
QoRTs Example Dataset
Analysis Walkthrough

Stephen Hartley
National Human Genome Research Institute

National Institutes of Health

August 8 2014
Revised 14 April 2015

v0.2.17

Contents

1 Overview 2

2 Using this Walkthrough 3

3 Requirements 3
3.1 Recommendations . 3

4 Preparations 4
4.1 Alignment . 4
4.2 Sorting . 4
4.3 Bam file decoder . 5

5 Example dataset 6
5.1 Overview of example files . 6
5.2 Following along on your own . 6

6 Initial Data Processing (STEP 1) 8
6.1 Memory Usage . 9

7 Generate QC plots (Step 2) 10
7.1 Extract Size Factors . 10

8 Generate Wiggle Tracks (STEP 3) 12

9 Merge Technical Replicates (STEP 4) 15

1

QoRTs Example Dataset
Analysis Walkthrough 2

10 Generate Junction Tracks (STEP 5) 16
10.1 Generate ”flat” annotation files . 16
10.2 Make Sample Junction Tracks . 18
10.3 Filter and Merge Novel Junctions . 19
10.4 Make sample junction tracks with novel junctions . 20

11 Generate Summary Genome Tracks (STEP 6) 21
11.1 Make summary wiggle tracks . 22
11.2 Make summary junction tracks . 24
11.3 Combine summary junction tracks . 26
11.4 Advanced Users . 27

12 Perform differential expression analyses (STEP 7) 28
12.1 Perform analysis with DESeq2 . 28
12.2 Perform analysis with edgeR . 29
12.3 Perform analysis with DEXSeq . 30

13 References 31

14 Session Information 31

15 Legal 32

1 Overview

The QoRTs software package is a fast, efficient, and portable multifunction toolkit designed to assist in
the analysis, quality control, and data management of RNA-Seq datasets. Its primary function is to aid
in the detection and identification of errors, biases, and artifacts produced by paired-end high-throughput
RNA-Seq technology. In addition, it can produce count data designed for use with differential expression
1 and differential exon usage tools 2, as well as individual-sample and/or group-summary genome track
files suitable for use with the UCSC genome browser (or any compatible browser).

This walkthrough intends provides step-by-step instructions on how to generate QC reports, generate
advanced browser tracks, and run various differential regulation analyses using the QoRTs software
package. This walkthrough uses a small example dataset to allow users to follow along on their own if
desired, which can be found here.

The QoRTs package is composed of two parts: a java jar-file (for data processing) and a companion R
package (for generating tables, figures, and plots). The java utility is written in the Scala programming
language (v2.11.1), however, it has been compiled to java byte-code and does not require an installation
of Scala (or any other external libraries) in order to function. The entire QoRTs toolkit can be used in
almost any operating system that supports java and R.

1Such as DESeq, DESeq2 [1] or edgeR [2]
2Such as DEXSeq [3]

https://dl.dropboxusercontent.com/u/103621176/qorts/exData/QoRTsFullExampleData.zip
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html

QoRTs Example Dataset
Analysis Walkthrough 3

The most recent release of QoRTs is available on the QoRTs (github page). Additional help and
documentation is available online (here). A comprehensive walkthrough covering the entire process
from post-alignment all the way to differential expression analysis, along with a full example dataset
and example output can be found online (here).

2 Using this Walkthrough

This walkthrough demonstrates how to use the QoRTs software package on one particular example
dataset. However, many of the scripts and commands used here could be used on any RNA-Seq
dataset with minimal modification. File locations will have to be modified, as well as the path to the
java jar-file (in the example scripts, it is QoRTsRelease/QoRTs.jar).

Additionally, in this example walkthrough all commands are carried out in series. In actual use, it is
generally recommended that separate QoRTs runs be executed in separate threads, or, if available,
separate jobs run on a cluster job-queuing engine (such as SGE).

3 Requirements

Hardware: The java utility does the bulk of the data processing, and will generally require at least 4gb of
RAM. In general at least 8gb is recommended, if available. The R package is only responsible for some
light data processing and for plotting/visualization, and thus has much lower resource requirements. It
should run adequately on any reasonably-powerful workstation.

Software: The QoRTs software package requires R version 3.0.2 or higher, as well as java 6 or higher.

Annotation: QoRTs requires transcript annotations in the form of a gtf file. If you are using a annotation
guided aligner (which is STRONGLY recommended) it is likely you already have a transcript gtf file
for your reference genome. We recommend you use the same annotation gtf for alignment, QC,
and downstream analysis. We have found the Ensembl ”Gene Sets” gtf3 suitable for these purposes.
However, any format that adheres to the gtf file specification4 will work.

3.1 Recommendations

Clipping: For the purposes of Quality Control, it is generally best if reads are NOT hard-clipped prior to
alignment. This is because hard clipping, espeically variable hard-clipping from both the start and end
of reads, makes it impossible to determine sequencer cycle from the aligned bam files, which in turn can
obfuscate cycle specific artifacts, biases, errors, and effects. If undesired sequence must be removed,
it is generally preferred to replace such nucleotides with N’s, as this preserves cycle information. Note
that many advanced RNA-Seq aligners will ”soft clip” nonmatching sequence that occurs on the read

3Which can be acquired from the Ensembl website at http://www.ensembl.org
4See the gtf file specification here

http://github.com/hartleys/QoRTs
https://dl.dropboxusercontent.com/u/103621176/QoRTs/helpDocs/index.html
https://dl.dropboxusercontent.com/u/103621176/qorts/exData/QoRTsFullExampleData.zip
http://www.ensembl.org
http://genome.ucsc.edu/FAQ/FAQformat.html

QoRTs Example Dataset
Analysis Walkthrough 4

ends, so hard-clipping low quality sequence is generally unnessessary and may reduce mapping rate and
accuracy.

Replicates: Using barcoding, it is possible to build a combined library of multiple distinct samples which
can be run together on the sequencing machine and then demultiplexed afterward. In general, it is
recommended that samples for a particular study be multiplexed and merged into ”balanced” combined
libraries, each containing equal numbers of each biological condition. If necessary, these combined
libraries can be run across multiple sequencer lanes or runs to achieve the desired read depth on each
sample.

