of the erroneous input argument(s) and the reason for the erroneous
input. The routine will then cause the user’s program to stop. An error in which the user’s input is meaning-
less is the most severe error and is called a terminal error. Multiple terminal error messages may be printed
from a single routine.

Informational errors

In many cases, the best way to respond to an error condition is simply to correct the input and rerun the pro-
gram. In other cases, the user may want to take actions in the program itself based on errors that occur. An
error that may be used as the basis for corrective action within the program is called an informational error. If
an informational error occurs, a user-retrievable code is set. A routine can return at most one informational
error for a single reference to the routine. The codes for the informational error codes are printed in the error
messages.

Other errors

In addition to informational errors, IMSL routines issue error messages for which no user-retrievable code is
set. Multiple error messages for this kind of error may be printed. These errors, which generally are not
described in the documentation, include terminal errors as well as less serious errors. Corrective action
within the calling program is not possible for these errors.

Kinds of Errors and Default Actions

Five levels of severity of errors are defined in the MATH/LIBRARY Special Functions. Each level has an
associated PRINT attribute and a STOP attribute. These attributes have default settings (YES or NO), but
they may also be set by the user. The purpose of having multiple error severity levels is to provide indepen-

E:' Rog':lgwgﬂ\\:er User Errors Reference Material 466

dent control of actions to be taken for errors of different severity. Upon return from an IMSL routine, exactly
one error state exists. (A code 0 “error” is no informational error.) Even if more than one informational error
occurs, only one message is printed (if the PRINT attribute is YES). Multiple errors for which no corrective
action within the calling program is reasonable or necessary result in the printing of multiple messages (if the
PRINT attribute for their severity level is YES). Errors of any of the severity levels except level 5 may be infor-
mational errors.

¢ Level 1: Note. A note is issued to indicate the possibility of a trivial error or simply to provide
information about the computations. Default attributes: PRINT=NO, STOP=NO

o Level 2: Alert. An alert indicates that the user should be advised about events occurring in the
software. Default attributes: PRINT=NO, STOP=NO

¢ Level 3: Warning. A warning indicates the existence of a condition that may require corrective
action by the user or calling routine. A warning error may be issued because the results are
accurate to only a few decimal places, because some of the output may be erroneous but most of
the output is correct, or because some assumptions underlying the analysis technique are
violated. Often no corrective action is necessary and the condition can be ignored. Default
attributes: PRINT=YES, STOP=NO

o Level 4: Fatal. A fatal error indicates the existence of a condition that may be serious. In most
cases, the user or calling routine must take corrective action to recover. Default attributes:
PRINT=YES, STOP=YES

o Level 5: Terminal. A terminal error is serious. It usually is the result of an incorrect specification,
such as specifying a negative number as the number of equations. These errors may also be
caused by various programming errors impossible to diagnose correctly in FORTRAN. The
resulting error message may be perplexing to the user. In such cases, the user is advised to
compare carefully the actual arguments passed to the routine with the dummy argument
descriptions given in the documentation. Special attention should be given to checking
argument order and data types.

A terminal error is not an informational error because corrective action within the program is generally
not reasonable. In normal usage, execution is terminated immediately when a terminal error occurs.
Messages relating to more than one terminal error are printed if they occur. Default attributes:
PRINT=YES, STOP=YES

The user can set PRINT and STOP attributes by calling ERSET as described in “Routines for Error Handling.”

Errors in Lower-Level Routines

It is possible that a user’s program may call an IMSL routine that in turn calls a nested sequence of
lower-level IMSL routines. If an error occurs at a lower level in such a nest of routines and if the lower-level
routine cannot pass the information up to the original user-called routine, then a traceback of the routines is
produced. The only common situation in which this can occur is when an IMSL routine calls a user-supplied
routine that in turn calls another IMSL routine.

E:' Rog':lgwgﬂ\\:er User Errors Reference Material 467

Routines for Error Handling

There are three ways in which the user may interact with the IMSL error handling system: (1) to change the
default actions, (2) to retrieve the integer code of an informational error so as to take corrective action, and (3)
to determine the severity level of an error. The routines to use are ERSET, IERCD and N1RTY, respectively.

E:' Rogygmq\{q User Errors Reference Material 468

ERSET

Change the default printing or stopping actions when errors of a particular error severity level occur.

Required Arguments

IERSVR — Error severity level indicator. (Input)

If TERSVR = 0, actions are set for levels 1 to 5. If IERSVR is 1 to 5, actions are set for errors of the speci-
fied severity level.

IPACT — Printing action. (Input)

IPACT Action

-1 Do not change current setting(s).
0 Do not print.

1 Print.

2 Restore the default setting(s).

ISACT — Stopping action. (Input)

ISACT Action

-1 Do not change current setting(s).
0 Do not stop.

1 Stop.

2 Restore the default setting(s).

FORTRAN 90 Interface

Generic: CALL ERSET (IERSVR, IPACT, ISACT)

Specific: The specific interface name is ERSET.

FORTRAN 77 Interface

Single: CALL ERSET (IERSVR, IPACT, ISACT)

E:' Rogygmﬂn\{q ERSET Reference Material 469

IERCD and N1RTY

The last two routines for interacting with the error handling system, IERCD and N1RTY, are INTEGER func-
tions and are described in the following material.

IERCD retrieves the integer code for an informational error. Since it has no arguments, it may be used in the
following way:

ICODE = IERCD()

The function retrieves the code set by the most recently called IMSL routine.

NI1RTY retrieves the error type set by the most recently called IMSL routine. It is used in the following way:
ITYPE = N1RTY(1)

ITYPE =1, 2,4, and 5 correspond to error severity levels 1, 2, 4, and 5, respectively. ITYPE = 3 and ITYPE = 6
are both warning errors, error severity level 3. While ITYPE = 3 errors are informational errors
(IERCD() # 0), ITYPE = 6 errors are not informational errors (IERCD() = 0).

For software developers requiring additional interaction with the IMSL error handling system, see Aird and
Howell (1991).

Examples

Changes to Default Actions

Some possible changes to the default actions are illustrated below. The default actions remain in effect for the
kinds of errors not included in the call to ERSET.

To turn off printing of warning error messages:
CALL ERSET (3,0,-1)

To stop if warning errors occur:
CALL ERSET (3,-1,1)

To print all error messages:
CALL ERSET (0,1,-1)

To restore all default settings:
CALL ERSET (0,2,2)

E:' Rogygmﬂn\{q IERCD and N1RTY Reference Material 470

Machine-Dependent Constants

The function subprograms in this section return machine-dependent information and can be used to enhance
portability of programs between different computers. The routines IMACH, and AMACH describe the com-
puter’s arithmetic. The routine UMACH describes the input, ouput, and error output unit numbers.

= R{nggmq\{q Machine-Dependent Constants Reference Material 471

IMACH

This function retrieves machine integer constants that define the arithmetic used by the computer.

Function Return Value

IMACH(1) = Number of bits per integer storage unit.
IMACH(2) = Number of characters per integer storage unit:

Integers are represented in M-digit, base A form as

M
O'Z xkAk
k=0

where ois thesignand 0 < x; <A, k=0, ..., M.

Then,
IMACH(3) = A, the base.
IMACH(4) = M, the number of base-A digits.

IMACH(5) = AM - 1, the largest integer.

The machine model assumes that floating-point numbers are represented in normalized N-digit, base B form as

N _
UBEZ xBF
k=1

where 0 is the sign, 0 <xy <B,0<x,<B,k=2,...,Nand E,;;, < E < E, ;.. Then,

min =
IMACH(6) = B, the base.

