



## Deep Learning by Example on Biowulf.

#### **Class #3:**

Autoencoders, hyperparameter optimization and their application to reduction of dimensionality of cancer transcriptome.

## **Gennady Denisov, PhD**



## Intro and goals

encoder, decoder, code / latent space



#### What is autoencoder?

Two basic requirements:

- 1) The dimensions of the input and output tensor must be the same
- 2) At least one of the intermediate data tensors must have a smaller dimension than the input and output tensors

#### **Basic capability of any AE:**

Dimensionality reduction, or compression of data into smaller space, or extraction of essential features.

#### **Examples:** Denoising autoencoder

#### Image denoising



ADAGE: analysis using denoising autoencoders of gene expression



#### Variational autoencoder

#### Generating images



# Tybalt: reduction of dimensionality of a cancer transcriptome



Hyperparameter optimization (HPO): KerasTuner, CANDLE

## **Examples overview**



| Class<br>#                | 1                                                     | 2                                                   | 3                                                                          | 4                                                   | 5                          | 6                                                  | 7                                          |
|---------------------------|-------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|----------------------------------------------------|--------------------------------------------|
| Bio<br>app                | Bioimage<br>segmentation<br>/ fly brain<br>connectome | Genomics / prediction of function of non-coding DNA | Genomics /<br>reduction of<br>dimensionality<br>of cancer<br>transcriptome | Bioimage<br>synthesis /<br>developmental<br>biology | Drug<br>molecule<br>design | Genomics /<br>classification<br>of cancer<br>types | Drug<br>molecule<br>property<br>prediction |
| Neural<br>network<br>type | Convolutional                                         | Recurrent<br>or 1D-<br>Convolutional                | Autoencoder                                                                | Generative<br>Adversarial                           | Reinforcement<br>Learning  | Graph<br>Convolutional                             | Message<br>Passing                         |
| ML<br>type                | Supervised                                            | Supervised                                          | Unsupervised                                                               | Unsupervised                                        | Reinforcement              | Supervised                                         | Supervised                                 |



#### How #3 differs from #1 and #2:

- 1) unsupervised ML approach
- 2) there is no autoencoder-specific type of layer that would be used as a building block
- 3) a composite network comprising 2 subnetworks
- 4) will discuss hyperparameter optimization

#### Basic autoencoder models

tensors, layers, parameters, hyperparameters, activations, deep network



**Deep network / model: >= 2 hidden layers** with adjustable parameters

#### **Hyperparameters:**

- types of the layers: Dense/Fully Connected
- depth of encoder and decoder,
  i.e. the # of hidden ("green") tensors:
  0 (Shallow model) or 1 (Deep model)

- size of the code tensor ("latent\_dim"): 2
- size of input/output tensors ("input\_dim": 3
- activations: linear (Shallow model) or tanh/sigmoid (Deep model)





```
encoder model, decoder model, combined model, validation loss
                                                                                         linear(Y)
                                                    Shallow model: depth = 0
                denisovga@biowulf:/data/denisovga/1_DL_Course/0_Intro
                                                              model: depth = 1
                                                    Deep
1) Header
                mport os, numpy as np
                mport tensorflow as tf
                 om tensorflow.keras.layers import Dense
               depth, n\_genes, n\_samples, input\_dim, hidden\_dim, latent\_dim = 1,2,1000,3,3,2
               np.random.seed(1); tf.compat.v1.set_random_seed(1)
                                                                                         tanh Y)
               data, prob = [], np.random.uniform(0, \overline{1}, (n_samples, n_genes))
2) Get
                or i in range(n_samples):
  data
                   x = np.random.choice([0,1],1,p=[prob[i][0],1.-prob[i][0]])
y = np.random.choice([0,1],1,p=[prob[i][1],1.-prob[i][1]])
                   data.append([x, y, x*y])
               x_{train} = np.squeeze(np.array(data, dtype = float))
               encoder = tf.keras.Sequential()
                if depth == 0:
                   encoder.add(Dense(latent_dim,activation='linear',input_shape=(input_dim,)))
                else:
                   encoder.add(Dense(hidden_dim,activation='tanh',
                                                                       input_shape=(input_dim,)))
                   encoder.add(Dense(latent_dim.activation='tanh'))
3) Define
               decoder = tf.keras.Sequential()
  a model
               if depth == 0:
                   decoder.add(Dense(input_dim, activation='linear', input_shape=(latent_dim,)))
                else:
               input_shape=(latent_dim,)))
                                                                                         sigmoid(Y)
               combined_model.add(encoder)
               combined_model.add(decoder)
               combined model.compile(loss='mean_squared_error', optimizer='adam')
4) Run
  the
               combined_model.fit(x_train,x_train,validation_split=0.2,epochs=5000)
  model
```