In the example dataset, all samples were merged into a single combined library and run on three sequencer
lanes. The demultiplexed results were aligned seperately and produce seperate bam files. For example,
sample ”SAMP1” is composed of ”SAMP1 RG1.bam”, ”SAMP1 RG2.bam”, and ”SAMP1 RG3.bam”.
If preferred, these ”technical replicates” can be merged prior to alignment and analyzed seperately (see
section 6 for details on the --readGroup option).

4 Preparations

There are a number of processing steps that must occur prior to the creation of usable bam files. The
specifics of such steps is beyond the scope of this walkthrough. We will briefly go over the required
steps here:

4.1 Alignment

QoRTs is designed to run on paired-end next-gen RNA-Seq data. The data must be aligned (or
”mapped”) to a reference genome before QoRTs can be run. RNA-Star [4], GSNAP [5], and TopHat2 [6]
are all popular aligners for use with RNA-Seq data. The use of short-read or unspliced aligners such as
BowTie, ELAND, BWA, or Novoalign is NOT recommended.

4.2 Sorting

For paired-end data, QoRTs requires that the bam files be sorted by either read name or by position.
Sorting can be accomplished via the samtools or novosort tools (which are NOT included with QoRTs).
Sorting is unnecessary for single-end data.

To sort by position:

samtools sort SAMP1_RG1.raw.bam SAMP1_RG1

OR

QoRTs Example Dataset
Analysis Walkthrough 5

novosort SAMP1_RG1.raw.bam > SAMP1_RG1.bam

The example dataset is already sorted by position.

4.3 Bam file decoder

Several QoRTs functions will require a ”decoder” file, which describes each sample and all of its technical
replicates (if any). All of the columns are optional except for unique.ID.

Fields:

� unique.ID: A unique identifier for the row. THIS IS THE ONLY MANDATORY FIELD.
� lane.ID: The ID of the lane or batch. By default this will be set to ”UNKNOWN”.
� group.ID: The ID of the ”group”. For example: ”Case” or ”Control”. By default this will be set

to ”UNKNOWN”.
� sample.ID: The ID of the biological sample from which the data originated. Each sample can

have multiple rows, representing technical replicates (in which the same sample is sequenced on
multiple lanes or runs). By default QoRTs will assume that every row comes from a separate
sample, and will thus set the sample.ID to equal the unique.ID.

� qc.data.dir : The directory in which the java utility is to save all the QC data. If this column does
not exist, by default it will be set to the unique.ID.

� input.read.pair.count: The number of reads in the original fastq file, prior to alignment.
� multi.mapped.read.pair.count: The number of reads that were multi-mapped by the aligner.

In addition, the decoder can contain any other additional columns as desired, as long as all of the
column names are distinct.

QoRTs Example Dataset
Analysis Walkthrough 6

5 Example dataset

The example dataset is derived from a set of rat pineal gland samples, which were multiplexed and
sequenced across six sequencer lanes. All samples are paired-end, 2x101 base-pair, strand-specific
RNA-Seq. They were ribosome-depleted using the ”Ribo-zero Gold” protocol and aligned via RNA-
STAR.

For the sake of simplicity, the example dataset was limited to only six samples and three lanes. However,
the bam files alone would still occupy 18 gigabytes of disk space, which would make it unsuitable for
distribution as an example dataset. To further reduce the example bamfile sizes, only reads that mapped
to chromosomes chr14, chr15, chrX, and chrM were included. Additionally, all the selected chromosomes
EXCEPT for chromosome 14 were randomly downsampled to 30 percent of their original read counts.

THIS DATASET IS INTENDED FOR DEMONSTRATION AND TESTING PURPOSES ONLY. Due to
the various alterations that have been made to reduce file sizes and improve portability, it is really not
suitable for any actual analyses.

5.1 Overview of example files

The ”input” data files are all found in the inputData/ directory:

� inputData/annoFiles/anno.gtf.gz: A truncated gtf file generated by extracting chromo-
somes 14, 15, X and M from the ensembl Rattus_norvegicus.RGSC3.4.69.gtf transcript
annotation file.

� inputData/annoFiles/chrom.sizes: A truncated chromosome sizes file generated by ex-
tracting chromosomes 14, 15, X and M from the chrom.sizes file generated by the UCSC
fetchChromSizes utility.

� inputData/annoFiles/decoder.bySample: A sample decoder, which defines each sample’s
biological condition (CASE or CTRL).

� inputData/annoFiles/decoder.byUID: A decoder that matches sample.ID to unique.ID, match-
ing technical replicates to their sample of origin. It also includes (optional) biological condition
information as well as input read pair counts and multimapping read pair counts acquired from
the aligner output.

� inputData/annoFiles/sampleID.list.txt: A simple text file containing the list of samples.
� inputData/annoFiles/uniqueID.list.txt: A simple text file containing the list of technical

replicates.

In addition, bam files for the 3 technical replicates for each of the 6 example samples are included in
the inputData/bamFiles/ directory.

5.2 Following along on your own

In order to follow along with this walkthrough, download the example dataset found (here).

https://dl.dropboxusercontent.com/u/103621176/qorts/exData/QoRTsFullExampleData.zip

QoRTs Example Dataset
Analysis Walkthrough 7

This walkthrough assumes that analysis is being done in a Linux-like environment (bash). Most com-
mands can be adapted for other enviroments relatively easily, as QoRTs is not platform dependent.

All commands are executed from the root directory of the example dataset: QoRTsFullExampleData/.

This example walkthrough will additionally require the installation of R packages: MASS, Cairo, png,
and bioconductor packages: DESeq2 , edgeR , and DEXSeq.

These packages can be installed with the R commands:

install.packages("Cairo")

install.packages("MASS")

install.packages("png")

source("http://bioconductor.org/biocLite.R")

biocLite()

biocLite("DESeq2")

biocLite("DEXSeq")

biocLite("edgeR")

QoRTs R Package: It is generally preferable to download the most recent release of QoRTs 5, however
the version of QoRTs used to generate the example output data is included with the example dataset.
This version of QoRTs can be installed using the console command:

R CMD INSTALL QoRTsRelease/QoRTs_0.2.11.tar.gz

Again, this command must be executed from the root directory of the example dataset (QoRTsFullExampleData/).