IMACH(7) = N, the number base-B-digits in single precision.
IMACH(8) = Emins, the smallest single precision exponent.
TMACH(9) = Ernax,, the largest single precision exponent.
IMACH(10) = N, the number base-B-digits in double precision.

IMACH(11) -E min,;, the smallest double precision exponent.

IMACH(12) = Emaxd, largest double precision exponent.

Required Arguments
I — Index of the desired constant. (Input)

E:' ROQQ?WQ\{E{ IMACH Reference Material 472

FORTRAN 90 Interface

Generic: IMACH (I)

Specific: The specific interface name is IMACH.

FORTRAN 77 Interface
Single: IMACH (I)

E: R{nggmq\{q IMACH Reference Material 473

AMACH

The function subprogram AMACH retrieves machine constants that define the computer’s single-precision or
double precision arithmetic. Such floating-point numbers are represented in normalized N-digit, base B form

as

N _
UBEZ x; B k
k=1

where 0 is the sign, 0 <x1 <B,0<x;<B,k=2,..., Nand

Epin <E < Epgy

min —

Function Return Value
AMACH(1) = BEmi"_l, the smallest normalized positive number.

AMACH(2) = B! (1-B7"), the largest number.

AMACH(3) = B %, the smallest relative spacing.

AMACH(4) = B"™", the largest relative spacing.

amacu(s) = log,,(B).

AMACH(6) = NaN (non-signaling not a number).

AMACH(7) = positive machine infinity.

AMACH(8) = negative machine infinity.
See Comment 1 for a description of the use of the generic version of this function.
See Comment 2 for a description of min, max, and N.

Required Arguments
I — Index of the desired constant. (Input)

FORTRAN 90 Interface

Generic: AMACH (I)
Specific: The specific interface names are S_AMACH and D_AMACH.

FORTRAN 77 Interface
Single: AMACH (I)
Double: The double precision name is DMACH.

=RogueWave AmACH

Reference Material

474

Comments

1. If the generic version of this function is used, the immediate result must be stored in a variable before
use in an expression. For example:
X = AMACH(I)
Y = SQRT(X)
must be used rather than
Y = SQRT (AMACH (I)).
If this is too much of a restriction on the programmer, then the specific name can be used without this
restriction.
2. Note that for single precision B = IMACH(6), N = IMACH(7).
E,.in = IMACH(8), and E,,;, = IMACH(9).
For double precision B = IMACH(6), N = IMACH(10).
E,.in = IMACH(11), and E,,;, = IMACH(12).

3. The IEEE standard for binary arithmetic (see IEEE 1985) specifies quiet NaN (not a number) as the
result of various invalid or ambiguous operations, such as 0/0. The intent is that AMACH(6) return a
quiet NaN. On IEEE format computers that do not support a quiet NaNN, a special value near AMACH(2)
is returned for AMACH(6). On computers that do not have a special representation for infinity, AMACH(7)
returns the same value as AMACH(2).

E:' Rogygmﬂn\{q AMACH Reference Material 475

DMACH

See AMACH.

E: Rogygmg\{q DMACH Reference Material 476

IFNAN(X)

This logical function checks if the argument X is NaN (not a number).

Function Return Value

IFNAN - Logical function value. True is returned if the input argument is a NAN. Otherwise, False is
returned. (Output)

Required Arguments
X — Argument for which the test for NAN is desired. (Input)

FORTRAN 90 Interface

Generic: IFNAN (X)
Specific: The specific interface names are S_IFNAN and D_IFNAN.

FORTRAN 77 Interface

Single: IFNAN (X)
Double: The double precision name is DIFNAN.
Description

The logical function ITFNAN checks if the single or double precision argument X is NAN (not a number). The
function IFNAN is provided to facilitate the transfer of programs across computer systems. This is because
the check for NaN can be tricky and not portable across computer systems that do not adhere to the IEEE
standard. For example, on computers that support the IEEE standard for binary arithmetic (see IEEE 1985),
NaN is specified as a bit format not equal to itself. Thus, the check is performed as

IFNAN = X .NE. X
On other computers that do not use IEEE floating-point format, the check can be performed as:
IFNAN = X .EQ. AMACH(6)

The function IFNAN is equivalent to the specification of the function Isnan listed in the Appendix, (IEEE
1985). The above example illustrates the use of IFNAN. If X is NaN, a message is printed instead of X. (Rou-
tine UMACH, which is described in the following section, is used to retrieve the output unit number for
printing the message.)

Example

USE IFNAN_INT
USE AMACH_INT
USE UMACH_INT

EE Rﬂgygwgn\ter IFNAN(X) Reference Material 477

IMPLICIT NONE
INTEGER NOUT
REAL X

CALL UMACH (2, NOUT)

X = AMACH(6)
IF (IFNAN(X)) THEN

WRITE (NOUT,*) ' X is NaN (not a number).'
ELSE
WRITE (NOUT,*) ' X = ', X
END IF
!
END

Output

X is NaN (not a number) .

EE R{nggmq\{q IFNAN(X) Reference Material 478

UMACH

Routine UMACH sets or retrieves the input, output, or error output device unit numbers.

Required Arguments

N — Integer value indicating the action desired. If the value of N is negative, the input, output, or error
output unit number is reset to NUNIT. If the value of N is positive, the input, output, or error output
unit number is returned in NUNIT. See the table in argument NUNIT for legal values of N. (Input)

NUNIT — The unit number that is either retrieved or set, depending on the value of input argument N.
(Input/Output)

The arguments are summarized by the following table:

N

1

Effect
Retrieves input unit number in NUNIT.
Retrieves output unit number in NUNIT.

Retrieves error output unit number in
NUNIT.

Sets the input unit number to NUNIT.
Sets the output unit number to NUNIT.

Sets the error output unit number to
NUNIT.

FORTRAN 90 Interface

Generic:
Specific:

CALL UMACH (N, NUNIT)

The specific interface name is UMACH.

FORTRAN 77 Interface

Single:

CALL UMACH (N, NUNIT)

Description

Routine UMACH sets or retrieves the input, output, or error output device unit numbers. UMACH is set auto-
matically so that the default FORTRAN unit numbers for standard input, standard output, and standard
error are used. These unit numbers can be changed by inserting a call to UMACH at the beginning of the main
program that calls MATH/LIBRARY routines. If these unit numbers are changed from the standard values,

the user should insert an appropriate OPEN statement in the calling program.

Example

In the following example, a terminal error is issued from the MATH /LIBRARY AMACH function since the
argument is invalid. With a call to UMACH, the error message will be written to a local file named
“CHECKERR”.

