
Deep Learning by Example on Biowulf

Class #3. Dimensionality reduction with Autoencoders

Gennady Denisov, PhD

Intro and goals

What is autoencoder?

Tybalt: classification of

cancer samples based

on gene expression
Generating images

Variational autoencoder

Image denoising

ADAGE: analysis using

denoising autoencoders

of gene expression

Denoising autoencoder
Examples:

Two basic requirements:

1) The sizes of the input and output

tensors must be the same

2) At least one of the intermediate

data tensors must have

a smaller size than the input

and output tensorsCode,
or bottleneck,
or latent space

DecoderEncoder

Data flowInput Output

Basic capability of any AE:

Dimensionality reduction, or

compression of data into smaller space,

or extraction of essential features.

Examples overview

How #3 differs from #1 and #2:

1) unsupervised ML approach

2) no specialized “autoencoder”

layer

3) a composite network that

comprises two subnetworks

Basic autoencoders: a simple example

Model 2 (deep)Model 1 (shallow) Synthetic data

(only 2 out of 9 components

are shown)

x

y

A layer of neurons:

Z = A(W·X + b)

(output = vector)

One neuron:

Z = A(wi·Xi + b)

(output = scalar)

A layer of

2 neurons

tensors, units, layers, parameters, activations, hyperparameters, deep network

- types of the layers:

Convolutional (for image data), or

LSTM-based (for sequence data), or

Dense/Fully Connected (to be used here)

- total # layers: 2 (Model 1) or 4 (Model 2)

- activations: linear (Model 1) or sigmoid (Model 2)

- size of the latent space Z: 2

- sizes of other tensors (X, Y: 9; X1, Z1: 5)

Hyperparameters:

X

Input Output

Code

Y

Z

Code

Input Output

X

X1

Z
Z1

Y

Y

A(Y)

Hidden layers

Deep network: >= 2 hidden layers

The training code for basic Model 1

Header:

- general Python imports

- Numpy import

- Keras library imports

Getting data

- independent random

variables

- degrees of freedom

Defining a model

- encoder, code, decoder

- combined_model

- loss, optimizer, compile

Running the model

- checkpoint, fit, epoch,

callback

backend, encoder, code, decoder, combined_model,

compile, loss, optimizer, fit, checkpoint, epoch, callback

Backend: a deep learning

framework that provides

a low-level support for Keras;

by default = Tensorflow

The prediction code for basic Model 2

encoder, decoder, load_weights, predict

Header:

- Numpy import

- Keras library imports

- Sequential

Getting data

- independent random

variables

- degrees of freedom

Defining a model

- encoder, code, decoder

- combined_model

- loss, optimizer, compile

Running the model

- load_weights

- predict

Summary: basic autoencoders vs PCA

Training data

Model 2

reconstruction

(after 3,000 epochs)

Model 1 (~PCA)

reconstruction

(after 3,000 epochs)

x

y

x

y

x

y

https://www.cs.toronto.edu/~urtasun/courses/CSC411/14_pca.pdf

Conclusions:

1) Model 1, which mimics the PCA, cannot capture the nonlinear

relationships between the data components

2) Model 2, the deep autoencoder with nonlinear activations,

supersedes Model 1 and can be regarded as a nonlinear

extension of the PCA.

How to run basic autoencoders

on Biowulf?

Example 3. Tybalt: extracting a biologically relevant

latent space from cancer transcriptomes

Tybalt: J.P.Way, C.S.Greene, Pacif Symp. on Biocomputing (2018)

TCGA: J.N.Weinstein et al, Nature Genetics 45 (2013)

https://hpc.nih.gov/apps/Tybalt.html

process_data.py

Pre-pocessed

data (TSV)

Encoded data;

tSNE features

(TSV)

Raw data

(TSV)

download_data.sh

Checkpoints

(HDF5)

Input:

gene expression

profiles for:

- 33 types of cancer

- 9,732 tumor samples

- 727 normal samples

tybalt_train.py tybalt_predict.py

Plots

(PNG)

tybalt_visualize.R

deep learning

Tasks:

1) reduce dimensionality of the

feature space: 5000 → 100

2) using the essential features,

classify / cluster the samples

into 34 groups

Data from:

The Cancer Genome Altas (TCGA)

- NIH program led by NCI and NHGRI

Overview of the Tybalt training code

Getting data

- data in TSV format

Defining a model

- ADAGE model

- VAE model

- Lambda layer

- two loss functions

used by the VAE model

Running the model

- fit

- predict

- perform_tSNE

- more on GD-based

optimization

Header

- parse the command

line options

Imports statements,

other function

definitions https://hpc.nih.gov/apps/Tybalt.html

(only the main function is shown)

Tybalt data

Raw data
(downloaded)

(Pre-)processed data
(used as input by the DL code)

N
u

m
.s

a
m

p
le

s
 =

 1
0

,4
5

9

(9
,7

3
2
 t

u
m

o
r

+
 7

2
7
 n

o
rm

a
l) Number of genes = 20,530 Number of genes = 5,000

HiSeqV2

(TSV)
pancan_scaled_rnaseq.tsv

Other raw data Shape

Gistic2_CopyNumber_all_thresholded.by_genes

(24776, 10845)

PANCAN_mutation (2034801, 10)

samples.tsv (11284, 860)

PANCAN_clinicalMatrix (12088, 35)