### Results for the basic models: deep autoencoder vs PCA

https://www.cs.toronto.edu/~urtasun/courses/CSC411/14\_pca.pdf

| O |
|---|



| epoch #                                                                  | BCE val_loss                                                                                     |                                                                                                                                  |  |  |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                          | Shallow<br>model                                                                                 | Deep<br>model                                                                                                                    |  |  |
| 200<br>400<br>600<br>800<br>1000<br>1200<br>1400<br>1600<br>1800<br>2000 | 2.5194<br>2.5194<br>2.5194<br>2.5194<br>2.5194<br>2.5194<br>2.5194<br>2.5194<br>2.5194<br>2.5194 | 0.0243<br>0.0028<br>3.7217e-04<br>4.9052e-05<br>6.7138e-06<br>9.9518e-07<br>2.1343e-07<br>8.5385e-08<br>4.8636e-08<br>3.5525e-08 |  |  |



#### **Conclusions:**

- 1) The shallow model with linear activation, which mimics the PCA, cannot capture the nonlinear relationships between variables / decouple them
- 2) The deep model with nonlinear activations supersedes the shallow model and can be regarded as a nonlinear extension of the PCA.





3) Define

model

## Hyperparameter optimization with KerasTuner (cont.)



hypermodel, tuner, search, HP configuration, objective, project name, max trials, executions per trial

```
hp = object of class
                 denisovga@biowulf:/usr/local/apps/DLBio/class3/bin
                                                                                         HyperParameters
                 ef hypermodel(hp):
                                 = hp.Int('depth', min_value=0, max_value=6, step=1)
                    hidden_dim = hp.Choice('hidden_dim', [6, 9, 12, model = build_combined_model(depth, hidden_dim)
                    return model
                                                                            HP configuration = (depth,hidden_dim)
                                                                            # configurations = 6 x 4 = 24
                def build_combined_model(depth, hidden_dim):
                    encoder = tf.keras.Sequential()
                                                          activation='tanh',input_shape=(input_dim,)))
                    encoder.add(Dense(hidden_dim,
                    for i in range(1,depth-1):
                         encoder.add(Dense(hidden_dim,activation='tanh'))
oder.add(Dense(latent_dim, activation='tanh'))
                    encoder.add(Dense(latent_dim,
  a model
                    decoder = tf.keras.Sequential()
                    decoder.add(Dense(hidden_dim,
                                                          activation='tanh',input_shape=(latent_dim,)))
                    for i in range(1,depth-1):
                         decoder.add(Dense(hidden_dim,activation='tanh'))
                                                         activation='sigmoid'))
                    decoder.add(Dense(input_dim,
                                                                                       tuner = object of class
                    combined_model = tf.keras.Sequential()
                                                                                       RandomSearch
                    combined_model.add(encoder)
                    combined_model.add(decoder)
                    combined_model.compile(loss="mean_squared_error", optimizer="adam")
                     return combined model
                tuner = RandomSearch(hypermodel, objective='val_loss', max_trials=24,
4) Run the
                                        seed = my_seed, executions_per_trial=3, directory='
                                        project_name='ae_ktuner', overwrite = True)
                tuner.search(x_train, x_train, epochs=5000, validation_split=0.2)
                                                                                                          Bot
```