=RogueWave

UMACH Reference Material

479

USE AMACH_INT
USE UMACH_INT

IMPLICIT NONE
INTEGER N, NUNIT
REAL X
! Set Parameter
N =0
!
NUNIT = 9

CALL UMACH (-3, NUNIT)

OPEN (UNIT=9,FILE='CHECKERR')
X = AMACH(N)

END

Output

The output from this example, written to “CHECKERR” is:
*** TERMINAL ERROR 5 from AMACH. The argument must be between 1 and 8
* ok ok inclusive. N = 0

E: R{nggmq\{q UMACH Reference Material 480

Reserved Names

When writing programs accessing IMSL MATH /LIBRARY Special Functions, the user should choose FOR-
TRAN names that do not conflict with names of IMSL subroutines, functions, or named common blocks,
such as the workspace common block WORKSP (see Automatic Workspace Allocation). The user needs to be
aware of two types of name conflicts that can arise. The first type of name conflict occurs when a name (tech-
nically a symbolic name) is not uniquely defined within a program unit (either a main program or a
subprogram). For example, such a name conflict exists when the name BSJS is used to refer both to a type
REAL variable and to the IMSL routine BSJS in a single program unit. Such errors are detected during com-
pilation and are easy to correct. The second type of name conflict, which can be more serious, occurs when
names of program units and named common blocks are not unique. For example, such a name conflict
would be caused by the user defining a routine named WORKSP and also referencing a MATH/LIBRARY
Special Functions routine that uses the named common block WORKSP. Likewise, the user must not define a
subprogram with the same name as a subprogram in MATH/LIBRARY Special Functions, that is referenced
directly by the user’s program or is referenced indirectly by other MATH /LIBRARY Special Functions
subprograms.

MATH/LIBRARY Special Functions consists of many routines, some that are described in the User’s Manual
and others that are not intended to be called by the user and, hence, that are not documented. If the choice of
names were completely random over the set of valid FORTRAN names and if a program uses only a small
subset of MATH/LIBRARY Special Functions, the probability of name conflicts is very small. Since names
are usually chosen to be mnemonic, however, the user may wish to take some precautions in choosing FOR-
TRAN names.

Many IMSL names consist of a root name that may have a prefix to indicate the type of the routine. For exam-
ple, the IMSL single precision routine for computing Bessel functions of the first kind with real order has the
name BSJS, which is the root name, and the corresponding IMSL double precision routine has the name
DBSJS. Associated with these two routines are B2JS and DB2JS. BSJS is listed in the Alphabetical Index of
Routines, but DBSJS, B2JS, and DB2JS are not. The user of BSJS must consider both names BSJS and B2JS
to be reserved; likewise, the user of DBSJS must consider both names DBSJS and DB2JS to be reserved. The
root names of all routines and named common blocks that are used by MATH/LIBRARY Special Functions
and that do not have a numeral in the second position of the root name are listed in the Alphabetical Index of
Routines. Some of the routines in this Index are not intended to be called by the user and so are not docu-
mented. The careful user can avoid any conflicts with IMSL names if the following rules are observed:

Do not choose a name that appears in the Alphabetical Summary of Routines in the User’s
Manual, nor one of these names preceded byaDb,S_,D_,C_,or Z_.

¢ Do not choose a name of three or more characters with a numeral in the second or third
position.

These simplified rules include many combinations that are, in fact, allowable. However, if the user selects
names that conform to these rules, no conflict will be encountered.

E:' Rog':lgwgﬂ\\:er Reserved Names Reference Material 481

Deprecated Features and Deleted Routines

Automatic Workspace Allocation

FORTRAN subroutines that work with arrays as input and output often require extra arrays for use as work-
space while doing computations or moving around data. IMSL routines generally do not require the user
explicitly to allocate such arrays for use as workspace. On most systems the workspace allocation is handled
transparently. The only limitation is the actual amount of memory available on the system.

On some systems the workspace is allocated out of a stack that is passed as a FORTRAN array in a named
common block WORKSP. A very similar use of a workspace stack is described by Fox et al. (1978, pages
116-121). (For compatibility with older versions of the IMSL Libraries, space is allocated from the COMMON
block, if possible.)

The arrays for workspace appear as arguments in lower-level routines. For example, the IMSL Math routine
LSARG (in Chapter 1, “Linear Systems”), which solves systems of linear equations, needs arrays for workspace.
LSARG allocates arrays from the common area, and passes them to the lower-level routine L2ARG which does
the computations. In the “Comments” section of the documentation for LSARG, the amount of workspace is
noted and the call to L2ARG is described. This scheme for using lower-level routines is followed throughout
the IMSL Libraries. The names of these routines have a “2” in the second position (or in the third position in
double precision routines having a “D” prefix). The user can provide workspace explicitly and call directly
the “2-level” routine, which is documented along with the main routine. In a very few cases, the 2-level rou-
tine allows additional options that the main routine does not allow.

Prior to returning to the calling program, a routine that allocates workspace generally deallocates that space
so that it becomes available for use in other routines.

Changing the Amount of Space Allocated
This section is relevant only to those systems on which the transparent workspace allocator is not available.

By default, the total amount of space allocated in the common area for storage of numeric data is 5000
numeric storage units. (A numeric storage unit is the amount of space required to store an integer or a real
number. By comparison, a double precision unit is twice this amount. Therefore, the total amount of space
allocated in the common area for storage of numeric data is 2500 double precision units.) This space is allo-
cated as needed for INTEGER, REAL, or other numeric data. For larger problems in which the default amount
of workspace is insufficient, the user can change the allocation by supplying the FORTRAN statements to
define the array in the named common block and by informing the IMSL workspace allocation system of the
new size of the common array. To request 7000 units, the statements are

COMMON /WORKSP/ RWKSP

REAL RWKSP (7000)
CALL IWKIN(7000)

If an IMSL routine attempts to allocate workspace in excess of the amount available in the common stack, the
routine issues a fatal error message that indicates how much space is needed and prints statements like those
above to guide the user in allocating the necessary amount. The program below uses IMSL routine BSJS (See
Chapter 6, “Bessel Functions” of this manual) to illustrate this feature.

= R{ngﬁ.lnewlg\{er Deprecated Features and Deleted Routines Reference Material 482

This routine requires workspace that is just larger than twice the number of function values requested.
INTEGER N
REAL BS(10000), X, XNU
EXTERNAL BSJS

! Set Parameters

XNU = .5
X = 1.
N = 6000
CALL BSJS (XNU, X, N, BS)
END
Output
**%* TERMINAL ERROR from BSJS. Insufficient workspace for
*kk current allocation(s). Correct by calling
* Ak IWKIN from main program with the three
xxx following statements: (REGARDLESS OF
*x K PRECISION)
*xK COMMON /WORKSP/ RWKSP
*x K REAL RWKSP(12018)
i CALL IWKIN(12018)
**% TERMINAL ERROR from BSJS. The workspace requirement is
il based on N =6000.

STOP

In most cases, the amount of workspace is dependent on the parameters of the problem so the amount
needed is known exactly. In a few cases, however, the amount of workspace is dependent on the data (for
example, if it is necessary to count all of the unique values in a vector). Thus, the IMSL routine cannot tell in
advance exactly how much workspace is needed. In such cases, the error message printed is an estimate of
the amount of space required.

Character Workspace

Since character arrays cannot be equivalenced with numeric arrays, a separate named common block
WKSPCH is provided for character workspace. In most respects, this stack is managed in the same way as the
numeric stack. The default size of the character workspace is 2000 character units. (A character unit is the
amount of space required to store one character.) The routine analogous to IWKIN used to change the default
allocation is TWKCIN.

The routines in the following list are being deprecated in Version 2.0 of MATH/LIBRARY Special Functions.
A deprecated routine is one that is no longer used by anything in the library but is being included in the
product for those users who may be currently referencing it in their application. However, any future ver-
sions of MATH/LIBRARY Special Functions will not include these routines. If any of these routines are being
called within an application, it is recommended that you change your code or retain the deprecated routine
before replacing this library with the next version. Most of these routines were called by users only when
they needed to set up their own workspace. Thus, the impact of these changes should be limited.

