

Deep Learning by Example on Biowulf

Class #2: Recurrent and 1D-Convolutional neural networks and their application to prediction of the function of non-coding DNA

Gennady Denisov, PhD

Class #2 Goals

DL networks to be discussed:

- Recurrent Neural Networks (RNNs)
- 1D Convolutional Neural Networks (1D-CNNs)

Purpose: process sequences of values

Standard non-bio RNN benchmark: IMDB movie review sentiment prediction:

Popular non-bio applications:

- natural language processing
- text document classification
- time series classification, comparison and forecasting

- ..

Bio example #2:

predicting the function of non-coding DNA

ATTCCCGTAATCTACGATTAAGTCACAACCAAACC

[010011010100111010...110]

Motif: short, recurring pattern in DNA that is presumed to have a certain biological function.

CTCF CLAS AUSTUCCS	FOS CIS-BP	<u></u> GALTCAT	HNF4A
POU5F1	SNAI1	CAGGTG	P63
CIS-BP CIS-BP CIS-BP	CIS-BP	ĕ∧VAN I N®	CIS-BP TO TO TO TO THE SECOND

Motif database

Distinctive features of the biological example:

- 1) a vector of binary labels is assigned to each data sample
- 2) identification of the **motif sequences**
- 3) exploration of the **long-range dependencies** between motifs/different parts of fragments

Examples summary

Class #	1	2	3	4	5	6	7	
Bio app	Bioimage segmentation / fly brain connectome	Genomics / prediction of function of non-coding DNA	Genomics / reduction of dimensionality of cancer transcriptome	Bioimage synthesis / developmental biology	Drug molecule design	Genomics / classification of cancer types	Drug molecule property prediction	
Neural network type	Convolutional	Recurrent or 1D- Convolutional	Autoencoder	Generative Adversarial	Reinforcement Learning	Graph Convolutional	Message Passing	
ML type	Supervised	Supervised	Unsupervised	Unsupervised	Reinforcement	Supervised	Supervised	
			1) DNN pr	arid values				

- 1) RNNs process sequences of values, while CNNs grid values
- 2) both RNNs and CNNs **share parameters** between different parts of a model, unlike MLP, where each weight is unique
- 3) RNNs **allow cyclic connections**, unlike CNNs or MLP / Dense networks, which are feedforward / have no cycles
- 4) both examples #1 and #2 take a supervised ML approach,
- 5) yet are complementary in the way their training is performed:
 #1: limited ground truth data ⇒ augmentation, fit_generator
 #2: plenty of ground truth data ⇒ no augmentation, fit

Motif detection: a prototype example #1

tensors, layers, parameters, hyperparameters, Dense, SimpleRNN, Conv1D, RNN memory

Input: a set of training **sequences** of 0's and 1's and **binary labels** assigned to each sequence, depending on whether or not a certain **(unknown) motif** is present in the sequence.

Task: train the model on the data, so that it could automatically predict labels for new sequences.

Example: 010<mark>111</mark>00101

Conv2D

- parameters: w_i, b
- hyperparameters:f = filter/kernel size (=3),padding (= "valid")

$$Y_{j,t} = A(b_j + w_{X1,j} \cdot X_{t-1} + w_{X2,j} \cdot X_t + w_{X3,j} \cdot X_{t+1})$$

Conv1D

- parallelizable
- memoryless
- independent channels
- output: all the channel elements
- output shape: (n, L-f+1)
- # params = (f+1)*n

$$Y_{j,t} = A(b_j + w_{XY,j} \cdot X_t + \sum_{k=1}^{n} w_{YY,j,k} \cdot Y_{k,t-1})$$

SimpleRNN

- sequential
- has memory
- interacting channels
- output: only last elements Y_{1,1}, ..., Y_{n,L}
- output shape: (n, 1)
- # params = $n + n + n*n = 2n + n^2$

SimpleRNN-based code for motif detection

Training data: 10 1

Header:

- general Python imports
- Dense, SimpleRNN
- Sequential

Get data

- a motif to search for
- generate synthetic data:x_train, y_train
- x_test, y_test

Define a model

- Sequential construct approach
- compile, loss, optimizer

Run the model

- fit, checkpoint, epoch, callbacks
- predict

```
@ denisovga@biowulf:/usr/local/apps/DLBio/class2/bin
       re, random, string
       numpy as np
     keras.models import Sequential
     keras.layers import SimpleRNN, Flatten, Dense
     keras.callbacks import ModelCheckpoint
     keras import metrics
                                                                        y_train
                                                                 x train
n_train,n_test,s_len,n_channels,n_epochs,motif = 1000,40,10,2,500,"111"
np.random.seed(7)
x_train_str = ['1.join([random.choice('01') for i in range(s_len)])
x_test_str = [''.join([random.choice('01') for i in range(s_len)])
                                                   j in range(n_test)]
x_train = np.reshape(np.array([[int(c) for c in x_train_str[j]]
                       for j in range(n_train)]), [n_train,s_len,1])
x_test = np.reshape(np.array([[int(c) for c in x_test_str[j]]
for j in range(n_test )]), [n_test, s_len,1])
y_train = np.array([np.where(re.search(motif, x_train_str[i]), 1, 0)
                      for i in range(n_train)])
for i in range(n_test)])
model = Sequential()
<u>model.add(SimpleRNN(n_channels, return_sequences=True, input_shape=(s_len, 1)))</u>
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='sgd')
checkpoint_file =
    : model.load_weights(checkpoint_file)
checkpointer = ModelCheckpoint(filepath = checkpoint file)
model.fit(x_train, y_train, epochs=n_epochs, callbacks=[checkpointer])
 = model.predict(x_test)
         range(0,n_test):
c("y, y_test=", int(round(y[i][0])), y_test[i])
                                                                      12,55
                                                                                     A11
```

Motif discovery: a prototype example #2

PWMs: G.D.Stormo et al, NAR 1982

2) a set of **testing sequences** of 0's and 1's similar to the previous example

Task: determine the motif sequence

Example: 010<mark>111</mark>00101

Testing data:

(Implicit) Assumptions of the heuristic approach:

- 1) All the **weights** of the Dense layer are **positive**
- 2) The **upper bound** of the motif size is (approximately) **known**

Algorithm:

1) Determine an "optimal" position of a filter in each "good" testing sequence:

$$X_{opt} = argmax(Conv1D(X))$$

 Determine the motif as PWM / consensus sequence over the vicinities of X_{opt} in the test sequences

Conv1D-based code for motif discovery

output, axis=1)1)


```
Header.
```

Get data.

Define a model

Run the model:

- load weights
- extract the testig data with motif

func([x_test])

for i in range(len(x_test)):

if len(seq) == w_size:

alignment .write(">" + s
alignment .write(seq + '

alignment = open(

alignment .close()

- determine an "optimal" position in test sequence
- extract instances
- compute PWM and the motif sequence

```
numpy as np
     keras.models import Sequential
    keras.layers import Conv1D, Dense, Flatten
keras import backend as K
     Bio import motifs
     Bio. Seq import Seq
n_seq,s_len,f_size,w_size,n_filt,thresh,instances = 40,10,3,7,2,0.8,[]
np.random.seed(1)
x_{test} = np.round(np.random.uniform(0, 1, (n_seq, s_len, 1)))
model = Sequential()
model.add(conv1D(n_filt,f_size,input_shape=(s_len,1),activation='relu'))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='sgd')
 ef call(x,v,t): return "1" if x>t else ("0" if y < 1-t else "N")
model.load_weights("m
z = [int(np.round(model.predict(x_test)[i,0])) for i in range(n_seq)]
x_test = np.delete(x_test,[k==0 for k in z],axis=0)
output = model.layers[0].get_output_at(0)
func = K.function([model.input], [K.argmax(output, axis=1),
```

pos = $np.array([y[0][i][0] for i in range(x_test.shape[0])])$

pwm = motifs.create(instances,alphabet='01').counts.normalize()

print("\nmotif=", "".join([cai](x, 1-x, thresh) for x in pwm[1,:]]))

pos_left, pos_right = max(0, pos[i]), min(pos[i]+w_size, s_len)

seq = "".join([str(int(x)) for x in x_test[i][pos_left:pos_right]])

