Deep Learning by Example on Biowulf

Class #2: Analysis of sequence data using RNNs and 1D-CNNs

Gennady Denisov, PhD
Class #2 Goals

DL networks to be discussed:
- Recurrent Neural Networks (RNNs)
- 1D Convolutional Neural Networks (1D-CNNs)

Standard non-bio RNN benchmark:
IMDB movie review sentiment prediction:

Motifs:

Bio example #2:
predicting a function of the non-coding DNA

ATTCGGTAATCTACGATTAAGTCACAAACC

[010011010100111010\ldots110]

Distinctive features of the biological example:
1) a vector of binary labels is assigned to each data sample
2) need to identify the sequence motifs

Motif database
Examples overview

<table>
<thead>
<tr>
<th>#</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Biological Application</td>
<td>Genomics/predicting the function of non-coding DNA (~98%)</td>
<td></td>
<td></td>
<td>Examples #1 and #2 are complementary one to another in a number of ways, including:</td>
</tr>
<tr>
<td></td>
<td>Bioimage segmentation/fly brain connectome project</td>
<td></td>
<td></td>
<td></td>
<td>- different approaches to building a network: branched network (#1) => Functional API</td>
</tr>
<tr>
<td></td>
<td>Network type</td>
<td>Recurrent Neural Network</td>
<td></td>
<td></td>
<td>unbranched network (#2) => Sequential construct</td>
</tr>
<tr>
<td></td>
<td>Supervised</td>
<td>Supervised</td>
<td></td>
<td></td>
<td>- different approaches to training a network: limited ground truth data, labeled manually (#1) => augmentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>plenty of the ground truth data, generated using NGS (#2) => no augmentation</td>
</tr>
</tbody>
</table>

CNN | RNN | AE | GAN | RLN |

![Diagram of CNN, RNN, AE, GAN, and RLN models](image_url)
Input: a set of training sequences of 0's and 1's and binary labels assigned to each sequence, depending on whether or not a certain motif is present in the sequence.

Task: predict the occurrence of the unknown motif in new sequences.

Example: 01011100101

Conv2D
- parameters: w_i, b
- hyperparameters:
 - $f = \text{filter/kernel size} (=3)$, padding (= “valid”)

Conv1D
- parallelizable
- memoryless
- independent channels
- output: all the channel units
- output shape: $(n, L-f+1)$
- # params = $(f+1)n$

SimpleRNN
- sequential
- has memory
- interacting channels
- output: only last units $Y_{1,L}, \ldots, Y_{n,L}$
- output shape: $(n, 1)$
- # params = $n + n + n^*n = 2n + n^2$
The SimpleRNN training code
Sequential construct, SimpleRNN layer, motif, metrics

https://github.com/keras-team/keras

Header:
- general Python imports
- Dense, SimpleRNN
- Sequential

Get data
- generate “synthetic” data
- a motif to search for
- training samples x_train and binary labels y_train

Define a model
- Sequential construct approach
- compile, loss, optimizer, metrics

Run the model
- fit, checkpoint, epoch, callbacks

Keras metric accuracy: how often predicted labels match true labels
Two approaches to building models in Keras: the Functional API vs Sequential construct

Any / branched network (e.g. “mini-UNet”)

```
from keras.models import Input, Model
from keras.layers import L1, L2

# Define a model
X = Input(…)
Y = L1(X)
Z = L2[ X, Y ]
model = Model( inputs = X, outputs = Z )
model.compile(…)
```

The Functional API approach
- explicitly uses tensor names
- applicable to any type of networks, both branched or unbranched

Only unbranched / sequential newtwork

```
from keras.models import Sequential
from keras.layers import L1, L2

# Define a model
model = Sequential()
model.add(L1)
model.add(L2)
model.compile(…)
```

The Sequential construct approach
- does not explicitly use tensor names
- applicable only to unbranched networks
- a slightly shorter code
The SimpleRNN prediction code
summary, load weights, predict

Header:
- general python imports
- Dense, SimpleRNN
- Sequential

Get data
- generate “synthetic” data
- a motif to search for
- testing data

Define a model
- Sequential construct
- approach
- compile, loss, optimizer, metrics, summary