Other processed data Shape

pancan_mutation.tsv (7515, 29829)

status_matrix.tsv (7230, 29829)

tybalt_features_with_clinical.tsv (10375, 117)

…

Glioblastoma NF1 data: https://zenodo.org/record/56735/#.XPevDFVKhhE

UCSC Xena Data Browser Copy Number Data: https://zenodo.org/record/827323#.XPexAFVKhhE

Clinical data files from JHU: http://snaptron.cs.jhu.edu/data/tcga/samples.tsv

(RNAseq gene expression, copy number, mutation and clinical)

process_data.py

download_data.sh

The ADAGE (denoising autoencoder) model
ADAGE paper: J.Tan et al., mSystems (2016)

Sizes of data tensors:

original_dim = 5,000

latent_dim = 100

= ||X – X ||

= MSE(X, X) → min

X

X

z

original_dim

latent_dim

original_dim

original_dim

latent_dim

X

High-dim

reconstructed

data

X

High-dim

input data

z

Low-dim

representation

of corrupted

data

E
n

c
o

d
e
r

D
e
c
o

d
e
r

d
e

te
rm

in
is

ti
c

X

X
~

s
to

c
h

a
s
ti

c
d

e
te

rm
in

is
ti

c

X

z

Reconstruction loss

Dropout (0.1)

The VAE (variational autoencoder) model

original_dim
High-dim

input data

High-dim

reconstructed

data

E
n

c
o

d
e
r

D
e
c
o

d
e
r

Reconstruction

loss

Reparametrization

trick:

z = μ +  · 

 = N(0,1)

Sizes of data tensors:

original_dim = 5000

hidden_dim = 100

latent_dim = 100

z

, 

X

d
e

te
rm

in
is

ti
c

d
e

te
rm

in
is

ti
c

s
to

c
h

a
s

ti
c

Regularization

losshidden_dim

latent_dim

Lambda

latent_dim

original_dim

hidden_dim

Z

Low-dim data

representation

X X

X

tSNE: t-Distributed Stochastic Neighbor Embedding

Task: map data points,

together with their neighbors,

from a high-dim to a low-dim

space, for subsequent

visualization

L. Van der Maaten, J.Hinton – J. Machine Learning Res. 9 (2008) 2579-2605

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

Solution:

1) define a neighborhood for each point probabilistically

2) map/embed all the neighborhoods from the high-dim to the low-dim space

3) minimize the KL divergence between the GD and StD using

stochastic gradient descent

For high-dim space:

Gaussian distribution (GD)

For low-dim space:

Student t-distribution (StD)

“High”-dim

(=2D) space

“Low”-dim

(=1D) space

tSNE

Since the t-distribution has

a longer tail than the Gaussian

distribution, “stretching” of

an effective neighborhood

during the mapping allows

to “resolve” the crowded points.

Problems:

1) Simple projection

does not preserve clusters

2) The curse of dimensionality:

mapped datapoints have tendency

to get crowded or merged

How to run the Tybalt application on Biowulf?

https://hpc.nih.gov/apps/tybalt.html

https://github.com/greenelab/tybalt

VAE model + tSNE

AGAGE model + tSNE

More on the gradient descent-based optimizers:

momentum and Nesterov accelerated gradient

w = vector of weights; t = update #;  = learning rate;

J = loss function;

 wt = μ · wt-1 - γ ·wJ(wt - μ · wt-1)

- gradient descent formula with momentumμ

and Nesterov accelerated gradient

- gradient descent formula

with momentum μ (usually, = 0.9)

 wt = μ · wt-1 - γ ·wJ(wt)

wt+1 = wt - γ ·wJ(wt) wt = - γ ·wJ(wt)
wt = wt+1 - wt

- small γ → slow convergence along the valley

- larger γ → oscillations in the perpendicular dir.

loss J view from above

keras.optimizers.SGD(lr=0.01, momentum=0.0, nesterov=False)

t

http://ruder.io/optimizing-gradient-descent

Conclusions

1) Intro using a simple example

- basic autoencoder with single hidden layer mimics the PCA and

cannot capture the nonlinear relationships between data components

- deep basic autoencoder with nonlinear activations supercedes the PCA

and can be regarded as nonlinear extension of the PCA

2) The Tybalt application:

- ADAGE and VAE models

- VAE: reparametrization trick

- VAE: reconstruction and regularization losses

- tSNE for visualization of clusters

3) Other topics:

- gradient descent-based optimization algorithms:

Momentum and Nesterov Accelerated Gradient

BACKUP SLIDES

Why “Variational”? Computing the VAE loss.

Deterministic approach

Objective:

loss(X, X) → min

Probabilistic approach

Objective:

P(X) → max

DKL = Kullback-Leibler divergence:

DKL[p(x) || q(x)] =  p(x)·ln[p(x)/q(x)]

BC = Binary cross-entropy

https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/

log P(X) - DKL[N((X), (X)) || P(z|X)] = Ez~N(,) P(X|z) - DKL[N((X), (X))) || N(0,1)] → max

add and subtract an approximate

distribution N((X), (X));

make other adjustments

“evidence” always >= 0

“evidence lower bound” (ELBO)

Regularization

loss

Reconstruction

loss

- variational

inference

log P(X) = E z~P(z|X) P(X|z) - DKL[P(X|z) || P(z)] → max

apply the Bayes rule;

replace integration with sampling

log P(X) = log  P(X|z) P(z) dz → max

“evidence”