The example dataset comes with all output already generated. In order to delete this pre-generated
output and ”start from scratch”, run the script:

sh exampleScripts/step0/step0.reset.sh

5Found here

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
https://github.com/hartleys/QoRTs/releases

QoRTs Example Dataset
Analysis Walkthrough 8

6 Initial Data Processing (STEP 1)

The first step is to process the aligned RNA-Seq data. The bulk of the data-processing is performed
by the QoRTs.jar java utility. This tool produces an array of output files, analyzing and tabulating the
data in various ways. This utility requires about 10-20gb of RAM for most genomes, and takes roughly
4 minutes to process 1 million read-pairs.

To perform this analysis on SAMP1_RG1.bam, use the command:

mkdir outputData/qortsQcData/SAMP1_RG1/

java -Xmx1G -jar QoRTsRelease/QoRTs.jar QC \

--stranded \

inputData/bamFiles/SAMP1_RG1.bam \

inputData/annoFiles/anno.gtf.gz \

outputData/qortsQcData/SAMP1_RG1/

To run the example set on each bam file, you can use the commands:

while read line

do

mkdir outputData/qortsData/$line/

java -Xmx1G -jar QoRTsRelease/QoRTs.jar \

QC \

--stranded \

inputData/bamFiles/$line.bam \

inputData/annoFiles/anno.gtf.gz \

outputData/qortsData/$line/

done < "inputData/annoFiles/uniqueID.list.txt"

Or you can run the provided example script:

sh exampleScripts/step1/step1.all.qortsRun.sh

The bam processing tool includes numerous options. A full description of these options can be found
by entering the command:

java -jar QoRTsRelease/QoRTs.jar QC --man

There are a number of crucial points that require attention when using the QoRTs.jar QC command.

� Stranded Data: By default, QoRTs assumes that the data is NOT strand-specific. For strand-
specific data, the --stranded option must be used.

QoRTs Example Dataset
Analysis Walkthrough 9

� Stranded Library Type: The --fr_secondStrand option may be required depending on the
stranded library type. QoRTs does not attempt to automatically detect the platform and protocol
used for stranded data. There are two types of strand-specific protocols, which are described by
the TopHat/CuffLinks documentation at as fr-firststrand and fr-secondstrand. In HTSeq,
these same library type options are defined as -s reverse and -s yes respectively. According to
the CuffLinks manual, fr-firststrand (the default used by QoRTs for stranded data) applies
to dUTP, NSR, and NNSR protocols, whereas fr-secondstrand applies to ”Directional Illumina
(ligation)” and ”Standard SOLiD” protocols. If you are unsure which library type applies to your
dataset, don’t worry: one of the tests will report stranded library type. If you use this test to
determine library type, be aware that you may have to re-run QoRTs with the correct library type
set.

� Read Groups: Depending on the production pipeline, each biological sample may be run across
multiple sequencer lanes. These seperate files can be merged together either before or after
analysis with QoRTs (and maybe even before alignment). However, if the merger occurs before
analysis with QoRTs, then each bam file will consist of multiple seperate lanes or runs. In this
case, it is STRONGLY recommended that seperate QC runs be performed on each ”read group”,
using the --readGroup option. This will prevent run- or lane-specific biases, artifacts, or errors
from being obfuscated.

� Read Sorting: For paired-end data reads must be sorted by either name or position (under the
default mode, it does not matter which). QoRTs can also be run in name-sorted-only mode using
the ”–nameSorted” option, which explicitly requires name-sorted data but may run faster and
with lower memory overhead.

� Single-end vs paired-end: By default, QoRTs assumes the input bam file consists of paired-end
data. For single-end data, the --isSingleEnd option must be used.

� ’Wiggle’ Browser Tracks: ’.wig’ browser tracks can also be produced in this step. See Section 8
for more information.

� Junction Browser Tracks: ’.bed’ junction depth browser tracks can also be produced in this step.
See Section 10 for more information.

6.1 Memory Usage

Memory usage: The QoRTs QC utility requires at least 4gb or RAM for most genomes / datasets.
Larger genomes, genomes with more annotated genes/transcripts, or larger bam files may require more
RAM. You can set the maximum amount of RAM allocated to the JVM using the options -Xmx4000M.
This should be included before the -jar in the command line. This option can be used with any and all
of the QoRTs java utilities. Because the example dataset and genome is so small, 1 gigabyte of RAM
is more than sufficient.

http://cufflinks.cbcb.umd.edu/manual.html#library

QoRTs Example Dataset
Analysis Walkthrough 10

7 Generate QC plots (Step 2)

Once the data has been processed, you can read the QC data produced by QoRTs into R using the
command:

library(QoRTs);

#Read in the QC data:

res <- read.qc.results.data("outputData/qortsData/",

decoder.files = "inputData/annoFiles/decoder.byUID.txt",

calc.DESeq2 = TRUE, calc.edgeR = TRUE);

Once you have read in the QC data, you can build all sorts of plots. See Figure 1 for one example6.

EXAMPLE 1: The makeMultiPlot.all can be used to automatically generate a full battery of multi-
plot figures:

makeMultiPlot.all(res,

outfile.dir = "outputData/qortsPlots/summaryPlots/",

plot.device.name = "png");

EXAMPLE 2: Some users may find the large png files difficult to read. QoRTs offers multi-page pdf
reports as an alternative, simply by using the plot.device.name parameter:

makeMultiPlot.all(res,

outfile.dir = "outputData/qortsPlots/summaryPDFs/",

plot.device.name = "pdf");

EXAMPLE 3: To print all the basic plots as seperate pngs, use the command:

makeMultiPlot.basic(res,

outfile.dir = "outputData/qortsPlots/basicPlots/",

separatePlots = TRUE);

Note that this produces a huge number of png files.