" + str(i+1) + "\n")

_test = np.squeeze(x_test, axis=2).tolist()

instances.append(Seq(seq))

```
$\frac{1.0}{0.5}$

WebLogo 3.78
```

A11

Stochastic Gradient Descent optimizer

gradient descent (GD), mini-batch GD

keras.optimizers.SGD(learning_rate =0.01, momentum=0.0, nesterov=False, ...)

Using SGD with defalt options

```
\boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \boldsymbol{\gamma} \cdot \nabla_{\boldsymbol{w}} \boldsymbol{J}(\boldsymbol{w}_t)
```

- basic gradient descent formula for updating weights

```
w = \text{vector of weights}
```

 γ = learning rate

t = iteration #

 $\nabla_{w}J$ = gradient of loss with respect to weights

(Mini-batch) Stochastic Gradient Descent:

- use the $\nabla_w J(w_t; x, y)$ averaged over a mini-batch of samples (= data items x, labels y)
- N / batch_size iterations per epoch (N = total number of samples, batch_size =32 by default)

Using SGD with customized options

(To be continued on a backup slide)

Training a feedforward network

backpropagation, chain rule, vanishing gradient

Perceptron

output targets Backpropagation purpose: compute the gradient of loss

$$Z(w) = \sigma(w \cdot X + b)$$
 (mse) loss $J = \frac{1}{2}(Z(w) - T)^2$

$$\Delta J_{i} = (\partial J / \partial w_{i}) \cdot \Delta w_{i} = (Z-T) \cdot (\partial Z / \partial w_{i}) \cdot \Delta w_{i}$$

$$= (Z-T) \cdot \sigma'(w \cdot I + b) \cdot I_{i} \cdot \Delta w_{i}$$

(the component of) the gradient of loss

$\Delta J \Rightarrow \Delta w$

Multi-layer perceptron (MLP)

Backpropagation for MLP:

$$Z = \sigma(W_3 \cdot Y_2 + b_3) \qquad Y_2 = \sigma(W_2 \cdot Y_1 + B_2) \qquad Y_1 = \sigma(W_1 \cdot X + B_1)$$

$$Y_2 = \sigma(W_2 \cdot Y_1 + B_2)$$

$$Y_1 = \sigma(W_1 \cdot X + B_1)$$

$$\Delta J_i = (Z - T) \cdot \boldsymbol{\sigma}'' (W_3 \cdot Y_2 + B_3) \cdot W_3 \cdot \boldsymbol{\sigma}'' (W_2 \cdot Y_1 + B_1) \cdot W_2 \cdot \boldsymbol{\sigma}' (W_1 \cdot X + B_1) \cdot X_i \cdot \Delta w_i$$

(the component of) the gradient of loss

Unfolded SimpleRNN

- similar to the **very deep** feedforward network:

$$Y^t = \sigma(W_X \cdot X^t + W_Y \cdot Y^{t-1} + B)$$

- weights are shared across the (time) layers

The deeper the network is, the more likely that the vanishing gradients issue will occur