G2DF

G2IN
G3DF

= ROQEI?WQ\{EF Deprecated Features and Deleted Routines Reference Material 483

The following specific FORTRAN intrinsic functions are no longer supplied by IMSL. They can all be found
in their manufacturer’s FORTRAN runtime libraries. If any change must be made to the user’s application as
a result of their removal from the IMSL Libraries, it is limited to the redeclaration of the function from “exter-

nal” to “intrinsic.” Argument lists and results should be identical.

ACOS CEXP DATAN2 DSQRT
AINT CLOG DCOsS DTAN
ALOG COSs DCOSH DTANH
ALOG10 COSH DEXP EXP
ASIN CSIN DINT SIN
ATAN CSQRT DLOG SINH
ATAN2 DACOS DLOG10 SQRT
CABS DASIN DSIN TAN
CCOs DATAN DSINH TANH

=RogueWave

Deprecated Features and Deleted Routines

Reference Material

484

e A\ dix A: Alphabetical

—t ppenaix A. pPpna efica

- Summ f Routli

oy u ary o outines
[a][Bl[CcIIDI[EI[FI[GI[BI[TI[L]I[M][N][P][RI[SI[TI[UI]I[lW]

ACOS Evaluates the complex arc cosine.

ACOSH Evaluates the real or complex arc hyperbolic cosine.

AT Evaluates the Airy function.

AID Evaluates the derivative of the Airy function.

AIDE Evaluates the Airy function of the second kind.

AIE Evaluates the exponentially scaled derivative of the Airy function.

AKEIO Evaluates the Kelvin function of the second kind, kei, of order zero.

AKEI1 Evaluates the Kelvin function of the second kind, kei, of order one.

AKEIPO Evaluates the derivative of the Kelvin function of the second kind,
kei, of order zero.

AKERO Evaluates the Kelvin function of the second kind, ker, of order zero.

AKER1 Evaluates the Kelvin function of the second kind, ker, of order one.

AKERPO Evaluates the derivative of the Kelvin function of the second kind,
ker, of order zero.

AKS1DF Evaluates the cumulative distribution function of the one-sided
Kolmogorov-Smirnov goodness of fit D* or D™ test statistic based
on continuous data for one sample.

AKS2DF Evaluates the cumulative distribution function of the
Kolmogorov-Smirnov goodness of fit D test statistic based on
continuous data for two samples.

=RogueWave

Appendix A: Alphabetical Summary of Routines

485

ALBETA Evaluates the natural logarithm of the complete beta function for
positive arguments.

ALGAMS Returns the logarithm of the absolute value of the gamma function
and the sign of gamma.

ALT Evaluates the logarithmic integral.

ALNDF Evaluates the lognormal cumulative probability distribution
function

ALNGAM Evaluates the real or complex function, In |y (x)|.

ALNIN Evaluates the inverse of the lognormal cumulative probability dis-
tribution function.

ALNPR Evaluates the lognormal probability density function.

ALNREL Evaluates In(x + 1) for real or complex x.

AMACH Retrieves single-precision machine constants.

ANORDF Evaluates the standard normal (Gaussian) cumulative distribution
function.

ANORPR Evaluates the normal probability density function.

ANORIN Evaluates the inverse of the standard normal (Gaussian) cumula-
tive distribution function.

ASIN Evaluates the complex arc sine.

ASINH Evaluates the sinh ! arc sine x for real or complex x.

ATAN Evaluates the complex arc tangent.

ATAN2 Evaluates the complex arc tangent of a ratio.

ATANH Evaluates tanh ™! x for real or complex x.

BEIO Evaluates the Kelvin function of the first kind, bei, of order zero.

BEIL Evaluates the Kelvin function of the first kind, bei, of order one.

BEIPO Evaluates the derivative of the Kelvin function of the first kind, bei,
of order zero.

BERO Evaluates the Kelvin function of the first kind, ber, of order zero.

BER1 Evaluates the Kelvin function of the first kind, ber, of order one.

BERPO Evaluates the derivative of the Kelvin function of the first kind, ber,
of order zero.

BETA Evaluates the real or complex beta function, B(a,b).

=RogueWave

Appendix A: Alphabetical Summary of Routines

486

BETAI

Evaluates the incomplete beta function ratio.

BETDF

Evaluates the beta cumulative distribution function.

BETIN

Evaluates the inverse of the beta cumulative distribution function.

BETNDF

Evaluates the beta cumulative distribution function.

BETNIN

Evaluates the inverse of the beta cumulative distribution function.

BETNPR

This function evaluates the noncentral beta probability density
function.

BETPR

Evaluates the beta probability density function.

BI

Evaluates the Airy function of the second kind.

BID

Evaluates the derivative of the Airy function of the second kind.

BIDE

Evaluates the exponentially scaled derivative of the Airy function
of the second kind.

BIE

Evaluates the exponentially scaled Airy function of the second
kind.

BINDF

Evaluates the binomial cumulative distribution function.

BINOM

Evaluates the binomial coefficient.

BINPR

Evaluates the binomial probability density function.

BNRDF

Evaluates the bivariate normal cumulative distribution function.

BSIO

Evaluates the modified Bessel function of the first kind of order
Zero.

BSIOE

Evaluates the exponentially scaled modified Bessel function of the
first kind of order zero.

BSTI1

Evaluates the modified Bessel function of the first kind of order
one.

BSI1E

Evaluates the exponentially scaled modified Bessel function of the
first kind of order one.

BSIES

Evaluates a sequence of exponentially scaled modified Bessel func-
tions of the first kind with nonnegative real order and real positive
arguments.

BSINS

Evaluates a sequence of modified Bessel functions of the first kind
with integer order and real or complex arguments.

BSIS

Evaluates a sequence of modified Bessel functions of the first kind
with real order and real positive arguments.

BSJO

Evaluates the Bessel function of the first kind of order zero.

BSJ1

Evaluates the Bessel function of the first kind of order one.

BSJNS

Evaluates a sequence of Bessel functions of the first kind with inte-
ger order and real arguments.

BSJS

Evaluates a sequence of Bessel functions of the first kind with real
order and real positive arguments.

=RogueWave

Appendix A: Alphabetical Summary of Routines

487

BSKO Evaluates the modified Bessel function of the second kind of order
zero.
BSKOE Evaluates the exponentially scaled modified Bessel function of the
second kind of order zero.
BSK1 Evaluates the modified Bessel function of the second kind of order
one.
BSKI1E Evaluates the exponentially scaled modified Bessel function of the
second kind of order one.
BSKES Evaluates a sequence of exponentially scaled modified Bessel func-
tions of the second kind of fractional order.
BSKS Evaluates a sequence of modified Bessel functions of the second
kind of fractional order.
BSYO Evaluates the Bessel function of the second kind of order zero.
BSY1 Evaluates the Bessel function of the second kind of order one.
BSYS Evaluates a sequence of Bessel functions of the second kind with
real nonnegative order and real positive arguments.
CAI Evaluates the Airy function of the first kind for complex arguments.
CAID Evaluates the derivative of the Airy function of the first kind for complex arguments.
CARG Evaluates the argument of a complex number.
CBI Evaluates the Airy function of the second kind for complex arguments.
CBID Evaluates the derivative of the Airy function of the second kind for complex arguments.
CBIS Evaluates a sequence of modified Bessel functions of the first kind with real order and
complex arguments.
CBJS Evaluates a sequence of Bessel functions of the first kind with real order and complex
arguments.
CBKS Evaluates a sequence of Modified Bessel functions of the second kind with real order and
complex arguments.
CBRT Evaluates the cube root.
CBYS Evaluates a sequence of Bessel functions of the second kind with real order and complex
arguments.
CERFE Evaluates the complex scaled complemented error function.
CHI Evaluates the hyperbolic cosine integral.
CHIDF Evaluates the chi-squared cumulative distribution function
CHIIN Evaluates the inverse of the chi-squared cumulative distribution function.