A full description of all quality control plots produced by these commands is beyond the scope of this
walkthrough. See the QoRTs package vignette for more information.

7.1 Extract Size Factors

If DESeq2 and/or edgeR are installed, QoRTs will automatically generate ”library size factors” using
the algorithms provided by each. These ”size factors” are used to ”normalize” all samples to a common,
comparable scale. This is necessary in order to directly compare between samples, and thus size factors
are required for several downstream analyses. To extract these size factors, use the R commands:

6Note: to reduce the pdf file size, the resolution is lower than the default value.

QoRTs Example Dataset
Analysis Walkthrough 11

Figure 1: An example combined multi-plot. In this example, replicates are differentiated by color and
pch symbol based on the group.ID (ie CASE or CTRL).

sizeFactors <- res@calc.data[["norm.factors.bySample"]];

sizeFactors.GEO <- data.frame(sample.ID = sizeFactors$sample.ID,

size.factor = sizeFactors$Norm_Geo);

write.table(sizeFactors.GEO,file = "outputData/sizeFactors.GEO.txt",

row.names=F,col.names=TRUE,sep="\t",quote=F);

QoRTs Example Dataset
Analysis Walkthrough 12

8 Generate Wiggle Tracks (STEP 3)

To generate ”wiggle” tracks for a replicate, you can use the command:

java -Xmx1G -jar QoRTsRelease/QoRTs.jar \

bamToWiggle \

--stranded \

--windowSize 100 \

--negativeReverseStrand \

--includeTrackDefLine \

--rgbColor 0,0,0 \

inputData/bamFiles/SAMP1_RG1.bam \

SAMP1_RG1 \

inputData/annoFiles/chrom.sizes \

outputData/qortsData/SAMP1_RG1/QC.wiggle

To generate wiggle tracks for all bam files:

while read line

do

java -Xmx1G -jar QoRTsRelease/QoRTs.jar \

bamToWiggle \

--stranded \

--windowSize 100 \

--negativeReverseStrand \

--includeTrackDefLine \

--rgbColor 0,0,0 \

inputData/bamFiles/$line.bam \

$line \

inputData/annoFiles/chrom.sizes \

outputData/qortsData/$line/QC.wiggle

done < "inputData/annoFiles/uniqueID.list.txt"

These tracks can be loaded and viewed in the UCSC genome browser. See Figure 2 for an example.

Or run the provided example script:

sh exampleScripts/step3/step3.all.qortsWig.sh

More details on parameters and options available for this function can be accessed with the commands:

QoRTs Example Dataset
Analysis Walkthrough 13

Figure 2: A pair of wiggle tracks generated for SAMP1. The top wiggle track plots the average coverage
depth over the forward strand, the lower wiggle track plots the average coverage depth over the reverse
strand. This track can be viewed on the UCSC browser here.

java -jar QoRTsRelease/QoRTs.jar bamToWiggle --man

https://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=stephen.hartley&hgS_otherUserSessionName=QoRTs_example_fig1

QoRTs Example Dataset
Analysis Walkthrough 14

Wiggle tracks can also be generated during the initial processing step (See Section 6). However,
this requires the --chromSizes parameter be set to the chrom.sizes file. The additional option
trackTitlePrefix can be used to set the wiggle track’s title.

So, for example, to generate all QC data and wiggle tracks simultaniously in a single bam-file pass:

java -Xmx1G -jar QoRTsRelease/QoRTs.jar QC \

--stranded \

--chromSizes inputData/annoFiles/chrom.sizes \

--trackTitlePrefix SAMP1_RG1_WIGGLE \

inputData/bamFiles/SAMP1_RG1.bam \

inputData/annoFiles/anno.gtf.gz \

outputData/qortsQcData/SAMP1_RG1/

QoRTs Example Dataset
Analysis Walkthrough 15

9 Merge Technical Replicates (STEP 4)

In many RNA-Seq datasets, individual samples/libraries are run across multiple sequencing lanes, pro-
ducing ”technical replicates” of the same original biological samples. For the purposes of quality control
it is generally best to run QC tools separately on each technical replicate, so that lane- or run-specific
errors and artifacts are not obscured. However, for the purposes of most downstream analyses, it is
generally preferable to merge the technical replicates for each sample. Thus, QoRTs contains methods
allowing count data to be combined across technical replicates.

If the dataset contains no technical replicates then this step is unnecessary.

To merge the count data of all technical replicates:

java -jar QoRTsRelease/QoRTs.jar \

mergeAllCounts \

outputData/qortsData/ \

inputData/annoFiles/decoder.byUID.txt \

outputData/countTables/

This requires a decoder file, identical to the one used for QC in section 11. The only required fields are
unique.ID and sample.ID.

Alternatively, an individual set of technical replicates can be merged using the command:

java -jar QoRTsRelease/QoRTs.jar \

mergeCounts \

outputData/qortsData/SAMP1_RG1/,outputData/qortsData/SAMP1_RG2/,o\

utputData/qortsData/SAMP1_RG3/ \

outputData/countTables/SAMP1/

More details on parameters and options available for this function can be accessed with the commands:

java -jar QoRTsRelease/QoRTs.jar mergeCounts --man

and

java -jar QoRTsRelease/QoRTs.jar mergeAllCounts --man

QoRTs Example Dataset
Analysis Walkthrough 16

10 Generate Junction Tracks (STEP 5)

For the purposes of examining transcript abundances as well as visually confirming the results of tran-
script deconvolution or transcript assembly tools, QoRTs provides functions for generating genome
browser tracks that display splice junction coverage counts. These can be generated for an individual
replicate during the initial processing step (See Section 6), by adding the --addFunctions makeJunctionBed

option.

See Figure 3 for an example, shown alongide wiggle tracks generated in Section 9.

Figure 3: An example of the tracks that can be produced in this section. Each annotated splice junction
locus has a identifier unique for each gene (example: J017). After the identifier, the number of reads
(or read-pairs) that bridge the given splice junction locus is listed in parentheses. This track can be
viewed on the UCSC browser here.