Vanishing gradients: a prototype example #3

A.Joulin and T.Mikolov . arXiv:1503.01007v4 (2015)


```
port re, random, string, numpy as np, tqdm
 om keras.models import Input, Model
rom keras.layers import Dense, Flatten, Dropout, LSTM, SimpleRNN
n_seq,seq_len,n_train,pred_len,max_len_pattern,n_epochs = 200,1000,150,100,20,70
data, x_train, y_train, x_test, y_test = [], [], [], [], []
np.random.seed(7)
for i in tqdm.tqdm(range(n_seq)):
   seq = []
   while len(seq) < seq_len:
       n = np.random.randint(1,high=max_len_pattern)
       seq += ['0']*n + ['1']*n
   data.append("'.join(seq[:seq_len]))
   start = False; prev_char =
   for j in range(pred_len, seq_len):
       seq_in, c_out = data[i][(j-pred_len):j], data[i][ j]
       if start and (c_out=='1' or (c_out=='0' and prev_char=='1')):
           x_test.append( [int(c) for c in seq_in]);
           else:
                          y_test.append( int(c_out))
                          and c_out == '1': start = True
       if prev_char == '0'
       prev_char = c_out
 = Input((pred_len,1,))
  1: Y = SimpleRNN(1, return_sequences=True)(X)
se: Y = LSTM(1, return_sequences=True)(X)
 = Dropout(0.2)(Y)
 = Flatten()(Y)
 = Dense(1, activation='sigmoid')(Y)
model = Model(inputs = X, outputs = Z)
model.compile(loss='mse', optimizer="adam", metrics=['acc'])
expand_dims = lambda x, y: np.expand_dims(np.array(x), axis=y)
bsize, checkpoint file =
checkpointer = keras.callbacks.ModelCheckpoint(filepath=checkpoint_file)
if 0: model.load_weights(checkpoint_file)
scores = model.evaluate(expand_dims(x_test,2), np.array(y_test), verbose=0)
                   % (model.metrics_names[1],np.array(scores[1])*1
```

```
Input: a sequence of consecutive palindromes X = \{0^n1^n\} for random n = 1, ..., N N = 20 Example: 00011100110000011111...
```

Task: predict next character in the deterministic part of the sequence

```
# training epochs predict. acc
SimpleRNN
100
            91.81%
            91.89%
300
500
            92.90%
             92.94%
700
LSTM
            97.92%
100
300
             98.84%
500
             98.99%
700
             99.05%
```

How to run the prototype examples on Biowulf?

Biological example #2: Predicting the function of noncoding DNA *de novo* from sequence with <u>DanQ</u> and DeepSEA

DanQ: D.Quang, X.Xie, Nucl. Acids Res. (2016)

DeepSEA: J.Zhou, O.G.Troyanovskaya, Nature Methods (2015)

Review: G.Eraslan et al., Nature Reviews Genetics (2019)

Task:

predict the targets directly from DNA sequence

Events ("targets"; total = 919 types):

- transcription factor binding sites (690 types)
- DNase I hypersensitivity sites (125 types)
- histone marks (104 types)

Models:

DanQ (2016) - Keras,

DeepSEA (2015) – Torch (reimplemented in Keras),

DeepBind (2015), Basset (2016) - Torch,

FIDDLE (2016), DeepMotif (2016),

Basenji (2017) - Tensorflow, DeepCpG (2017), ...

DL frameworks:

Keras,

Torch,

Tensorflow,

• • •

Network types:

RNN, 1D-CNN

Imports statements,

other function definitions

Overview of the training code

(only the main function is shown)

Header

parse the command line options

Get data

 training, testing and validation data

Define a model

- DeepSEA model
- DanQ model
- MaxPooling1D,
 Flatten, Dropout
- LSTM and BLSTM
- compile, loss
- optimizer

