cryoCARE_pip on Biowulf

This package is a memory efficient implementation of cryoCARE. This setup trains a denoising U-Net for tomographic reconstruction according to the Noise2Noise training paradigm.

References:

Documentation
Important Notes

Interactive job
Interactive jobs should be used for debugging, graphics, or applications that cannot be run as batch jobs.

Allocate an interactive session and run the program.
Sample session (user input in bold):

[user@biowulf]$ sinteractive --gres=gpu:1
salloc.exe: Pending job allocation 46116226
salloc.exe: job 46116226 queued and waiting for resources
salloc.exe: job 46116226 has been allocated resources
salloc.exe: Granted job allocation 46116226
salloc.exe: Waiting for resource configuration
salloc.exe: Nodes cn3144 are ready for job
[user@cn3144 ~]$ module load cryocare_pip
[user@cn3144 ~]$ cryoCARE_extract_train_data.py --conf train_data_config.json
[user@cn3144 ~]$ cryoCARE_train.py --conf train_config.json
[user@cn3144 ~]$ cryoCARE_predict.py --conf predict_config.json
[user@cn3144 ~]$ exit
salloc.exe: Relinquishing job allocation 46116226
[user@biowulf ~]$

Batch job
Most jobs should be run as batch jobs.

Create a batch input file (e.g. cryocare_pip.sh). For example:

#!/bin/bash
set -e
module load cryocare_pip
cryoCARE_extract_train_data.py --conf train_data_config.json
cryoCARE_train.py --conf train_config.json
cryoCARE_predict.py --conf predict_config.json

Submit this job using the Slurm sbatch command.

sbatch --partition=gpu --gres=gpu:1 --cpus-per-task=8 --mem=40g cryocare_pip.sh