=RogueWave

Appendix A: Alphabetical Summary of Routines

488

CHIPR Evaluates the chi-squared probability density function
CcI Evaluates the cosine integral.
CIN Evaluates a function closely related to the cosine integral.
CINH Evaluates a function closely related to the hyperbolic cosine integral.
COSDG Evaluates the cosine for the argument in degrees.
CcoT Evaluates the cotangent.
CSEVL Evaluates the N-term Chebyshev series.
CSNDF Evaluates the noncentral chi-squared cumulative distribution function.
CSNIN Evaluates the inverse of the noncentral chi-squared cumulative function.
CSNPR This function evaluates the noncentral chi-squared probability density function.
CWPL Evaluates the Weierstrass P-function in the lemniscat case for complex argument with
unit period parallelogram.
CWPLD Evaluate the first derivative of the Weierstrass P-function in the lemniscatic case for com-
plex argum with unit period parallelogram.
CWPQ Evaluates the Weierstrass P-function in the equianharmonic case for complex argument
with unit period parallelogram.
CWPQD Evaluates the first derivative of the Weierstrass P-function in the equianharmonic case for
complex argument with unit period parallelogram.
DAWS Evaluates Dawson function.
DMACH Retrieves double precision machine constants.
El Evaluates the exponential integral for arguments greater than zero
and the Cauchy principal value of the integral for arguments less
than zero.
EI Evaluates the exponential integral for arguments greater than zero
and the Cauchy principal value for arguments less than zero.
EJCN Evaluates the Jacobi elliptic function cn(x, m).
EJDN This function evaluates the Jacobi elliptic function dn(x, m).
EJSN Evaluates the Jacobi elliptic function sn(x, m).

=RogueWave

Appendix A: Alphabetical Summary of Routines

489

ELE Evaluates the complete elliptic integral of the second kind E(x).

ELK Evaluates the complete elliptic integral of the kind K(x).

ELRC Evaluates an elementary integral from which inverse circular func-
tions, logarithms and inverse hyperbolic functions can be
computed.

ELRD Evaluates Carlson’s incomplete elliptic integral of the second kind
RD(X, Y, Z).

ELRF Evaluates Carlson’s incomplete elliptic integral of the first kind
RF(X, Y, Z).

ELRJ Evaluates Carlson’s incomplete elliptic integral of the third kind
RJI(X, Y, Z, RHO).

ENE Evaluates the exponential integral of integer order for arguments
greater than zero scaled by EXP(X).

ERF Evaluates the error function.

ERFC Evaluates the complementary error function.

ERFCE Evaluates the exponentially scaled complementary error function.

ERFCI Evaluates the inverse complementary error function.

ERFI Evaluates the inverse error function.

ERSET Sets error handler default printer and stop actions.

EXPDF Evaluates the exponential cumulative distribution function.

EXPIN Evaluates the inverse of the exponential cumulative distribution
function.

EXPPR Evaluates the exponential probability density function.

EXFRL Evaluates (¢ — 1)/x for real or complex x.

EXVDF Evaluates the extreme value cumulative distribution function.

EXVIN Evaluates the inverse of the extreme value cumulative distribution
function.

EXVPR Evaluates the extreme value probability density function.

FAC Evaluates the factorial of the argument.

FDF Evaluates the F cumulative distribution function.

FIN Evaluates the inverse of the F cumulative distribution function.

FNDF Noncentral F cumulative distribution function.

=RogueWave

Appendix A: Alphabetical Summary of Routines

490

FNIN This function evaluates the inverse of the noncentral F cumulative
distribution function (CDF).

FNPR This function evaluates the noncentral F cumulative distribution
function (CDF).

FPR Evaluates the F probability density function.

FRESC Evaluates the cosine Fresnel integral.

FRESS Evaluates the sine Fresnel integral.

GAMDF Evaluates the gamma cumulative distribution function.

GAMT Evaluates the incomplete gamma function.

GAMIC Evaluates the complementary incomplete gamma function.

GAMIN This function evaluates the inverse of the gamma cumulative distri-
bution function.

GAMIT Evaluates the Tricomi form of the incomplete gamma function.

GAMMA Evaluates the real or complex gamma function, '(x).

GAMPR This function evaluates the gamma probability density function.

GAMR Evaluates the reciprocal of the real or complex gamma function,
1/T(x).

GCDF Evaluates a general continuous cumulative distribution function
given ordinates of the density.

GCIN Evaluates the inverse of a general continuous cumulative distribu-
tion function given ordinates of the density.

GEODF Evaluates the discrete geometric cumulative probability distribu-
tion function.

GEOIN Evaluates the inverse of the geometric cumulative probability dis-
tribution function.

GEOPR Evaluates the discrete geometric probability density function.

GFNIN Evaluates the inverse of a general continuous cumulative distribu-
tion function given in a subprogram.

=RogueWave

Appendix A: Alphabetical Summary of Routines

491

HYPDF

Evaluates the hypergeometric cumulative distribution function.

HYPPR

Evaluates the hypergeometric probability density function.

IERCD and NIRTY Retrieves the integer code for an informational error.

IFNAN (X) Checks if a value is NaN (not a number).

IMACH Retrieves integer machine constants.

INITS Initializes the orthogonal series so the function value is the number
of terms needed to insure the error is no larger than the requested
accuracy.

LOG10 Evaluates the complex base 10 logarithm, log z.

MATCE Evaluates a sequence of even, periodic, integer order, real Mathieu
functions.

MATEE Evaluates the eigenvalues for the periodic Mathieu functions.

MATSE Evaluates a sequence of odd, periodic, integer order, real Mathieu
functions.

=RogueWave

Appendix A: Alphabetical Summary of Routines

492

IERCD and NI1RTY

Retrieves the error type set by the most recently called IMSL
routine.

POCH Evaluates a generalization of Pochhammer’s symbol.
POCH1 Evaluates a generalization of Pochhammer’s symbol starting from
the first order.
POIDF Evaluates the Poisson cumulative distribution function.
POIPR Evaluates the Poisson probability density function.
PSI Evaluates the derivative of the log gamma function.
PSI1 Evaluates the second derivative of the log gamma function.
R
RALDF Evaluates the Rayleigh cumulative distribution function.
RALIN Evaluates the inverse of the Rayleigh cumulative distribution
function.
RALPR Evaluates the Rayleigh probability density function.
S
SHI Evaluates the hyperbolic sine integral.
ST Evaluates the sine integral.
SINDG Evaluates the sine for the argument in degrees.
SPENC Evaluates a form of Spence’s integral.

=RogueWave

Appendix A: Alphabetical Summary of Routines

493

TAN Evaluates tan z for complex z.

TDF Evaluates the Student’s t cumulative distribution function.

TIN Evaluates the inverse of the Student’s t cumulative distribution
function.

TNDF Evaluates the noncentral Student’s t cumulative distribution
function.

TNIN Evaluates the inverse of the noncentral Student’s t cumulative dis-
tribution function.

TNPR This function evaluates the noncentral Student's ¢ probability den-
sity function.

