
Deep Learning by Example on Biowulf

Class #1: Introduction to the deep learning with Keras.

Convolutional Neural Networks and their application

to semantic segmentation of biomages.

Gennady Denisov, PhD

Target criteria for selecting biological examples:
- Cover a wide range of biological applications
- Represent all the major types of DL networks
- Be implemented in Keras

Standard DL benchmark examples:

- MNIST (hand written characters)

- CIFAR-10

Goals and target criteria

PubMed articles

citing Deep Learning

Deep Learning - Biology

From: Ron Summers

at CANDLE 2018

https://github.com/hussius/deeplearning-biology

https://hpc.nih.gov/docs/deep_learning.html

https://hpc.nih.gov/docs/deeplearning/multinode_DL.html

Examples summary

Perceptron: a model of an individual neuron
tensors, transformations, parameters and hyperparameters

Steps of data processing:

1) Y =  wi · Xi + b; b = X0

2) Z = Activation(Y)

Parameters

(adjustable automatically by

Keras training procedure)

w0 , …, wn

Hyperparameters:

(non-adjustable automatically)

n+1, Activation

Examples of pre-defined activation functions:

Linear Sigmoid ReLU

Z = α·Y Z = 1/ (1 + exp(-Y) Z =
0, Y ≤ 0

Y, Y > 0

tensors

X Y Z

backend, layer, loss, optimizer, checkpoint, epoch,

callback, compile, fit

Header:

- general python imports

- Keras-related imports

Get data

- generate “synthetic” data

- training samples x_train

and binary labels y_train

Define a model

- network (=graph)

- compiling

- function to be minimized

- minimization algorithm

Run the model

- # epochs

- file to store the training

results

- function(s) to call at each epoch

Keras <= v2.3.1 backends: Tensorflow (=default), Theano, or CNTK

to change a backend, edit the file: $HOME/.keras/keras.json

Training data:

10

1
0
0
0

1

0

1

1

0

1

1

0

1

1
0
0
0

x_train y_train

Perceptron training code:

the Functional API approach

Header:

- import Sequential

- do not import Activation

Get data

- generate “synthetic”

data

- training samples x

and labels y

Define a model

- add layers to the

Sequential container

- specify activation as a

parameter to Dense

- compile

Run the model

- # epochs

- file to store the results

- function(s) to call

at each epoch

Perceptron training code (cont.):

the Sequential Construct approach

The two approaches to building models in Keras:

Functional API vs Sequential Construct

from keras.models import Sequential

from keras.layers import L1, L2

…

Define a model

model = Sequential()

model.add(L1)

model.add(L2)

model.compile(…)

…

Applicability: only unbranched /

sequential newtwork

L1 L2

The Sequential Construct approach
- does not explicitly use tensor names

- a slightly shorter code

- applicable only to unbranched networks

from keras.models import Input, Model

from keras.layers import L1, L2

…

Define a model

X = Input(…)

Y = L1(X)

Z = L2[X, Y]

model = Model(inputs = X, outputs = Z)

model.compile(…)

…

The Functional API approach
- explicitly uses tensor names

- applicable to any type of networks,

both branched and unbranched

Applicability: any branched/unbranched

network, e.g. mini-UNet”

X

Y

Z

L1

L2

Perceptron prediction code

Header:

- general python imports

- Keras-related imports

(no Activation)

Get data

- real data read from disk

or “synthetic” data

- testing samples x

and labels y

Define a model

- network

- compiling

- function to be minimized

- minimization algorithm

Run the model

- load weights from the

the checkpoint file

- predict labels

- compare the predicted

labels with ground truth

load_weights, predict

Multilayer Perceptron, a.k.a. Fully Connected Network
hidden layers, deep network

“Deep neural network”:
- number of hidden layers with adjustable parameters  2

- a universal approximator, i.e. can approximate any function of its input

K.Hornik et al, Neural networks, 2(5):359-366, 1989.

M.Leshno et al, Neural networks, 6(6):861-867, 1993.

Two alternative,

but mathematically

equivalent

interpretations of

a neural network

chart:

- the interpretation

adopted by this course:

layer  transformation

between data tensors;

hidden layer produces

an intermediate data

tensor / representation

artificial

neurons

How to run the Perceptron application

on Biowulf?

Biological example #1. Semantic segmentation
with U-Net: a fly brain connectome project

2D Segmentation

3D Fusion

B ~ 2 ÷ 5 nm
C ~ 30 ÷ 50 nm

Grayscale

image

Binary

segmentation

/ mask

Semantic segmentation: every pixel is assigned a label

Image classification (e.g. MNIST and CIFAR10): entire image is assigned a label

B

C

Elementary volume (“voxel”)
of the anisotropic (TEM) data

U-Net

Overview of the training code
(only the main function is shown)

Getting data

- available data

- data augmentation

Imports statements,

other function definitions

Defining a model

- UNet model

- Convolution2D

- MaxPooling2D

- UpSampling2D

- loss function

- optimizer

Running the

model

- fit_generator

- batch_size

Header

- parse command

line options

Sample data for bioimage segmentation
ground truth, overfitting, augmentation, fit_generator

HHMI dataset (size: 24)
Zheng ea, Cell 2018, 174(3), 730-743

ISBI dataset (size: 30)
http://brainiac2.mit.edu/isbi_challenge/

Overfitting: model fits the training data too well; fails to generalize

Original image Rotate + crop Shear + crop Skew + right tilt

Augmentation: >= 20x; fit → fit_generator

Elastic distortion

Overview of the U-Net model
U-Net: O.Ronneberget et al., Medical Image Computing and