Run the model
- load_weights
- predict
How to run the SimpleRNN and Conv1D code on Biowulf?

```
sinteractive --gres=gpu:v100:1 --mem=4g

module load DLBio/class2

ls SDLBIO_BIN
conv1d_predict.py conv1d_train.py simplernn_predict.py simplernn_train.py

simplernn_train.py
Using TensorFlow backend.
...

Layer (type)               Output Shape         Param #
==========================================================================
simple_rnn_1 (SimpleRNN)   (None, 3)            15

dense_1 (Dense)           (None, 1)             4
==========================================================================
Total params: 19
Trainable params: 19
Non-trainable params: 0
...
Epoch 1/1000
1000/1000 [==========================] - 1s 561us/step - loss: 0.8053 - acc: 0.4820
...
Epoch 1000/1000
1000/1000 [==========================] - 0s 62us/step - loss: 0.0061 - acc: 1.0000

simplernn_predict.py
Using TensorFlow backend.
...
y, y_test=  0  0
y, y_test=  1  1
y, y_test=  0  0
y, y_test=  1  1
...
conv1d_train.py
...
conv1d_predict.py
...
Example 2. **DanQ**: Predicting the function of noncoding DNA *de novo* from sequence data.


**Task:** predict the targets directly from DNA sequence

**Events ("targets"); total = 919 types:**
- transcription factor binding sites (690 types)
- DNase I hypersensitivity sites (125 types)
- histone marks (104 types)

**Models:**
- DeepSEA (2015) – Torch, DanQ (2016) – Keras,
- Basset (2016) – Torch, Basenji (2017) – Tensorflow,
- DeepMotif (2016), DeepCpG (2017), ...

**DL frameworks:**
- Torch, Keras,
- Tensorflow,
- ...

**Network types:**
- CNN (1D), RNN,
- …
Overview of the DanQ training code
(only the main function is shown)

Imports statements, other function definitions

Header
- parse the command line options

Get data
- training, testing and validation data

Define a model
- DanQ model
- DeepSEA model
- LSTM layer
- Dropout layer
- multi_gpu_model
- compile, loss, metrics
- optimizer

Run the model
- EarlyStopping
- fit
Available data

one-hot encoding; training, validation, and testing data

One-hot encoding:

Sequence length (=1000 bp)

Num. targets (= 919)

Training data: $N = 4.4 \text{ M} \Rightarrow$ adjust parameters
Validation data: $N = 8 \text{ K} \Rightarrow$ tune hyperparameters
Testing data: $N = 455 \text{ K} \Rightarrow$ test predicted labels

X (data) : $4 \times 1000 \times N$

y (labels): $919 \times N$
An overview of the DanQ model
LSTM, BLSTM, MaxPooling1D, Dropout

*D. Quang, X. Xie, Nucl. Acids Res. (2016)*

**Input**

- One hot encoding

**Conv1D(320, 26, ...)**  # allows computing PWMs

**Dropout(0.2)**

**MaxPooling1D(pool_size=13, ...)**

**Bidirectional(LSTM(320, ...))**  # recurrent layer

**Dropout (0.5), Flatten(), Dense(...)**

**Activation("sigmoid")**

**Activation("relu")**

**Output**

**BLSTM:  # params = 1,640,960**

**Conv1D:  # params = 33,600**
Long Short-Term Memory (LSTM) layer

Why not SimpleRNN?
- the “vanishing gradients” issue:
  \( \nabla J(w) \to 0 \)

SimpleRNN:
1) \( X_t, Y_{t-1} \Rightarrow Y_t \)

LSTM:
1) \( X_t, Y_{t-1}, S_{t-1} \Rightarrow S_t \)
2) \( X_t, Y_{t-1}, S_t \Rightarrow Y_t \)

\[
\begin{align*}
1) & \quad S_t = S_{t-1} \otimes F(X_t, Y_{t-1}) + G(X_t, Y_{t-1}) \otimes I(X_t, Y_{t-1}) \\
2) & \quad Y_t = \tanh(S_t) \otimes E(X_t, Y_{t-1})
\end{align*}
\]

\[
\begin{align*}
G(X_t, Y_{t-1}) &= \tanh(b_G + w_{XG} \cdot X_t + w_{YG} \cdot Y_{t-1}) \\
I(X_t, Y_{t-1}) &= \sigma(b_I + w_{XI} \cdot X_t + w_{YI} \cdot Y_{t-1}) \\
F(X_t, Y_{t-1}) &= \sigma(b_F + w_{XF} \cdot X_t + w_{YF} \cdot Y_{t-1}) \\
E(X_t, Y_{t-1}) &= \sigma(b_E + w_{XE} \cdot X_t + w_{YE} \cdot Y_{t-1})
\end{align*}
\]

\( \otimes = \text{elementwise multiplication}; \quad \sigma = \text{sigmoid activation} \)

# parameters = 4*(2n + n^2)
Gradient descent-based optimizers: Batch GD, SGD and Mini-batch GD

Gradient descent formula for updating weights

\[ w_{t+1} = w_t - \gamma \cdot \nabla_w J(w_t; x, y) \]

- \( w \) = vector of weights
- \( t \) = update #
- \( \gamma \) = learning rate
- \( \nabla_w J \) = gradient of the loss with respect to weights
- \( (x, y) \) = one data sample (= data item \( x \) + label \( y \))

Vanilla, a.k.a. “Batch” Gradient Descent: # inefficient / not used for large training datasets
- average \( \nabla_w J(w_t; x, y) \) over all \( N \) samples in the training dataset
- perform one update of weights per epoch

Stochastic Gradient Descent: # objective fluctuates, this may complicate convergence
- compute \( \nabla_w J(w_t; x^{(k)}, y^{(k)}) \) on a random sample \( (k = 1, 2, \ldots, N) \)
- perform \( N \) updates per epoch by default, or as specified by the keyword argument steps_per_epoch in the method fit

Mini-batch Gradient Descent: # choosing a proper learning rate may still be difficult
- \( \nabla_w J(w_t; x, y) \) averaged over a mini-batch
- \( N / \text{batch-size} \) updates per epoch by default (where the batch_size is a hyperparameter), or as specified by the keyword argument steps_per_epoch in the method fit
How to run the DanQ code on Biowulf?

https://hpc.nih.gov/apps/DanQ.html

Using a single GPU:

```
sinteractive --mem=64g --gres=gpu:v100:1,1scratch:100 \
--cpus-per-task=14
module load danq
ls $DANQ_SRC
danq_predict.py danq_visualize.py models.py
danq_train.py download_data.sh options.py
cp -r $DANQ_DATA/* .
danq_train.py -d data [other options]
danq_predict.py -d data [other options]
danq_visualize.py -t <target_id> [other options]
```

Using 4 GPUs:

```
sinteractive --mem=64g --gres=gpu:v100:4,1scratch:100 \
--cpus-per-task=14
module load danq
ls $DANQ_SRC
danq_predict.py danq_visualize.py models.py
danq_train.py download_data.sh options.py
cp -r $DANQ_DATA/* .
danq_train.py -d data -g 4 [other options]
```

Visualizations:

**ROC curve:**

![ROC curve](image1)

**Motif sequence logo:**

![Motif sequence logo](image2)

Models: DanQ, DeepSEA

---

# DeepSEA model:

- **Conv1D(320, 8, ...)**
- MaxPooling
- **Conv1D(480, 8, ...)**
- MaxPooling
- **Conv1D(960, 8, ...)**
- Flatten
- **Dense(919, ...)**
- Activation("sigmoid")
Conclusions

1) Further intro using simple examples
   - SimpleRNN vs Conv1D layers/transformations
   - the notion of the RNN network memory and interacting channels
   - Functional API vs Sequential approach to building Keras models
   - metric, model summary and the # of parameters used by layers

2) Predicting the function of a non-coding DNA
   - the DanQ and DeepSEA models
   - (Bidirectional) LSTM, MaxPooling 1D and Dropout layers
   - how to run the DanQ code on Biowulf

3) Gradient descent-based optimizers:
   - SGD and Mini-batch DG
BACKUP SLIDES
Modelling transcription factor binding sites and spacing with 1D CNNs

G.Eraslan et al, Nature Reviews Genetics 2019
Predicting motifs

David R. Kelley et al - Basset: ..., Genome Res, 2016, 26:990–999

Overall, 45% of filters could be annotated