10.1 Generate ”flat” annotation files

DEXSeq requires a ”flattened” gff files, in which overlapping genes are compiled and a flat set of exons
is generated and assigned unique identifiers. QoRTs has extended this notation to additionally assign
unique identifiers to every splice junction as well. These assignments can be generated and accessed
using the command:

java -Xmx1G -jar QoRTsRelease/QoRTs.jar \

makeFlatGff \

https://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=stephen.hartley&hgS_otherUserSessionName=QoRTs_example_fig2

QoRTs Example Dataset
Analysis Walkthrough 17

--stranded \

inputData/annoFiles/anno.gtf.gz \

outputData/forJunctionSeq.gff.gz

This gff file can be used to create splice junction tracks (but is NOT required to do so).

To generate a flat annotation file that is formatted for use with the DEXSeq package, use the command:

java -Xmx1G -jar QoRTsRelease/QoRTs.jar \

makeFlatGff \

--stranded \

--DEXSeqFmt \

inputData/annoFiles/anno.gtf.gz \

outputData/forDEXSeq.gff.gz

More details on parameters and options available for this function can be accessed with the command:

java -jar QoRTsRelease/QoRTs.jar makeFlatGff --man

http://bioconductor.org/packages/release/bioc/html/DEXSeq.html

QoRTs Example Dataset
Analysis Walkthrough 18

10.2 Make Sample Junction Tracks

QoRTs includes utilitys for creating splice junction coverage tracks for individual samples.

A splice junction coverage count bed file can be generated for sample SAMP1 using the command:

java -Xmx1G -jar QoRTsRelease/QoRTs.jar \

makeJunctionTrack \

--nonflatgtf \

--stranded \

--filenames outputData/countTables/SAMP1/QC.spliceJunctionAndExonCounts.\

forJunctionSeq.txt.gz \

inputData/annoFiles/anno.gtf.gz \

outputData/countTables/SAMP1/QC.junctionBed.known.bed.gz

Or, to generate this file for every sample:

while read line

do

java -Xmx1G -jar QoRTsRelease/QoRTs.jar \

makeJunctionTrack \

--nonflatgtf \

--stranded \

--filenames outputData/countTables/$line/QC.spliceJunctionAndExonCounts.\

forJunctionSeq.txt.gz \

inputData/annoFiles/anno.gtf.gz \

outputData/countTables/$line/QC.junctionBed.known.bed.gz

done < "inputData/annoFiles/sampleID.list.txt"

More details on parameters and options available for this function can be accessed with the command:

java -jar QoRTsRelease/QoRTs.jar makeJunctionTrack --man

QoRTs Example Dataset
Analysis Walkthrough 19

10.3 Filter and Merge Novel Junctions

The splice junction count files in Section 10.2 only include annotated splice junctions. It may be
desirable to visually inspect novel splice junctions as well. However, some aligners may produce large
numbers of extremely-low-coverage splice junctions. To filter out such junctions and produce unique
identifiers for every splice junction locus that passes the filter, use the command:

java -Xmx1G -jar QoRTsRelease/QoRTs.jar \

mergeNovelSplices \

--minCount 100 \

--stranded \

outputData/countTables/ \

outputData/sizeFactors.GEO.txt \

inputData/annoFiles/anno.gtf.gz \

outputData/countTables/

This will perform two functions: first it will produce a ”flattened” gff file containing unique identifiers
for all splice junctions that pass the given filter. Secondly, it produces new splice junction count files
for each sample, which match the new flattened gtf.

More details on parameters and options available for this function can be accessed with the command:

java -jar QoRTsRelease/QoRTs.jar mergeNovelSplices --man

QoRTs Example Dataset
Analysis Walkthrough 20

10.4 Make sample junction tracks with novel junctions

Once the flattened annotation and count files which include the novel splice junctions has been gen-
erated, a bed file can be produces which includes all such novel splices. Note that identifier codes of
novel splice junctions will be named with N’s.

while read line

do

java -Xmx1G -jar QoRTsRelease/QoRTs.jar \

makeJunctionTrack \

--filenames outputData/countTables/$line/QC.spliceJunctionAndExonCounts.withNo\

vel.forJunctionSeq.txt.gz \

outputData/countTables/withNovel.forJunctionSeq.gff.gz \

outputData/countTables/$line/QC.junctionBed.withNovel.bed.gz

done < "inputData/annoFiles/sampleID.list.txt"

More details on parameters and options available for this function can be accessed with the command:

java -jar QoRTsRelease/QoRTs.jar makeJunctionTrack --man

QoRTs Example Dataset
Analysis Walkthrough 21

11 Generate Summary Genome Tracks (STEP 6)

While for small datasets it may be reasonable to visually inspect individual-sample browser tracks, for
larger datasets this quickly becomes untenable. Thus, QoRTs includes functions for compiling multiple
wiggle or junction-count browser tracks by normalized mean coverage. Note that this requires size
factors for use in normalizing all the samples to a comparable scale. See Section for more details about
how to extract size factors from the QoRTs output data. See Figure 4 for an example.

Figure 4: An example of the tracks that can be produced in Section 11. The first track (”CTRL FWD”)
shows the mean normalized coverage depth for 100-base-pair windows for the forward (genomic) strand.
The second track reveals the coverage depth on the negative strand (plotted as negative values). The
third track (”CASEvCTRL Mean Normalized Splice Junction coverage”) displays the locus ID for each
splice junction, along with the mean normalized coverage bridging each splice junction locus in cases
and in controls. Note that cases and controls are overlaid and colored distinctly in the junction track.
This track can be viewed on the UCSC browser here.

https://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=stephen.hartley&hgS_otherUserSessionName=QoRTs_example_fig3

QoRTs Example Dataset
Analysis Walkthrough 22

11.1 Make summary wiggle tracks

QoRTs can generate compiled summary wiggle tracks, which display the mean normalized read-pair
coverage across multiple samples, over equal-sized windows across the entire genome.

