CellBender is a software package for eliminating technical artifacts from high-throughput single-cell RNA sequencing (scRNA-seq) data.
Allocate an interactive session and run the program.
Sample session (user input in bold):
Please note cellbender is compute intensive and needs sufficient memory allocation
[user@biowulf ~]$ sinteractive --gres=gpu:a100:1 --cpus-per-task=8 salloc: Pending job allocation 13632637 salloc: job 13632637 queued and waiting for resources salloc: job 13632637 has been allocated resources salloc: Granted job allocation 13632637 salloc: Waiting for resource configuration salloc: Nodes cn4308 are ready for job [user@cn4308]$ module load cellbender [+] Loading cellbender 0.3.1 on cn4308 [+] Loading singularity 4.0.1 on cn4308 [+] Loading python 3.10 ... [user@cn4308]$ cellbender -h usage: cellbender [-h] [-v] {remove-background} ... CellBender is a software package for eliminating technical artifacts from high-throughput single-cell RNA sequencing (scRNA-seq) data. optional arguments: -h, --help show this help message and exit -v, --version show program's version number and exit sub-commands: valid cellbender commands {remove-background} remove-background Remove background ambient RNA and barcode-swapped reads from a count matrix, producing a new count matrix and determining which barcodes contain real cells. #copy over example data [user@cn4308]$ cp -a /usr/local/apps/cellbender/example-inputs . [user@cn4308]$ cd example-inputs
Create a batch input file (e.g. cellbender.sh). For example:
#!/bin/bash module load cellbender cellbender remove-background \ --cuda \ --input tiny_raw_feature_bc_matrix.h5ad \ --output tiny_output.h5 \ --expected-cells 500 \ --total-droplets-included 2000
The --cuda option is to be run when submitting to GPUs
Submit this job using the Slurm sbatch command.
sbatch -p gpu --gres=gpu:a100:1 --cpus-per-task=8 cellbender.sh