Run the model

- fit

```
denisovga@biowulf:/data/denisovga/1_DL_Course/2_RNNs
  __name__ == "__main__":
   opt, checkpoint_name, input_weights_file, Optimizer \
   = parse_command_line_arguments("train")
os.environ['CUDA_VISIBLE_DEVICES'] = "0,1,2,3"
   X_train, y_train, X_valid, y_valid = load_data(opt)
   X_train, y_train, x_varid, y_varid, shape, " y_train.shape
print("\nX_train.shape=", X_train.shape, " y_valid.shape
Y_valid.shape
                                                                         , y_train.shape)
   strategy = tf.distribute.MirroredStrategy()
   with strategy.scope():
        model = get_model(opt)
        custom_checkpointer = MyCustomCallback(model, checkpoint_name,
                                  verbose=opt.verbose, save_best_only=True)
        custom_val_loss = MyCustomValidationCallback(model, [X_valid, X_valid],
                                                                       [y_valid, y_valid])
        model.compile(loss
                         optimizer = Optimizer,
        if opt.load weights:
             model.load_weights(opt.checkpoint_file)
        model.summary()
   callbacks_list = [custom_checkpointer]
   if opt.lr_schedule:
        global_lr = opt.learning_rate
        callbacks_list.append(LearningRateScheduler(step_decay))
   model.fit(X_train, y_train, batch_size=opt.batch_size, shuffle=True,
        epochs=opt.num_epochs, validation_data = (X_valid, y_valid),
callbacks=callbacks_list, workers=opt.num_gpus)
                                                                            122.9
                                                                                             Bot
```

Available data

one-hot encoding; training, validation, and testing data

One-hot encoding:

Training data: $N = 4.4 \text{ M} \Rightarrow \text{ fit: adjust parameters}$ Validation data: $N = 8 \text{ K} \Rightarrow \text{ fit: tune } \frac{\text{hyperparameters}}{\text{Testing data:}}$ Testing data: $N = 455 \text{ K} \Rightarrow \text{ predict: test predictions}$

Sequence length (=1000 bp)

CCGGGGGTAGTAAAACTTCCGGGGGTACTCTTGCACGTTAACTACGGGCGGGGGTAAACGGGTACCGGGGGTAAGCTTGTAAAACTTCCCGGGGGTGGGGTACCGGGCCGGGGGTAAACTTCCAAACTTCCAAACTTCCATTT. TAAAACTTCCCGGGGGTAAACAAACCGCGGGGGTAAACTAAAA GGGGTACCGGGCCGGGGGTAAACTTCCAAACTTCCAAACT *AACTTCCATTTCCGGGGGTAGTAAAACTTCCCGGGGGTAAACAAA* TAAAACTTCCCGGGGGTAAACAAACCGCGGGGGTAAACTAAAACTTC *AACTTCCATTTCCGGGGGTAGTAAAACTTCCCGGGGGTAAA* TAAAACTTCCCGGGGGTAAACAAACCGCGGGGGTAAACTAAAAC GGGGTACCGGGCCGGGGGTAAACTTCCAAACTTCCAAACTTCCATT TAAAACTTCCCGGGGGTAAACAAACCGCGGGGGTAAACTAAAA TAAAACTTCCCGGGGGTAAACAAACCGCGGGGGTAAACTAAAACTTCC

X (data): N x 1000 x 4

Number of sequences, N

Num. targets (= 919)

10000001010101010101010100000 01100010000111100010101010 011001110111000101010101010 011000100001111000101010101 010100 0110011101110001010101010100 000000000011100010101010101010 1000000101010101010101010000001 0110001000011110001010101010101010

y (labels): N x 919

The DeepSEA model

J.Zhou, O.G.Troyanskaya, Nature Methods (2015)

Layers: Conv1D, Dense,

MaxPooling1D, Dropout,

Flatten

First Conv1D layer: capture the sequence motifs.

Second Conv1D and third Conv1D: produce higher level representation of the data output by previous layer

Dense: linearly combine outputs and produce target probs.