Because there are two sets of wiggle files: forward and reverse strand (because this is stranded data),
this requires two separate commands:

java -Xmx1G -jar QoRTsRelease/QoRTs.jar \

mergeWig \

--calcMean \

--infilePrefix outputData/countTables/ \

--infileSuffix /QC.wiggle.fwd.wig.gz \

--sampleList SAMP1,SAMP2,SAMP3 \

--sizeFactorFile outputData/sizeFactors.GEO.txt \

outputData/mergedTracks/CASE.fwd.wig.gz

java -Xmx1G -jar QoRTsRelease/QoRTs.jar \

mergeWig \

--calcMean \

--infilePrefix outputData/countTables/ \

--infileSuffix /QC.wiggle.rev.wig.gz \

--sampleList SAMP1,SAMP2,SAMP3 \

--sizeFactorFile outputData/sizeFactors.GEO.txt \

outputData/mergedTracks/CASE.rev.wig.gz

QoRTs Example Dataset
Analysis Walkthrough 23

And, to do the same thing to the control set:

java -Xmx1G -jar QoRTsRelease/QoRTs.jar \

mergeWig \

--calcMean \

--infilePrefix outputData/countTables/ \

--infileSuffix /QC.wiggle.fwd.wig.gz \

--sampleList SAMP4,SAMP5,SAMP6 \

--sizeFactorFile outputData/sizeFactors.GEO.txt \

outputData/mergedTracks/CTRL.fwd.wig.gz

java -Xmx1G -jar QoRTsRelease/QoRTs.jar \

mergeWig \

--calcMean \

--infilePrefix outputData/countTables/ \

--infileSuffix /QC.wiggle.rev.wig.gz \

--sampleList SAMP4,SAMP5,SAMP6 \

--sizeFactorFile outputData/sizeFactors.GEO.txt \

outputData/mergedTracks/CTRL.rev.wig.gz

This tool is very flexible, and can be run on a number of different parameterizations. The example script
exampleScripts/step6/step6A.makeMergedWiggles.sh contains a number of example variations.

More details on parameters and options available for this function can be accessed with the command:

java -jar QoRTsRelease/QoRTs.jar mergeWig --man

QoRTs Example Dataset
Analysis Walkthrough 24

11.2 Make summary junction tracks

QoRTs can also generate compiled summary junction-covarage tracks, which display the mean normal-
ized read-pair coverage across multiple samples for all annotated splice junctions.

This can be achieved with the command:

java -jar QoRTsRelease/QoRTs.jar \

makeJunctionTrack \

--calcMean \

--stranded \

--infilePrefix outputData/countTables/ \

--infileSuffix /QC.spliceJunctionAndExonCounts.forJunctionSeq.txt.gz \

--sampleList SAMP1,SAMP2,SAMP3 \

--sizeFactorFile outputData/sizeFactors.GEO.txt \

outputData/forJunctionSeq.gff.gz \

outputData/mergedTracks/CASE.bed.gz

To do the same thing for the CTRL group:

java -jar QoRTsRelease/QoRTs.jar \

makeJunctionTrack \

--calcMean \

--stranded \

--infilePrefix outputData/countTables/ \

--infileSuffix /QC.spliceJunctionAndExonCounts.forJunctionSeq.txt.gz \

--sampleList SAMP4,SAMP5,SAMP6 \

--sizeFactorFile outputData/sizeFactors.GEO.txt \

outputData/forJunctionSeq.gff.gz \

outputData/mergedTracks/CTRL.bed.gz

QoRTs Example Dataset
Analysis Walkthrough 25

A similar command can be used to include novel splice junctions, just like in section 10.4:

java -Xmx1G -jar QoRTsRelease/QoRTs.jar \

makeJunctionTrack \

--calcMean \

--stranded \

--infilePrefix outputData/countTables/ \

--infileSuffix /QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz \

--sampleList SAMP4,SAMP5,SAMP6 \

--sizeFactorFile outputData/sizeFactors.GEO.txt \

outputData/countTables/withNovel.forJunctionSeq.gff.gz \

outputData/mergedTracks/CTRL.withNovel.bed.gz

This tool is particularly flexible, and can be run on a number of different parameterizations. The exam-
ple script exampleScripts/step6/step6A.makeMergedWiggles.sh contains a number of example
variations.

More details on parameters and options available for this function can be accessed with the command:

java -jar QoRTsRelease/QoRTs.jar makeJunctionTrack --man

QoRTs Example Dataset
Analysis Walkthrough 26

11.3 Combine summary junction tracks

Combined junction tracks can be generated displaying the seperate groups in different colors. First you
must use the --rgb parameter to tell QoRTs to assign the given color to each group:

#Set cases to "red":

java -Xmx1G -jar QoRTsRelease/QoRTs.jar \

makeJunctionTrack \

--calcMean \

--stranded \

--rgb 150,0,0 \

--title CASE \

--infilePrefix outputData/countTables/ \

--infileSuffix /QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz \

--sampleList SAMP1,SAMP2,SAMP3 \

--sizeFactorFile outputData/sizeFactors.GEO.txt \

outputData/countTables/withNovel.forJunctionSeq.gff.gz \

outputData/mergedTracks/CASE.withNovel.red.bed.gz

#And then set CONTROLS to "blue":

java -Xmx1G -jar QoRTsRelease/QoRTs.jar \

makeJunctionTrack \

--calcMean \

--stranded \

--rgb 0,0,150 \

--title CTRL \

--infilePrefix outputData/countTables/ \

--infileSuffix /QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz \

--sampleList SAMP4,SAMP5,SAMP6 \

--sizeFactorFile outputData/sizeFactors.GEO.txt \

outputData/countTables/withNovel.forJunctionSeq.gff.gz \

outputData/mergedTracks/CTRL.withNovel.blue.bed.gz

These files can be merged simply by concatenation followed by sorting by the first and second columns.
In linux this can be accomplished with the commands:

zcat outputData/mergedTracks/CASE.withNovel.red.bed.gz \

outputData/mergedTracks/CTRL.withNovel.blue.bed.gz | \

sort -k1,1 -k2,2n | gzip - > outputData/mergedTracks/CASE.vs.CTRL.bed.gz

QoRTs Example Dataset
Analysis Walkthrough 27

11.4 Advanced Users

See Figure 5 for an example of how these summary tracks can be viewed via TrackHubs. The use
of TrackHubs is beyond the scope of this manual. See the UCSC track database definition for more
information (here).