## **Optimizing the latent dimension**



A11

```
denisovga@biowulf:/usr/local/apps/DLBio/class3/bin
                                                                                                 mport os, numpy as np
                  mport tensorflow as tf
                 rom tensorflow.keras.layers import Dense
1) Header
                 rom tensorflow.keras.losses import BinaryCrossentropy
                 rom tensorflow.keras.optimizers import Adam
                 rom keras_tuner.tuners import RandomSearch
                                                                                       Assume fixed values:
                n_{\text{genes}}, n_{\text{samples}} = 3.1000
                                                                                       depth = 3
                 depth, hidden_dim = 3,12
                 np.random.seed(1)
                                                                                       hidden dim = 12
2) Get
                tf.compat.v1.set_random_seed(1)
  data
                  _train = np.squeeze(np.array(data, dtype = float))
                input dim = x train.shape[1]
                                                                                                   Results:
                                                                                                   latent dim
                                                                                                              score
                 lef hypermodel(hp):
                     latent_dim = hp.Int('latent_dim', min_value=1, max_value=6, step=1)
model = build_combined_model(latent_dim)
                                                                                                              0.0008
                     return model
3) Define
                                                                                                   3
                                                                                                              3.56e-7
  a model
                 def build_combined_model(latent_dim):
                                                                                                              1.41e-7
                     return combined_model
                                                                                                              1.21e-7
                                                                                                              1.28e-7
                 os.system("n
                ktunér = RandomSearch(hypermodel, objective='val_loss', max_trials=24,
                                         seed = 1, executions_per_trial=3, directory='.
                                                           ktuner_latent_dim', overwrite = True)
                                         project_name='a
```

ktuner.search(x\_train, x\_train, epochs=5000, validation\_split=0.2)

best\_hyperparameters = ktuner.get\_best\_hyperparameters(1)[0] print("best latent\_dim=", best\_hyperparameters.get('latent\_dim

ktuner.results\_summary()

4) Run the model

# How to run the simple/prototype models on Biowulf?

```
denisovga@biowulf:/data/denisovga/1_DL_Course/0_Intro
sinteractive --gres=gpu:p100:1
module load DLBio/class3
ls $DLBIO BIN
ae_basic.py
                         ae_ktuner_hyperband.py
                                                   ae_ktuner_random_ld.py
ae_ktuner_bayesian.py
                         ae_ktuner_random.py
                                                   parse_ktuner_results.pv
ae_basic.py
Epoch 1/2000
                       Epoch 2/2000
25/25 [=====
                            ========1 - Os 2ms/step - loss: 2.6782 - val_loss: 2.6070
ae_ktuner_random.py
parse_ktuner_results.py ae_ktuner_random
score= 1.02e-09 depth= 6 hidden_dim=16
score= 1.3e-09 depth= 3 hidden_dim=12
score= 1.77e-09 depth= 3 hidden_dim=16
score= 4.08e-09 depth= 3 hidden_dim= 9
score= 6.97e-09 depth= 6 hidden_dim=12
score= 1.35e-08 depth= 4 hidden_dim= 9
score= 8.41e-08 depth= 4 hidden_dim= 6
                                             objective score "jumps" by 4 orders of magnitude
score= 0.000556 depth= 3 hidden_dim= 6
score= 0.000556 depth= 1 hidden_dim= 6
score= 0.000833 depth= 4 hidden_dim=16
score= 0.000833 depth= 2 hidden_dim=12
ae_ktuner_random_ld.py
parse_ktuner_results.py ae_ktuner_random_ld
ae_ktuner_bayesian.py
parse_ktuner_results.py ae_ktuner_bayesian
ae_ktuner_hyperband.py
parse_ktuner_results.py ae_ktuner_hyperband
```