TPR Evaluates the Student’s t probability density function.

UMACH Sets or Retrieves input or output device unit numbers.

UNDF Evaluates the uniform cumulative distribution function.

UNDDF Evaluates the discrete uniform cumulative distribution function.

UNDIN Evaluates the inverse of the discrete uniform cumulative distribu-
tion function.

UNDPR Evaluates the discrete uniform probability density function.

UNIN Evaluates the inverse of the uniform cumulative distribution
function.

UNPR Evaluates the uniform probability density function.

WBLDF Evaluates the Weibull cumulative distribution function

WBLIN Evaluates the inverse of the Weibull cumulative distribution
function.

WBLPR Evaluates the Weibull probability density function.

=RogueWave

Appendix A: Alphabetical Summary of Routines

494

Appendix B: References

=l
- —
. —
em—

Abramowitz and Stegun

Abramowitz, Milton, and Irene A. Stegun (editors) (1964), Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, National Bureau of Standards, Washington.

Abramowitz, Milton, and Irene A. Stegun (editors) (1972), Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, 10th Edition, US Government Printing Office, Washington, DC, Chapter 9.

Aird and Howell
Aird, Thomas J., and Byron W. Howell (1991), IMSL Technical Report 9103, IMSL, Houston.

Akima

Akima, H. (1970), A new method of interpolation and smooth curve fitting based on local procedures, Journal
of the ACM, 17, 589-602.

Barnett

Barnett, A.R. (1981), An algorithm for regular and irregular Coulomb and Bessel functions of real order to
machine accuracy, Computer Physics Communications, 21, 297-314.

Boisvert, Howe, Kahaner, and Springmann

Boisvert, Ronald F, Sally E. Howe, David K. Kahaner, and Jeanne L. Springmann (1990), Guide to Available
Mathematical Software, NISTIR 90-4237, National Institute of Standards and Technology, Gaithersburg,
Maryland.

Boisvert, Ronald F, Sally E. Howe, and David K. Kahaner (1985), GAMS: A framework for the management
of scientific software, ACM Transactions on Mathematical Software, 11, 313-355.

Bosten and Battiste

Bosten, Nancy E., and E.L. Battiste (1974b), Incomplete beta ratio, Communications of the ACM, 17, 156-157.

= R{nggmq\{q Appendix B: References 495

Bosten, Nancy E., and E.L. Battiste (1974), Remark on algorithm 179, Communications of the ACM, 17, 153.

Burgoyne

Burgoyne, ED. (1963), Approximations to Kelvin functions, Mathematics of Computation 83, 295-298.

Butler and Paolella

Butler, R. W., and M. S. Paolella (1999), Calculating the Density and Distribution Function for the Singly and Dou-
bly Noncentral F, Preliminary Version, Paolella.pdf, p.10, eq.(30) and ff.

Carlson

Carlson, B.C. (1979), Computing elliptic integrals by duplication, Numerische Mathematik, 33, 1-16.

Carlson and Notis

Carlson, B.C., and E.M. Notis (1981), Algorithms for incomplete elliptic integrals, ACM Transactions on Math-
ematical Software, 7, 398-403.

Cody

Cody, W.J. (1969) Performance testing of function subroutines, Proceedings of the Spring Joint Computer Confer-
ence, American Federation for Information Processing Societies Press, Montvale, New Jersey, 759-763.

Cody, W.J. (1983), Algorithm 597: A sequence of modified Bessel functions of the first kind, ACM Transactions
on Mathematical Software, 9, 242-245.

Cody et al.

Cody, WJ., RM. Motley, and L.W. Fullerton (1976), The computation of real fractional order Bessel functions
of the second kind, Applied Mathematics Division Technical Memorandum No. 291, Argonne National Labora-
tory, Argonne.

Conover

Conover, W.J. (1980), Practical Nonparametric Statistics, 2d ed., John Wiley & Sons, New York.

Cooper

Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for distribution integrals, Applied Statistics, 17,
190-192.

Eckhardt

Eckhardt, Ulrich (1977), A rational approximation to Weierstrass” P-function. II: The Lemniscatic case, Com-
puting, 18, 341-349.

= ROQQ?WQ\{E{ Appendix B: References 496

http://fmwww.bc.edu/CEF99/papers/Paolella.pdf

Eckhardt, Ulrich (1980), Algorithm 549: Weierstrass’ elliptic functions, ACM Transactions on Mathematical Soft-
ware, 6, 112-120.

Fabijonas et al.

B. R. Fabijonas, D. W. Lozier, and F. W. J. Olver Computation of Complex Airy Functions and Their Zeros
Using Asymptotics and the Differential Equation, ACM Transactions on Mathematical Software, Vol. 30, No. 4,
December 2004, 471-490.

Fox et al.

Fox, P.A., A.D. Hall, and N.L. Schryer (1978), The PORT mathematical subroutine library, ACM Transactions
on Mathematical Software, 4, 104-126.

Gautschi
Gautschi, Walter (1964), Bessel functions of the first kind, Communications of the ACM, 7, 187-198.

Gautschi, Walter (1969), Complex error function, Communications of the ACM, 12, 635. Gautschi, Walter (1970),
Efficient computation of the complex error function, SIAM Journal on Mathematical Analysis, 7, 187-198.

Gautschi, Walter (1974), Algorithm 471: Exponential integrals, Collected Algorithms from CACM, 471.

Gautschi, Walter (1979), A computational procedure for the incomplete gamma function, ACM Transactions
on Mathematical Software, 5, 466-481.

Gautschi, Walter (1979), Algorithm 542: Incomplete gamma functions, ACM Transactions on Mathematical Soft-
ware, 5, 482-489.

Giles and Feng

Giles, David E. and Hui Feng. (2009). “Bias-Corrected Maximum Likelihood Estimation of the Parameters of
the Generalized Pareto Distribution.” Econometrics Working Paper EWP(0902, Department of Economics,
University of Victoria.

Gradshteyn and Ryzhik

Gradshteyn, LS. and LM. Ryzhik (1965), Table of Integrals, Series, and Products, (translated by Scripta Technica,
Inc.), Academic Press, New York.

Hart et al.

Hart, John F., E-W. Cheney, Charles L. Lawson, Hans J. Maehly, Charles K. Mesztenyi, John R. Rice, Henry G.
Thacher, Jr., and Christoph Witzgall (1968), Computer Approximations, John Wiley & Sons, New York.

Hill

Hill, G.W. (1970), Student’s t-distribution, Communications of the ACM, 13, 617-619.

= ROQQ?WQ\{E{ Appendix B: References 497

Hodge

Hodge, D.B. (1972), The calculation of the eigenvalues and eigenvectors of Mathieu’s equation, NASA Contractor
Report, The Ohio State University, Columbus, Ohio.

Hosking, et al.

Hosking,] R.M., Wallis,].R., and E.F. Wood. (1985). “Estimation of the Generalized Extreme Value Distribu-
tion by the Method of Probability-Weighted Moments.” Technometrics. Vol 27. No. 3. pp 251-261.

Hosking and Wallis

Hosking,].R. M. and J.R. Wallis. (1987). “Parameter and Quantile Estimation for the Generalized Pareto Dis-
tribution.” Technometrics. Vol 29. No. 3. pp 339-349.

IEEE
ANSI/IEEE Std 754-1985 (1985), IEEE Standard for Binary Floating-Point Arithmetic, The IEEE, Inc., New York.