Figure 5: An example demonstrating how summary tracks can be viewed via the use of UCSC browser
trackhubs. The aggregate ”multiWig” track displays both cases and controls overlaid on top of one
another in different colors. In addition, the forward and reverse strands are also overlaid, with the
reverse strand displayed below zero. This track can be viewed on the UCSC browser here.

A browser session that includes the trackhub shown above can be found here, and the hub itself can be
found here.

http://genome.ucsc.edu/goldenpath/help/trackDb/trackDbDoc.html
https://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=stephen.hartley&hgS_otherUserSessionName=QoRTs_example_fig3B
http://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=stephen.hartley&hgS_otherUserSessionName=rn4_QoRTs_Example
https://dl.dropboxusercontent.com/u/103621176/QoRTs/exTrackHub/hub.txt

QoRTs Example Dataset
Analysis Walkthrough 28

12 Perform differential expression analyses (STEP 7)

QoRTs produces output that is designed to be read by several different analyses tools designed to
detect differential gene expression or other forms of differential regulation. It is designed to produce
data identical to the data created by the HTSeq package.

12.1 Perform analysis with DESeq2

DESeq2 [1] is designed to detect gene-level differential expression in RNA-Seq data. As part of its initial
processing QC run (see section 6), QoRTs produces count files similar to those expected by DESeq2 .

The merged output produced by QoRTs mimics the output of HTSeq. Thus, we use the same syntax
found in section 1.2.4 of the DESeq2 vignette (the section titled ”HTSeq Input”).

suppressPackageStartupMessages(library(DESeq2));

decoder.bySample <- read.table(

"inputData/annoFiles/decoder.bySample.txt",

header=T,stringsAsFactors=F);

directory <- "outputData/countTables/";

sampleFiles <- paste0(

decoder.bySample$sample.ID,

"/QC.geneCounts.formatted.for.DESeq.txt.gz"

);

sampleCondition <- decoder.bySample$group.ID;

sampleName <- decoder.bySample$sample.ID;

sampleTable <- data.frame(sampleName = sampleName,

fileName = sampleFiles,

condition = sampleCondition);

dds <- DESeqDataSetFromHTSeqCount(sampleTable = sampleTable,

directory = directory,

design = ~ condition);

dds;

Once the data is loaded into a DESeqDataSet, all desired DESeq2 analyses can then be run, exactly as
described in the DESeq2 vignette. For example, the basic analysis would be run using the commands:

dds <- DESeq(dds);

res <- results(dds);

res

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html

QoRTs Example Dataset
Analysis Walkthrough 29

12.2 Perform analysis with edgeR

edgeR [2] performs Differential expression analysis of RNA-seq and digital gene expression profiles with
biological replication. It uses empirical Bayes estimation and either exact tests and/or generalized linear
models, based on the negative binomial distribution. As with DESeq2 , The count data produced by
QoRTs can be used by edgeR.

edgeR requires slightly more manipulation to put the count data in a format that it expects:

suppressPackageStartupMessages(library(edgeR));

decoder.bySample <- read.table(

"inputData/annoFiles/decoder.bySample.txt",

header=T,stringsAsFactors=F);

directory <- "outputData/countTables/";

files <- paste0(directory,

decoder.bySample$sample.ID,

"/QC.geneCounts.formatted.for.DESeq.txt.gz"

);

countData <- lapply(files, function(f){
ct <- read.table(f,header=F,stringsAsFactors=F)$V2;

ct <- ct[1:(length(ct)-5)]

});

countMatrix <- do.call(cbind.data.frame,countData);

colnames(countMatrix) <- decoder.bySample$sample.ID;

rownames(countMatrix) <- read.table(files[1],header=F,

stringsAsFactors=F)$V1[1:nrow(countMatrix)]

group <- factor(decoder.bySample$group.ID);

From here, the data is ready for use with edgeR. edgeR can be run as shown in the ”Quick Start”
example in the edgeR user guide. For example, to perfom a standard analysis based on generalized
linear models:

design <- model.matrix(~group)

y <- DGEList(counts = countMatrix, group = group);

y <- calcNormFactors(y)

y <- estimateGLMCommonDisp(y,design)

y <- estimateGLMTrendedDisp(y,design)

y <- estimateGLMTagwiseDisp(y,design)

fit <- glmFit(y,design)

lrt <- glmLRT(fit,coef=2)

topTags(lrt)

http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html

QoRTs Example Dataset
Analysis Walkthrough 30

12.3 Perform analysis with DEXSeq

DEXSeq [3] is another bioconductor-based tool designed to detect ”differential exon usage” (DEU),
as a proxy for detecting differentials in transcript-level expression regulation. QoRTs produces count
files designed specifically for use with DEXSeq as part of its initial processing QC run (see section 6).
In addition, DEXSeq requires a special ”flattened” gff file, which QoRTs is also capable of generating
(see section 10.1). IMPORTANT NOTE: the count files and the flattened gff file MUST be generated
using the same strandedness mode (ie. with or without the --stranded option).

The DEXSeq-formatted data will use the file name "QC.exonCounts.formatted.for.DEXSeq.txt.gz".
The data can be loaded into DEXSeq using commands almost identical to those found in the DEXSeq
package vignette:

suppressPackageStartupMessages(library(DEXSeq));

decoder <- read.table(

"inputData/annoFiles/decoder.bySample.txt",

header=T,stringsAsFactors=F);

directory <- "outputData/countTables/";

countFiles <- paste0(

directory,

decoder$sample.ID,

"/QC.exonCounts.formatted.for.DEXSeq.txt.gz"

);

dexseq.gff <- "outputData/forDEXSeq.gff.gz";

sampleTable <- data.frame(

row.names = decoder$sample.ID,

condition = decoder$group.ID

);

dxd <- DEXSeqDataSetFromHTSeq(

countFiles,

sampleData = sampleTable,

design = ~sample + exon + condition:exon,

flattenedfile=dexseq.gff

);

From here, any desired DEXSeq analyses can be run, as described in the package vignette.

