DeepCAD-RT can denoise fluorescence time-lapse images with rapid processing speed that can be incorporated with the microscope acquisition system to achieve real-time denoising. Our method is based on deep self-supervised learning and the original low-SNR data can be directly used for training convolutional networks, making it particularly advantageous in functional imaging where the sample is undergoing fast dynamics and capturing ground-truth data is hard or impossible. We have demonstrated extensive experiments including calcium imaging in mice, zebrafish, and flies, cell migration observations, and the imaging of a new genetically encoded ATP sensor, covering both 2D single-plane imaging and 3D volumetric imaging.
visualize_images_per_epoch = False display_images = False
Allocate an interactive session and run the program.
Sample session on a GPU node:
[user@biowulf ~]$ sinteractive --mem=48g -c4 --gres=gpu:v100:1,lscratch:10 [user@cn4219 ~]$ module load deepcadrt Loading deepcadrt 0.1.0Basic usage:
[user@cn4219 ~]$ python-deepcadrt from deepcad.train_collection import training_class from deepcad.movie_display import display from deepcad.utils import get_first_filename,download_demoDownload the data from DeepCAD-RT git repo:
[user@cn4219 ~]$ mkdir -p /data/$USER/deepcadrt_data; cd /data/$USER/deepcadrt_data [user@cn4219 ~]$ git clone https://github.com/cabooster/DeepCAD-RT [user@cn4219 ~]$ cd DeepCAD-RT/DeepCAD_RT_pytorch/ [user@cn4219 ~]$ python-deepcadrt demo_train_pipeline.py python-deepcadrt demo_train_pipeline.py Training parameters -----> {'overlap_factor': 0.25, 'datasets_path': 'datasets/fish_localbrain_demo', 'n_epochs': 10, 'fmap': 16, 'output_dir': './results', 'pth_dir': './pth', 'onnx_dir': './onnx', 'batch_size': 1, 'patch_t': 150, 'patch_x': 150, 'patch_y': 150, 'gap_y': 112, 'gap_x': 112, 'gap_t': 112, 'lr': 5e-05, 'b1': 0.5, 'b2': 0.999, 'GPU': '0', 'ngpu': 1, 'num_workers': 4, 'scale_factor': 1, 'train_datasets_size': 6000, 'select_img_num': 100000, 'test_datasize': 400, 'visualize_images_per_epoch': True, 'save_test_images_per_epoch': True, 'colab_display': False, 'result_display': ''} Image list for training -----> Total stack number -----> 1 Noise image name -----> fish_localbrain.tif ...Run with jupyter notebook: lease set up a tunnel as the jupyter webpage: Jupyter Then run the same command without loading the jupyter module:
jupyter notebook --ip localhost --port $PORT1 --no-browser
Create a batch input file (e.g. deepcadrt.sh). For example:
#!/bin/bash set -e module load deepcadrt python-deepcadrt demo_train_pipeline.py
Submit this job using the Slurm sbatch command.
sbatch --gres=gpu:v100:1,lscratch:20 deepcadrt.sh