CellBender is a software package for eliminating technical artifacts from high-throughput single-cell RNA sequencing (scRNA-seq) data.
Allocate an interactive session and run the program.
Sample session (user input in bold):
Please note cellbender is compute intensive and needs sufficient memory allocation
[user@biowulf ~]$ sinteractive --gres=gpu:a100:1 --cpus-per-task=8
salloc: Pending job allocation 13632637
salloc: job 13632637 queued and waiting for resources
salloc: job 13632637 has been allocated resources
salloc: Granted job allocation 13632637
salloc: Waiting for resource configuration
salloc: Nodes cn4308 are ready for job
[user@cn4308]$ module load cellbender
[+] Loading cellbender 0.3.1 on cn4308
[+] Loading singularity 4.0.1 on cn4308
[+] Loading python 3.10 ...
[user@cn4308]$ cellbender -h
usage: cellbender [-h] [-v] {remove-background} ...
CellBender is a software package for eliminating technical artifacts from
high-throughput single-cell RNA sequencing (scRNA-seq) data.
optional arguments:
-h, --help show this help message and exit
-v, --version show program's version number and exit
sub-commands:
valid cellbender commands
{remove-background}
remove-background Remove background ambient RNA and barcode-swapped reads
from a count matrix, producing a new count matrix and
determining which barcodes contain real cells.
#copy over example data
[user@cn4308]$ cp -a /usr/local/apps/cellbender/example-inputs .
[user@cn4308]$ cd example-inputs
Create a batch input file (e.g. cellbender.sh). For example:
#!/bin/bash
module load cellbender
cellbender remove-background \
--cuda \
--input tiny_raw_feature_bc_matrix.h5ad \
--output tiny_output.h5 \
--expected-cells 500 \
--total-droplets-included 2000
The --cuda option is to be run when submitting to GPUs
Submit this job using the Slurm sbatch command.
sbatch -p gpu --gres=gpu:a100:1 --cpus-per-task=8 cellbender.sh