Johnson and Kotz
Johnson, Norman L., and Samuel Kotz (1969), Discrete Distributions, Houghton Mifflin Company, Boston.
Johnson, Norman L., and Samuel Kotz (1970a), Continuous Distributions-1, John Wiley & Sons, New York.

Johnson, Norman L., and Samuel Kotz (1970b), Continuous Distributions-2, John Wiley & Sons, New York.

Kendall and Stuart

Kendall, Maurice G., and Alan Stuart (1979), The Advanced Theory of Statistics, Volume 2: Inference and Relation-
ship, 4th ed., Oxford University Press, New York.

Kim and Jennrich

Kim, PJ., and Jennrich, R.I. (1973), Tables of the exact sampling distribution of the two sample
Kolmogorov-Smirnov criterion Dmn (m < n), in Selected Tables in Mathematical Statistics, Volume 1, (edited by
H.L. Harter and D.B. Owen), American Mathematical Society, Providence, Rhode Island.

Kinnucan and Kuki

Kinnucan, P., and H. Kuki (1968), A single precision inverse error function subroutine, Computation Center, Uni-
versity of Chicago.

Luke
Luke, Y.L. (1969), The Special Function and their Approximations, Volume 1, Academic Press, 34.

= ROQQ?WQ\{E{ Appendix B: References 498

Majumder and Bhattacharjee

Majumder, K. L., and G. P. Bhattacharjee (1973), The Incomplete Beta Integral, Algorithm AS 63:Journal of the
Royal Statistical Society. Series C (Applied Statistics), Vol. 22, No. 3,. 409-411, Blackwell Publishing for the
Royal Statistical Society, http://www. jstor.org/stable/2346797.

NATS FUNPACK

NATS (National Activity to Test Software) FUNPACK (1976), Argonne National Laboratory, Argonne Code Cen-
ter, Argonne.

Olver and Sookne

Olver, EW]., and D.J. Sookne (1972), A note on the backward recurrence algorithms, Mathematics of Computa-
tion, 26, 941-947.

Owen

Owen, D.B. (1962), Handbook of Statistical Tables, Addison-Wesley Publishing Company, Reading, Mass.

Owen, D.B. (1965), A special case of the bivariate non-central t-distribution, Biometrika, 52, 437-446.

Pennisi

Pennisi, L.L. (1963), Elements of Complex Variables, Holt, Rinehart and Winston, New York.

Skovgaard
Skovgaard, Ove (1975), Remark on algorithm 236, ACM Transactions on Mathematical Software, 1, 282-284.

Sookne

Sookne, D.J. (1973a), Bessel functions I and J of complex argument and integer order, National Bureau of Stan-
dards Journal of Research B, 77B, 111-114.

Sookne, D.J. (1973b), Bessel functions of real argument and integer order, National Bureau of Standards Journal
of Research B, 77A, 125-132.

Stephens
Stephens, M.A., and D’Agostino, R.B (1986), Tests based on EDF statistics., Goodness-of-Fit Techniques. Mar-

cel Dekker, New York.
Strecok

Strecok, Anthony J. (1968), On the calculation of the inverse of the error function, Mathematics of Computation,
22,144-158.

= ROQQ?WQ\{E{ Appendix B: References 499

http://www.jstor.org/stable/2346797

Temme

Temme, N. M. (1975), On the numerical evaluation of the modified Bessel function of the third kind, Journal of
Computational Physics, 19, 324-337.

Thompson and Barnett

Thompson, 1.]. and A.R. Barnett (1987), Modified Bessel functions IUz) and KW(z) of real order and complex
argument, to selected accuracy, Computer Physics Communications, 47, 245-257.

Yousif and Melka

Yousif, Hashim A., and Richard Melka (1997), Bessel function of the first kind with complex argument, Com-
puter Physics Communications, vol. 106, no. 3, 199-206.

Yousif, Hashim A., and Richard Melka (2003), Computing Bessel functions of the second kind in extreme
parameter regimes, Computer Physics Communications, 151, 25-34.

= Rogygmﬂn\{q Appendix B: References 500

Index

AL

Airy function 226, 242

derivative 230, 246

exponentially scaled 234
derivative 238

second kind 228, 244
derivative 232,248
exponentially scaled 236
exponentially scaled

derivative 240

arguments, optional subprogram 7

Bessel functions
first kind
integer order 169
order one 146
order zero 144
real order 175, 187
modified
exponentially scaled 161,
163, 165, 167, 181,
185
kind,
order 172
first kind, nonnegative real
order 181
first kind, order one 154,
163
first kind, order zero 152,
161
first kind, real order 179,
193
second kind, fractional
order 185
kind,
one 159, 167
kind,
zero 156, 165
kind,
order 195
kind, fractional
order 183
second kind

first integer

second order

second order
second real

third

order one 150
order zero 148
real nonnegative order 177
real order 190
beta distribution function 341
beta functions
complete 83,109
natural logarithm 112
incomplete 114
beta probability density 343
beta probability distribution
function 338
binomial coefficient 83
binomial distribution function 294
binomial probability function 296
bivariate normal distribution
function 354

C
Cauchy principal value 57,59
characteristic values 446
Chebyshev series 458, 463
chi-squared distribution
function 356, 359, 363
chi-squared probability
density 361
complex numbers
evaluating 11
continuous data 320, 323
cosine
arc
hyperbolic 50
complex 36
hyperbolic 44
in degrees 32
integrals 68, 70
hyperbolic 74,76

cotangent
evaluating 27

cube roots
evaluating 13

cumulative distribution

function 436

cumulative distribution functions
(CDF) 290

D

Dawson’s function
evaluating 134

discrete uniform cumulative
probability 314

discrete uniform cumulative proba-
bility distribution 314

discrete uniform probability
density 318

discrete uniform random
variable 316

distribution functions 290
cumulative (CDF) 290
general continuous cumulative
inverse 439

double precision 1
DOUBLE PRECISION types 3

E
eigenvalues 446
elementary functions 2
elliptic integrals
complete 255
second kind 257
first kind
Carlson's incomplete 259
second kind
Carlson's incomplete 261
third kind
Carlson's incomplete 263
error functions 118, 119
complementary 121
complex scaled 126
exponentially scaled 124
inverse 131
inverse 128

error handling 470
error-handling 5,7

=RogueWave

ROGUEWAVE.COM

Index

501

errors
alert 293
informational 466
note 293
severity level 7
terminal 293, 466
warning 293
exponential cumulative probability
distribution 371
exponential functions
first order 15

exponential integrals 56, 57, 59
of integer order 61

exponential probability
density 375

extreme value cumulative proba-
bility distribution 377

extreme value probability
density 381

F
F distribution function 383, 386
factorial 81

Fresnal integrals 118
cosine 136
sine 138

G

gamma distribution function 399,
402

gamma distributions
standard 290

gamma functions 80
complete 85
incomplete 95
complementary 97
Tricomi form 99
logarithmic derivative 101,103
reciprocal 88
gamma probability density 404

general continuous cumulative dis-
tribution function 442

Geometric
inverse of the geometric cumu-
lative probability
distribution 301
geometric cumulative probability
distribution 299

geometric probability density 303
getting started 1, 6

H

hyperbolic functions 2

hypergeometric distribution
function 305

hypergeometric probability
function 307

1

INTEGER types 3

inverse of the exponential cumula-
tive probability 373

inverse of the geometric cumula-
tive probability
distribution 301

inverse of the lognormal cumula-
tive probability
distribution 328

inverse of the Rayleigh cumulative
probability distribution 408

inverse of the uniform cumulative
probability distribution 426

inverse of the Weibull cumulative
probability distribution 432

J
Jacobi elliptic function 277, 280,
283

K
Kelvin function
first kind
order one 218
order zero 200, 202, 208,
210
second kind
order one 220, 222
order zero 204, 206, 212,
214
Kolmogorov-Smirnov goodness of
fit 320, 323