Conv1D, MaxPooling1D, Dropout and Flatten layers

Conv1D(2, kernel_size = 3)

Flatten()

by Dense layer

MaxPooling1D(pool_size = 2)

Dropout (0.5)

Purpose: prevent the model from overfitting

Purpose: prevent the model from overfitting

The DanQ model

LSTM, BLSTM, MaxPooling1D, Dropout, Flatten

D.Quang, X.Xie, Nucl. Acids Res. (2016)

Conv1D: # params = 33,600;

purpose: discover motif sequences

BLSTM: # params = 1,640,960;

purpose: capture the long-range dependencies

between motifs / different parts o fragments

Long Short-Term Memory (LSTM) cell

Orig. study: S Hochreiter, J Schmidhuber, Neural computation 9, p.1735 (1997)
Tutorial: https://adventuresinmachinelearning.com/keras-lstm-tutorial

SimpleRNN:

1)
$$X_t, Y_{t-1} => Y_t$$

$$Y_t = tanh(b + w_{XY} \cdot X_t + w_{YY} \cdot Y_{t-1})$$

LSTM:

- 1) $X_t, Y_{t-1}, S_{t-1} => S_t$
- 2) $X_t, Y_{t-1}, S_t => Y_t$

1)
$$S_t = S_{t-1} \otimes F(X_p, Y_{t-1}) + G(X_p, Y_{t-1}) \otimes I(X_p, Y_{t-1})$$

2)
$$Y_t = tanh(S_t) \otimes E(X_t, Y_{t-1})$$

$$G(X_{t}, Y_{t-1}) = tanh(b_{G} + w_{XG} \cdot X_{t} + w_{YG} \cdot Y_{t-1})$$

$$I(X_{t}, Y_{t-1}) = \sigma(b_{I} + w_{XI} \cdot X_{t} + w_{YI} \cdot Y_{t-1})$$

$$F(X_{t}, Y_{t-1}) = \sigma(b_{F} + w_{XF} \cdot X_{t} + w_{YF} \cdot Y_{t-1})$$

$$E(X_{t}, Y_{t-1}) = \sigma(b_{F} + w_{XF} \cdot X_{t} + w_{YF} \cdot Y_{t-1})$$

 \varnothing = elementwise multiplication; σ = sigmoid activation

parameters =
$$4*(2n + n^2)$$

How to run the DanQ code on Biowulf?

https://hpc.nih.gov/apps/DanQ.html

Using a single GPU:

Discovered motif sequence logo:

Using 4 GPUs:

ROC curve:

Summary

- 1) Further intro using simple examples
 - SimpleRNN vs Conv1D layers/transformations
 - the notion of the RNN network memory and interacting channels
 - motif detection and discovery
 - the SGD optimizer
 - backpropagation, long-range sequence dependencies and vanishing gradients
- 2) Predicting the function of a non-coding DNA
 - the DeepSEA and DanQ models
 - MaxPooling1D, Dropout, Flatten and (Bidirectional) LSTM layers
 - how to run the DanQ code on Biowulf

BACKUP SLIDES

Stochastic Gradient Descent optimizer (cont.)

learning rate, momentum, Nesterov accelerated gradient

$$\Delta w_t = -\gamma \cdot \nabla_w J(w_t)$$
 ; $\Delta w_t = w_{t+1} - w_t$

the basic gradient descent formula re-written

1) learning_rate γ

- small $\gamma \to \text{slow}$ convergence along the valley
- larger $\gamma \to \text{oscillations}$ in the perpendicular dir.

2) momentum > **0**

$$\Delta w_t = \mu \cdot \Delta w_{t-1} - \gamma \cdot \nabla_w J(w_t)$$

- gradient descent formula with momentum μ (usually, = 0.9)

3) nesterov = True

$$\Delta w_t = \mu \cdot \Delta w_{t-1} - \gamma \cdot \nabla_w J(w_t - \mu \cdot \Delta w_{t-1})$$

 gradient descent formula with momentumμ and Nesterov accelerated gradient

Predicting motifs

David R. Kelley et al - Basset: ..., Genome Res , 2016, 26:990–999

Overall, 45% of filters could be annotated