This package is a memory efficient implementation of cryoCARE. This setup trains a denoising U-Net for tomographic reconstruction according to the Noise2Noise training paradigm.
Allocate an interactive session and run the program.
Sample session (user input in bold):
[user@biowulf]$ sinteractive --gres=gpu:1 salloc.exe: Pending job allocation 46116226 salloc.exe: job 46116226 queued and waiting for resources salloc.exe: job 46116226 has been allocated resources salloc.exe: Granted job allocation 46116226 salloc.exe: Waiting for resource configuration salloc.exe: Nodes cn3144 are ready for job [user@cn3144 ~]$ module load cryocare_pip [user@cn3144 ~]$ cryoCARE_extract_train_data.py --conf train_data_config.json [user@cn3144 ~]$ cryoCARE_train.py --conf train_config.json [user@cn3144 ~]$ cryoCARE_predict.py --conf predict_config.json [user@cn3144 ~]$ exit salloc.exe: Relinquishing job allocation 46116226 [user@biowulf ~]$
Create a batch input file (e.g. cryocare_pip.sh). For example:
#!/bin/bash set -e module load cryocare_pip cryoCARE_extract_train_data.py --conf train_data_config.json cryoCARE_train.py --conf train_config.json cryoCARE_predict.py --conf predict_config.json
Submit this job using the Slurm sbatch command.
sbatch --partition=gpu --gres=gpu:1 --cpus-per-task=8 --mem=40g cryocare_pip.sh