Computer-Assisted Intervention (MICCAI) 2015

contracting/downsampling expanding/upsampling

https://github.com/zhixuhao/unet

(X/2, Y/2)

(X/4, Y/4)

(X/8, Y/8)

(X/16, Y/16)

X

Y

Binary mask

X

Y

Grayscale image

2

3

4

1

5

6

7

8

9

X=256, Y=256

F = “starting number of filters”, by default =64

Convolution2D

kernel_size, padding, strides, dilation_rate, stack size

kernel_size = 3; padding = “valid”; stride = 1

stride=2 dilation_rate = 2

O =  wi * Ii + b

Input image

Output image

padding = “same”, stride = 1

Conv2D(64, 3, padding = ‘same’, …)

number

of filters /

stack

size

filter /

kernel

size

Z = 64

X

Y

X,Y

(dilated,

or atrous

filter)

MaxPooling2D, Upsampling2D and concatenation

MaxPooling2D(pool_size = (2,2))

2.0 3.0 0.0 5.0 2.5 0.0

2.0 1.5 0.5 0.0 7.0 0.0

1.5 5.0 5.0 3.0 2.0 0.0

3.0 5.0 7.0 1.5 0.0 0.0

2.0 5.0 2.0 1.5 2.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

6 x 6

3 x 33.0 5.0 7.0

5.0 7.0 2.0

5.0 2.0 2.0

3.0 3.0 5.0 5.0 7.0 7.0

3.0 3.0 5.0 5.0 7.0 7.0

5.0 5.0 7.0 7.0 2.0 2.0

5.0 5.0 7.0 7.0 2.0 2.0

5.0 5.0 2.0 2.0 2.0 2.0

5.0 5.0 2.0 2.0 2.0 2.0

3.0 5.0 7.0

5.0 7.0 2.0

5.0 2.0 2.0

UpSampling2D(size = (2,2))

3 x 3

6 x 6

C = concatenate ([A, B], axis = 3)

purpose: aggressively

downsample data

to prevent the model

from overfitting

purpose: resize data

for convenience of

subsequent

transformations

+

CA B

X,Y

Z

- other popular semantic segmantation

models: Segnet, FCN

U-Net

What makes the U-Net architecture special?

- the shortcuts / concatenation transformations

communicate the features that were not transmitted

through the bottleneck

- development of U-Net was inspired

by analysis of biomedical images

- the U-path extracts features at multiple scales

using Encoder/Decoder-like architecture

Binary Cross-Entropy (BCE): the loss function

for binary segmentation

N = number of pixels in the binary mask

yi = the ground truth labels (=0 or 1)

pi (w) = “predicted labels”, given w (0 ≤ pi (w) ≤1)

LBCE(p(w)) = yi · log(pi (w)) + (1- yi)· log(1 – pi (w))

binary crossentropy loss
Binary mask

Limiting cases:

1) pi = yi : L
(i)

BCE(w) → 0· log(0) + 1· log(1) = 0

⇒
LBCE =  L(i)

BCE → min=0  pi (w) == yi for all i
i

< 0, if pi < yi

> 0, if pi > yi

 LBCE

 pi

⇒

2) yi = 1, pi = 0: L(i)
BCE(w) ~ - y · log(p) → + Inf

3) yi = 0, pi = 1: L(i)
BCE(w) ~ - (1-y) · log(1-p) → + Inf

⇒

⇒

Conclusion: LBCE as a function of p = (p1, …, pN) has a single global minimum,

and no local minima

How to run the U-Net code on Biowulf?

Using a single GPU:

Using 4 GPUs:

Available data folders:

- data_isbi

- data_hhmi

data_isbi/membr

data_hhmi/membr

data_hhmi/mito

https://hpc.nih.gov/apps/UNet.html

Summary

1) Introduction to the DL with Keras using Perceptron as an example.

Key points:

- the notion of tensors and layers

- distinction between parameters and hyperparameters

- Keras layers: Dense and Activation

- Functional API and Sequential construct approaches

to building models in Keras; branched vs sequential networks

- the notion of hidden layers and deep network.

2) Semantic segmentation with Convolutional Neural Networks (CNNs).

Key points:

- the challenge of biomedical image segmentation: ground truth labels

needed for training

- to avoid over-fitting, one can perform data augmentation

- in CNNs, adjustable parameters come (primarily)

from convolutional layers

- Keras layers: Conv2D, MaxPooling2D, Upsampling2D and concatenation

- the loss function for binary segmentation

BACKUP SLIDES

Coding the U-Net model

F=64

(by default)

Multi-class semantic segmentation
(weighted) categorical cross-entropy loss,

class imbalance

3-channel,

one hot encoded mask

Augmentation not currently

supported by Keras

1-channel,

value-encoded mask

Can be augmented

together with

grayscale images

1-channel,

one hot encoded

masks

wc = (1 / Ac) /  (1 / Ak)

Ac = area (# pixels) occupied by the object(s) of class c

C

k=1

C = 3

Examples of more complex fly brain image data

Sample_B (“medium”)Sample_A (“simple”)

Sample_C (“hard”)

Biological structures of practical interest

for automatic detection in Drosophila brain

Neural cells

Glial cell

0.5

Mitochondria

1

Small vesicles +

microtubules

1

Pre-synaptic structures

(T-bars)

1

0.5

Further reading

1. https://github.com/hussius/deeplearning-biology

2. http://keras.io

3. https://keras.io/getting-started/faq

4. 5.