For example, the basic DEU analysis can be run using the commands:

dxd <- estimateSizeFactors(dxd)

dxd <- estimateDispersions(dxd)

dxd <- testForDEU(dxd);

http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html

QoRTs Example Dataset
Analysis Walkthrough 31

dxd <- estimateExonFoldChanges(dxd, fitExpToVar = "condition");

dxres <- DEXSeqResults(dxd);

dxres

13 References

[1] Simon Anders and Wolfgang Huber. Differential expression analysis for sequence count data.
Genome Biology, 11:R106, 2010. URL: http://genomebiology.com/2010/11/10/R106.

[2] Mark D. Robinson and Gordon K. Smyth. Moderated statistical tests for assessing differences in tag
abundance. Bioinformatics, 23:2881, 2007. URL: http://bioinformatics.oxfordjournals.
org/cgi/content/abstract/23/21/2881, doi:10.1093/bioinformatics/btm453.

[3] Simon Anders, Alejandro Reyes, and Wolfgang Huber. Detecting differential usage of exons from
RNA-seq data. Genome Research, 22:2008, 2012. doi:10.1101/gr.133744.111.

[4] Alexander Dobin, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali Jha,
Philippe Batut, Mark Chaisson, and Thomas R. Gingeras. STAR: ultrafast universal RNA-seq
aligner. Bioinformatics, 29(1):15–21, 2013. URL: http://bioinformatics.oxfordjournals.
org/content/29/1/15.abstract, doi:10.1093/bioinformatics/bts635.

[5] Thomas D. Wu and Serban Nacu. Fast and SNP-tolerant detection of complex
variants and splicing in short reads. Bioinformatics, 26(7):873–881, 2010. URL:
http://bioinformatics.oxfordjournals.org/content/26/7/873.abstract, doi:

10.1093/bioinformatics/btq057.

[6] Daehwan Kim, Geo Pertea, Cole Trapnell, Harold Pimentel, Ryan Kelley, and Steven Salzberg.
Tophat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene
fusions. Genome Biology, 14(4):R36, 2013. URL: http://genomebiology.com/2013/14/4/R36,
http://dx.doi.org/10.1186/gb-2013-14-4-r36 doi:10.1186/gb-2013-14-4-r36.

14 Session Information

The session information records the versions of all the packages used in the generation of the present
document.

sessionInfo()

R version 3.1.1 (2014-07-10)

Platform: x86_64-unknown-linux-gnu (64-bit)

##

locale:

[1] C

##

http://genomebiology.com/2010/11/10/R106
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/23/21/2881
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/23/21/2881
http://dx.doi.org/10.1093/bioinformatics/btm453
http://dx.doi.org/10.1101/gr.133744.111
http://bioinformatics.oxfordjournals.org/content/29/1/15.abstract
http://bioinformatics.oxfordjournals.org/content/29/1/15.abstract
http://dx.doi.org/10.1093/bioinformatics/bts635
http://bioinformatics.oxfordjournals.org/content/26/7/873.abstract
http://dx.doi.org/10.1093/bioinformatics/btq057
http://dx.doi.org/10.1093/bioinformatics/btq057
http://genomebiology.com/2013/14/4/R36

QoRTs Example Dataset
Analysis Walkthrough 32

attached base packages:

[1] methods stats graphics grDevices utils datasets base

##

other attached packages:

[1] QoRTs_0.2.17 Cairo_1.5-6 knitr_1.7

##

loaded via a namespace (and not attached):

[1] BiocStyle_1.4.1 evaluate_0.5.5 formatR_1.0 highr_0.4

[5] stringr_0.6.2 tools_3.1.1

15 Legal

This software is ”United States Government Work” under the terms of the United States Copyright
Act. It was written as part of the authors’ official duties for the United States Government and thus
cannot be copyrighted. This software is freely available to the public for use without a copyright notice.
Restrictions cannot be placed on its present or future use.

Although all reasonable efforts have been taken to ensure the accuracy and reliability of the software
and data, the National Human Genome Research Institute (NHGRI) and the U.S. Government does not
and cannot warrant the performance or results that may be obtained by using this software or data.
NHGRI and the U.S. Government disclaims all warranties as to performance, merchantability or fitness
for any particular purpose.

In any work or product derived from this material, proper attribution of the authors as the source of
the software or data should be made, using ”NHGRI Genome Technology Branch” as the citation.

NOTE: The Scala package includes (internally) the sam-JDK library (sam-1.113.jar), from picard tools,
which is licensed under the MIT license: The MIT License Copyright (c) 2009 The Broad Institute
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the ”Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject
to the following conditions: The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED ”AS IS”,
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The MIT license and copyright information can also be accessed using the command:

QoRTs Example Dataset
Analysis Walkthrough 33

java -jar /path/to/jarfile/QoRTs.jar "?" samjdkinfo

	1 Overview
	2 Using this Walkthrough
	3 Requirements
	3.1 Recommendations

	4 Preparations
	4.1 Alignment
	4.2 Sorting
	4.3 Bam file decoder

	5 Example dataset
	5.1 Overview of example files
	5.2 Following along on your own

	6 Initial Data Processing (STEP 1)
	6.1 Memory Usage

	7 Generate QC plots (Step 2)
	7.1 Extract Size Factors

	8 Generate Wiggle Tracks (STEP 3)
	9 Merge Technical Replicates (STEP 4)
	10 Generate Junction Tracks (STEP 5)
	10.1 Generate "flat" annotation files
	10.2 Make Sample Junction Tracks
	10.3 Filter and Merge Novel Junctions
	10.4 Make sample junction tracks with novel junctions

	11 Generate Summary Genome Tracks (STEP 6)
	11.1 Make summary wiggle tracks
	11.2 Make summary junction tracks
	11.3 Combine summary junction tracks
	11.4 Advanced Users

	12 Perform differential expression analyses (STEP 7)
	12.1 Perform analysis with DESeq2
	12.2 Perform analysis with edgeR
	12.3 Perform analysis with DEXSeq

	13 References
	14 Session Information
	15 Legal