L

library subprograms 4
logarithmic integrals 63
logarithms

complex

common 17
for gamma functions 90, 93
natural 19, 112

lognormal cumulative probability
distribution 326

lognormal probability density 330

M
machine-dependent constants 471

Mathieu functions
even 450
integer order 450, 454
odd 454
periodic 447, 450, 454
real 450, 454

N
naming conventions 3

noncentral chi-squared
function 366

normal probability density 336

o

optional argument 7

optional data 7

optional subprogram arguments 7
ordinates of the density 436
orthogonal series 462

overflow 5,19

P

Pochhammer's symbol 105, 107,
458

Poisson distribution function 309
Poisson probability function 311
printing 469

printing results 8

probability density function
(PDF) 291

probability functions 290

R

Rayleigh cumulative probability
distribution 406

Rayleigh probability density 409
REAL types 3

= RogueWave

Index

502

required arguments 7

S
sine
arc
hyperbolic 48
complex
arc 34

hyperbolic 42
in degrees 30
integrals 66
hyperbolic 72
single precision 1
Spence's integral 460
standard normal (Gaussian) distri-
bution function 332, 334
Student’s t distribution
function 411, 413, 417, 420

subprograms
library 4
optional arguments 7
T
tangent
arc
hyperbolic 52
complex 25
arc 38

arc of a ratio 40
hyperbolic 46

trigonometric functions 2

(§)
underflow 5

uniform cumulative probability
distribution 424

uniform probability density 428
user interface 1
using library subprograms 4

w

Weibull cumulative probability
distribution 430

Weibull cumulative probability
distribution function 430

Weibull probability density 434
Weibull random variable 432
Weierstrass' function

equianharmonic case 273, 275
lemniscatic case 269, 271

=RogueWave

Index

503

EE ROQHEWE‘{E: Index 504

	Contents
	Introduction
	The IMSL Fortran Numerical Libraries
	Getting Started
	Finding the Right Routine
	Organization of the Documentation
	Naming Conventions
	Using Library Subprograms
	Programming Conventions
	Module Usage
	Programming Tips
	Optional Subprogram Arguments
	Error Handling
	Printing Results

	Chapter 1: Elementary Functions
	Routines
	Usage Notes
	CARG
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CBRT
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	EXPRL
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Examples

	LOG10
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ALNREL
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	Chapter 2: Trigonometric and Hyperbolic Functions
	Routines
	Usage Notes
	TAN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	COT
	Function Value Return
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	SINDG
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	COSDG
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ASIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ACOS
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ATAN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	ATAN2
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	SINH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	COSH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	TANH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ASINH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Examples

	ACOSH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	ATANH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	Chapter 3: Exponential Integrals and Related Functions
	Routines
	Usage Notes
	EI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	E1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	ENE
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ALI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	SI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	SHI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CHI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	CINH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	Chapter 4: Gamma Function and Related Functions
	Routines
	Usage Notes
	FAC
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BINOM
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	GAMMA
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	GAMR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	ALNGAM
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	ALGAMS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	GAMI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	GAMIC
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	GAMIT
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	PSI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	PSI1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	Description
	Comments
	Example

	POCH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	POCH1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BETA
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	ALBETA
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	BETAI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	Chapter 5: Error Function and Related Functions
	Routines
	Usage Notes
	ERF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ERFC
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	ERFCE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	CERFE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ERFI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	ERFCI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	DAWS
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	FRESC
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	FRESS
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	Chapter 6: Bessel Functions
	Routines
	Usage Notes
	BSJ0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BSJ1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BSY0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BSY1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BSI0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BSI1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BSK0
	Function Return Value
	Required Arguments
	Fortran 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BSK1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BSI0E
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BSI1E
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BSK0E
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BSK1E
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BSJNS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Examples

	BSINS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Examples

	BSJS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BSYS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BSIS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BSIES
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BSKS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BSKES
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	CBJS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	CBYS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	CBIS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	CBKS
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	Chapter 7: Kelvin Functions
	Routines
	Usage Notes
	BER0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BEI0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	AKER0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	AKEI0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BERP0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BEIP0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	AKERP0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	AKEIP0
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BER1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BEI1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	AKER1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	AKEI1
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	Chapter 8: Airy Functions
	Routines
	AI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BI
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	AID
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BID
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	AIE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BIE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	AIDE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BIDE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CAI
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Comments
	Example

	CBI
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Comments
	Example

	CAID
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Comments
	Example

	CBID
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Description
	Comments
	Example

	Chapter 9: Elliptic Integrals
	Routines
	Usage Notes
	Carlson Elliptic Integrals

	ELK
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ELE
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ELRF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ELRD
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ELRJ
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ELRC
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	Chapter 10: Elliptic and Related Functions
	Routines
	Usage Notes
	CWPL
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CWPLD
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CWPQ
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CWPQD
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	EJSN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	EJCN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	EJDN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	Chapter 11: Probability Distribution Functions and Inverses
	Routines
	Usage Notes
	Discrete Random Variables
	Continuous Distributions
	Additional Comments

	BINDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BINPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	GEODF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	GEOIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	GEOPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	HYPDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	HYPPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	POIDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	POIPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	UNDDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	UNDIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	UNDPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	AKS1DF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Programming Notes
	Example

	AKS2DF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Programming Notes
	Example

	ALNDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ALNIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ALNPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ANORDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ANORIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	ANORPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BETDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BETIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	BETPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	BETNDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	Description
	Example

	BETNIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	Description
	Example

	BETNPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	Description
	Example

	BNRDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CHIDF
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	CHIIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	CHIPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CSNDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	CSNIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	CSNPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	Description
	Example

	EXPDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	EXPIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	EXPPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	EXVDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	EXVIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	EXVPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	FDF
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	FIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	FPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	FNDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	Description
	Example

	FNIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	Description
	Example

	FNPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	Description
	Example

	GAMDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	GAMIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	GAMPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	RALDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	RALIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	RALPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	TDF
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	TIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	TPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	TNDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	TNIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	TNPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	Description
	Example

	UNDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	UNIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	UNPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	WBLDF
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	WBLIN
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	WBLPR
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	GCDF
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	GCIN
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	GFNIN
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	Chapter 12: Mathieu Functions
	Routines
	Usage Notes
	MATEE
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example

	MATCE
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Examples

	MATSE
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example
	Output

	Chapter 13: Miscellaneous Functions
	Routines
	Usage Notes
	SPENC
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	INITS
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments

	CSEVL
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments

	Reference Material
	Routines/Topics
	User Errors
	What Determines Error Severity
	Kinds of Errors and Default Actions
	Errors in Lower-Level Routines
	Routines for Error Handling

	ERSET
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface

	IERCD and N1RTY
	Examples

	Machine-Dependent Constants
	IMACH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface

	AMACH
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Comments

	DMACH
	IFNAN(X)
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output

	UMACH
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example

	Reserved Names
	Deprecated Features and Deleted Routines
	Automatic Workspace Allocation
	Changing the Amount of Space Allocated
	Character Workspace

	Appendix A: Alphabetical Summary of Routines
	Appendix B: References
	Index