42,1

A11

# Example 3. Tybalt: extracting a biologically relevant latent space from cancer transcriptomes

Tybalt paper: J.P.Way, C.S.Greene, Pacif Symp. on Biocomputing (2018)

Tybalt orig.code: https://github.com/greenelab/tybalt Tybalt on Biowulf: https://hpc.nih.gov/apps/Tybalt.html



Data from: TCGA

(The Cancer Genome Altas)

- NIH program led by NCI and NHGRI

#### Input: 20,530 gene expression profiles in

10,459 samples representing 33 types of cancer:

- 9,732 tumor samples
- 727 normal samples

<u>Task</u>: Extract a biologically relevant latent space from the transcriptome

#### Steps:

- 1) <u>Preprocessing:</u> extract a subset of genes with the most variable expression profiles  $(20,530 \rightarrow 5,000)$
- 2) Production (involves deep learning): reduce the dimensionality of the feature space by 50 fold (5000 → 100) using variational autoencoder.

For comparison, the same task will also be performed by denoising autoencoder

3) **Postprocessing:** verify that samples encoded by autoencoder **retain biological signals** 

#### Imports statements, other function definitions

## Overview of the Tybalt training code

(only the main function is shown)

https://hpc.nih.gov/apps/Tybalt.html

#### <u>Header</u>

 parse the command line options

#### Getting data

- data in TSV format

#### <u>Defining a model</u>

- models: VAE, ADAGE
- tuners:

RandomSearch BayesianOptimization Hyperband

#### **Running the model**

- fit
- search

Extra:

- tSNE

```
@ denisovga@biowulf:/data/denisovga/1_DL_Course/3_AEs
  name == '__main__'
   opt, checkpoint_combined, checkpoint_encoder, checkpoint_decoder =
       parse_command_line_arguments("train")
   opt, rnaseq_df, train_df, test_df = get_data(opt)
   if not opt.hpo:
      combined_model,encoder,decoder = build_combined_model(opt.model_name,
           opt.input_dim, opt.latent_dim, int(opt.depth),int(opt.hidden_dim),
           float(opt.kappa), float(opt.lr), opt.noise, opt.sparsity)
       encoder.summary(); decoder.summary(); combined_model.summary()
   else:
       pr_name = 'ktuner_' + opt.model_name + "_" + opt.hpo
if re.search("random", opt.hpo):
           ktuner = RandomSearch(hypermodel_wrapper(opt), overwrite=True,
               objective='val_loss', seed=1, project_name=pr_name, max_trials=opt.max_trials, executions_per_trial=opt.ex_per_trial)
       elif re.search("bayesian", opt.hpo):
           ktuner = BayesianOptimization(hypermodel_wrapper(opt),overwrite=True,
                objective='val_loss', seed=1, project_name=pr_name, max_trials=opt.max_trials, executions_per_trial=opt.ex_per_trial)
       elif re.search("hyperband", opt.hpo):
           ktuner = Hyperband(hypermodel_wrapper(opt), overwrite=True,
                objective = Objective("val_los
                                                s",direction="min"),
               project_name=pr_name, max_epochs=int(opt.num_epochs))
   if not opt.hpo:
       checkpointer = ModelCheckpoint(filepath=checkpoint_combined,
           verbose=opt.verbose, save_weights_only=True)
      encoder.save_weights(checkpoint_encoder)
       decoder.save_weights(checkpoint_decoder)
   else:
       ktuner.search(train_df, train_df, validation_data=(test_df,test_df),
                      use_multiprocessing=True)
                                                                     85,74
                                                                                    Bot
```

## **Tybalt data**

(RNAseq gene expression, copy number, mutation and clinical)



Raw RNA-seq

gene expression data (downloaded)

**Preprocessed RNA-seq** gene expression data (used as input by the DL code)

Number of genes = 5,000



HiSeqV2.tsv shape=(10459, 20530)

