MAGGIE on Biowulf
MAGGIE identifies sequence motifs that regulate transcription factor binding and function. According to the authors:
MAGGIE provides a framework for identifying DNA sequence motifs mediating transcription factor binding and function. By leveraging measurements and genetic variation information from different genotypes (human individuals, animal strains, or alleles), MAGGIE associates the mutation of DNA sequence motif with various types of epigenomic features, including but not limited to transcription factor binding, open chromatin, histone modification, and stimulus response of regulatory elements.
References:
- Shen, et al. MAGGIE: leveraging genetic variation to identify DNA sequence motifs mediating transcription factor binding and function. J Bioinformatics, 2020.
Documentation
Important Notes
- Module Name: MAGGIE (see the modules page for more information)
- Multithreaded
- This application produces HTML reports. You can use hpcdrive to view these reports on your local workstation.
- Environment variables set
- MAGGIE_EXAMPLE_DATA: Path to MAGGIE example data
- Example files in /usr/local/apps/MAGGIE/EXAMPLES
Interactive job
Interactive jobs should be used for debugging, graphics, or applications that cannot be run as batch jobs.
Allocate an interactive session and run the program.
Sample session (user input in bold):
[user@biowulf]$ sinteractive --cpus-per-task=8 --gres=lscratch:10 salloc.exe: Pending job allocation 46116226 salloc.exe: job 46116226 queued and waiting for resources salloc.exe: job 46116226 has been allocated resources salloc.exe: Granted job allocation 46116226 salloc.exe: Waiting for resource configuration salloc.exe: Nodes cn3144 are ready for job [user@cn3144 ~]$ module load MAGGIE [user@cn3144 ~]$ cd /lscratch/$SLURM_JOB_ID [user@cn3144 ~]$ cp $MAGGIE_EXAMPLE_DATA/QTL/DNase/*.fa . [user@cn3144 ~]$ maggie_fasta_input.py dsQTL_high.fa dsQTL_low.fa -p $SLURM_CPUS_PER_TASK Running MAGGIE on 1013 motifs for 5668 sequences with 8 parallel process 100%|###############################################################| 1013/1013 [38:54<00:00, 1.77s/it] Successfully saved distribution plots Successfully saved motif logos Results are ready in ./maggie_output/ [user@cn3144 ~]$ cp maggie_output /data/$USER/ [user@cn3144 ~]$ exit salloc.exe: Relinquishing job allocation 46116226 [user@biowulf ~]$
Batch job
Most jobs should be run as batch jobs.
Create a batch input file (e.g. MAGGIE.sh). For example:
#!/bin/bash set -e module load MAGGIE cd /lscratch/$SLURM_JOB_ID cp $MAGGIE_EXAMPLE_DATA/QTL/DNase/*.fa . maggie_fasta_input.py dsQTL_high.fa dsQTL_low.fa -p $SLURM_CPUS_PER_TASK cp -r maggie_output /data/$USER/
Submit this job using the Slurm sbatch command.
sbatch [--cpus-per-task=#] [--mem=#] MAGGIE.sh
Swarm of Jobs
A swarm of jobs is an easy way to submit a set of independent commands requiring identical resources.
Create a swarmfile (e.g. MAGGIE.swarm). For example:
maggie_fasta_input.py sample1.fa -p $SLURM_CPUS_PER_TASK -o outputdir1/ maggie_fasta_input.py sample2.fa -p $SLURM_CPUS_PER_TASK -o outputdir2/ maggie_fasta_input.py sample3.fa -p $SLURM_CPUS_PER_TASK -o outputdir3/ maggie_fasta_input.py sample4.fa -p $SLURM_CPUS_PER_TASK -o outputdir4/
Submit this job using the swarm command.
swarm -f MAGGIE.swarm [-g #] [-t #] --module MAGGIEwhere
-g # | Number of Gigabytes of memory required for each process (1 line in the swarm command file) |
-t # | Number of threads/CPUs required for each process (1 line in the swarm command file). |
--module MAGGIE | Loads the MAGGIE module for each subjob in the swarm |