
Deep Learning by Example on Biowulf

Class #1: Intro and 2D CNNs

Gennady Denisov, PhD

Target criteria for selecting biological examples:

- Cover a wide range of biological applications
- Represent the major classes of the DL networks
- Be implemented in Keras

Standard DL benchmark examples:

- MNIST (hand written characters)

- CIFAR-10

Goals and target criteria

PubMed articles

citing Deep Learning

Deep Learning - Biology

From: Ron Summers

at CANDLE 2018

https://github.com/hussius/deeplearning-biology

https://hpc.nih.gov/docs/deep_learning.html

Examples summary

Perceptron: a model of an individual neuron
tensors, transformations, parameters and hyperparameters

1) Y =  wi · Xi + b

2) Z = Activation(Y)

Parameters w0 , …, wn

(automatically trainable)

Hyperparameters: n+1, Activation

(non-trainable automatically)

Activation examples:

Linear Sigmoid ReLU

Z = α·Y Z = 1/ (1 + exp(-Y) Z = 0, Y ≤ 0

1, Y > 0

units

tensors

X Y Z
→

; b = w0

Perceptron training
backend, layer, loss, optimizer, checkpoint, epoch,

callback, compile, fit

Header:

- general python imports

- Keras-related imports

Get data

- generate “synthetic” data

- training samples x_train

and binary labels y_train

Define a model

- network (=graph)

- compiling

- function to be minimized

- minimization algorithm

Run the model

- # epochs

- file to store the results

- function(s) to call

at each epoch

Backends: Tensorflow (=default), Theano, or CNTK

to change a backend, edit the file: $HOME/.keras/keras.json

Training data:

10

1
0
0
0

1

0

1

1

0

1

1

0

1

1
0
0
0

x_train y_train

Perceptron training (cont.)

Header:

- general python imports

- Keras-related imports

(no Activation layer)

Get data

- generate “synthetic”

data

- training samples x

and labels y

Define a model

- network (X → Z, no Y)

- compiling

- function to be minimized

- minimization algorithm

Run the model

- # epochs

- file to store the results

- function(s) to call

at each epoch

Perceptron prediction
load_weights, predict

Header:

- general python imports

- Keras-related imports

(no Activation)

Get data

- real data read from disk

or “synthetic” data

- testing samples x

and labels y

Define a model

- network (=graph, no Y)

- compiling

- function to be minimized

- minimization algorithm

Run the model

- load weights from the

the checkpoint file

- predict labels

- compare the predicted

labels with ground truth

Testing data:

10

1
0

1

0

1

1

0

1

1

0

1

1
0

x_test y_test

How to run the Perceptron application

on Biowulf?

Multilayer Perceptron, a.k.a. Fully Connected Network
hidden layers, deep network

“Deep Network”:
- number of hidden layers with adjustable parameters >= 2

hidden layers non-hidden layer

input data

tensor
intermediate tensors

/ data representations

output data

tensor

units, or

elements

of data

tensor(s)

K.Hornik et al, Neural networks, 2(5):359-366, 1989.

M.Leshno et al, Neural networks, 6(6):861-867, 1993.

Example #1. Bioimage segmentation with U-Net:
a fly brain connectome project

2D Segmentation

3D Fusion

B ~ 2 ÷ 5 nm
C ~ 30 ÷ 50 nm

Grayscale

image

Binary

segmentation

/ mask

Bioimage segmentation and object detection applications: every pixel is assigned a label

MNIST and CIFAR10 image classification: entire image is assigned a label

U-Net

B

C

Elementary volume (“voxel”)
of the anisotropic (TEM) data

Overview of the U-Net training code
(only the main function is shown)

Getting data

- data input

- data augmentation

Imports statements,

other function definitions

Defining a model

- unet model

- multi_gpu_model

- loss function

- optimizer

- metric

Running the

model

- fit_generator

- batch_size

Header

- parse command

line options

Data for the U-Net model
ground truth, overfitting, augmentation, fit_generator

HHMI dataset (size: 24)
Zheng ea, Cell 2018, 174(3), 730-743

UNET dataset (size: 30)
https://github.com/zhixuhao/unet

Overfitting: model fits the training data too well; fails to generalize

Original image Rotate + crop Shear + crop Skew + right tilt

Augmentation: >= 20x; fit → fit_generator

Elastic distortion

Initial overview of the U-Net model
U-Net: O.Ronneberget et al., Medical Image Computing and

Computer-Assisted Intervention (MICCAI) 2015

Convolution2D

Convolution2D

+

MaxPooling2D

or

Dropout

Convolution2D

Convolution2D

+

UpSampling2D

and

concatenateContracting/downsampling

path

Expanding/upsampling

path

2

3

4

5

6

7

8

1 9

https://github.com/zhixuhao/unet

Convolution2D

kernel_size, padding, strides, dilation_rate

kernel_size = 3; padding = “valid”

strides=2 dilation_rate = 2

Y =  wi * Xi + b

Input image

Output image

padding = “same”

Total number of parameters (weights) in the U-Net: ~ 52,000

2

3

4

5

6

7

8

1 9

Coding the U-Net model

parameters

in the 1st

Conv2D:

64*(9+1)= 640

MaxPooling2D

In some blocks

replaced by

Dropout

Block 1 →

Block 2 →

Block 8 →

Block 9 →

The loss function for binary image segmentation:

binary cross-entropy

N = number of pixels in the binary mask

yi = the ground truth labels (=0 or 1)

pi (w) = “predicted labels”, given w (0 ≤ pi (w) ≤1)

Limiting cases:

1) p = y: J(w) → 0· log(0) + 1· log(1) = 0

2) y = 1, p = 0: J(w) ~ - y · log(p) → + Inf

3) y = 0, p = 1: J(w) ~ - (1-y) · log(1-p) → + Inf

J → min=0 if and only if pi(w) = yi

J(p(w)) = yi · log(pi (w)) + (1- yi)· log(1 – pi (w))

 J / pi

< 0, pi < yi

> 0, pi > yi



How to run the U-Net code on Biowulf?

Using a single GPU:

Using 4 GPUs:

Available data folders:

- data_unet

- data_hhmi

Visualizations:

data_unet/membrane

data_hhmi/membrane

data_hhmi/mito

https://hpc.nih.gov/apps/UNet.html

Conclusions

1) Perceptron model coded in Keras is the simplest possible DL program.

Key points:

- introduced the notion of tensors as data items and

layers as transformations between the tensors

- made distinction between parameters and hyperparameters

- introduced the notion of hidden layers and deep network.

2) Biomedical image segmentation with Convolutional network U-Net.

Key points:

- CNN is the network where most of the adjustable parameters come

from convolution layers

- supervised ML provides a big challenge for biomedical image processing,

as it requires preparing the ground truth labels for training

- to avoid over-fitting, one can use augmentation and MaxPooling

3) All the Keras programs involve the following key processing steps:

- header

- getting data

- defining a model and

- running the model

BACKUP SLIDES

Examples of more complex fly brain image data

Sample_B (“medium”)Sample_A (“simple”)

Sample_C (“hard”)

Further reading

1. https://github.com/hussius/deeplearning-biology

2. http://keras.io

3. https://keras.io/getting-started/faq

4. 5.