(9,732 tumor + 727 normal) Num.samples = 10,459

preprocess\_data.py

pancan\_scaled\_rnaseq.tsv shape=(10459, 5000)

| Other raw data                              | Shape          |      |  |
|---------------------------------------------|----------------|------|--|
| Gistic2_CopyNumber_all_thresholded.by_genes |                |      |  |
|                                             | (24776, 10845) |      |  |
| PANCAN_mutation                             | (2034801,      | 10)  |  |
| samples.tsv                                 | (11284,        | 860) |  |
| PANCAN_clinicalMatrix                       | (12088,        | 35)  |  |

Other processed data Shape (7515, 29829) pancan\_mutation.tsv status matrix.tsv (7230, 29829)tybalt\_features\_with\_clinical.tsv (10375,

## The ADAGE (denoising autoencoder) model

ADAGE paper: J.Tan et al., mSystems (2016)



## The VAE (variational autoencoder) model



## Hyperparameter optimization

CANDLE (Grid, Bayesian; parallel): https://hpc.nih.gov/apps/candle/index.html

| Tunable HP                                | depth  | hidden_dim         | κ                                   | batch_size                   | num_epochs                | learning_rate                                   |
|-------------------------------------------|--------|--------------------|-------------------------------------|------------------------------|---------------------------|-------------------------------------------------|
| Range of var.<br>(from original<br>study) | [0, 1] | [100, <b>300</b> ] | [0.01,<br>0.05,<br>0.1, <b>1.</b> ] | [ <b>50</b> , 100, 128, 200] | [10, 25, 50, <b>100</b> ] | [ <b>0.0005</b> , 0.001, 0.0015, 0.002, 0.0025] |

1280 HP configs total

Keras tuners: RandomSearch, BayesianOptimization, Hyperband, Sklearn



Samples encoded by VAE retain biological signals



**Encoding 82 stratifies patient sex** 



**Encodings 53 and 66 separate melanoma tumors** 





tSNE of VAE-encoded samples  $(100 \rightarrow 2)$  preserve the same clusters as tSNE of unencoded RNAseq samples  $(5000 \rightarrow 2)$ .

## tSNE: t-distributed Stochastic Neighbor Embedding

Orig. paper: L. Van der Maaten, J.Hinton – J. Machine Learning Res. 9 (2008) 2579-2605

Application to SC transcriptomics: D.Koback, P.Berens - Nature Comm. (2019) 10:5416



#### Task:

map data points, together with their neighbors, from a high-dim "input" space (e.g. dim=100 or 5000) to a low-dim "embedding" space (dim=2), for subsequent visualization

#### **Projections** do not preserve the structure of clusters







to y-axis



sklearn.manifold.**TSNE**(n\_components=2, perplexity=30.0, init='random', learning\_rate=200.0, ...)

#### **Perplexity:** effective # neighbors of a data point;





Tybalt's choice: Perp = 20

**Initialization:** starting data distribution in the low-dim space



Random



**PCA** 

**Learning rate:** 





 $\eta = max(200, N/12)$ 

## How to run the Tybalt application on Biowulf?

https://hpc.nih.gov/apps/tybalt.html



## **Summary**



- 1) Intro using a simple example
  - basic shallow and deep autoencoders (AEs): the shallow AE mimics the PCA and cannot capture the nonlinear relationships between data components
  - deep basic autoencoder with nonlinear activations supercedes the PCA and can be regarded as nonlinear extension of the PCA
  - data with larger number of components require a deeper AE model with larger intermediate data tensors
- 2) Hyperparameter optimization with KerasTuner
  - the task of optimizing latent dimension can be formulated as HPO problem
  - hypermodel, hyperparameter configuration, trial, executions per trial
  - the tuner object and the search method
- 3) The biological example
  - ADAGE (denoising autoencoder) model
  - VAE (variational autoencoder) model, reparametrization trick, reconstruction and regularization losses
  - Grid search
  - Keras tuners: RandomSearch, BayesianOptimization, Hyperband
  - the VAE encodings retain biological signals
  - tSNE for visualization of high-dimensional data