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Class #3: 

Autoencoders, hyperparameter optimization and their application 

to reduction of dimensionality of cancer transcriptome.



Intro and goals

What is autoencoder?

Tybalt: reduction of 

dimensionality of a

cancer transcriptome
Generating images

Variational autoencoder

Image denoising

ADAGE: analysis using 

denoising autoencoders 

of gene expression

Denoising autoencoderExamples:

Two basic requirements:

1) The dimensions of the input and output tensor 

must be the same

2) At least one of the intermediate 

    data tensors must have 

    a smaller dimension than the input 

    and output tensorsCode,
a.k.a. latent space

DecoderEncoder

Data flow

Input Output

Basic capability of any AE:
Dimensionality reduction, or 

compression of data into smaller space, or 

extraction of essential features.  

encoder, decoder, code / latent space

Hyperparameter optimization (HPO): KerasTuner, CANDLE



Examples overview

How #3 differs from #1 and #2:

1) unsupervised ML approach

2) there is no autoencoder-specific type of layer 

    that would be used as a building block

3) a composite network comprising 2 subnetworks

4) will discuss hyperparameter optimization



Basic autoencoder models
tensors, layers, parameters, hyperparameters, activations, deep network

Deep modelShallow model

Input Output

Code Code

Input Output

- types of the layers: Dense/Fully Connected 

- depth of encoder and decoder, 

  i.e. the # of hidden (“green”) tensors: 

  0 (Shallow model) or 1 (Deep model) 

- size of the code tensor (“latent_dim”): 2 

- size of input/output tensors (“input_dim”): 3

- activations: linear (Shallow model) or 

                     tanh/sigmoid (Deep model)

Hyperparameters:

Deep network / model:  >= 2 hidden layers with adjustable parameters

Gene expression data matrix

Input: a gene expression data matrix with three columns (=genes),  a number 

of rows (=samples) and the values 1 (=gene is expressed) or 0 (=gene is 

unexpressed). Two of the genes are expressed independently, whereas the 3rd 

gene is expressed if and only if the first two genes are both expressed.

Task: train the basic autoencoder models with code size = 2 on this data.



Training code for the basic models 

encoder model, decoder model, combined model, validation loss

2) Get 

    data

1) Header

4) Run 

    the

    model

3) Define

     a model

Shallow model: depth = 0

Deep      model: depth = 1



Results for the basic models: deep autoencoder vs PCA

https://www.cs.toronto.edu/~urtasun/courses/CSC411/14_pca.pdf 

Conclusions: 
1) The shallow model with linear activation, which is known to mimic the PCA, (see the link above)

    cannot capture the nonlinear relationships between variables / decouple them

2) The deep model with nonlinear activations supersedes the shallow model and can be regarded

    as a nonlinear extension of the PCA.  



HP optimization with KerasTuner (v1.0.3)

Data 

matrix

https://keras-team.github.io/keras-tuner/

Model

2) Get 

    data

1) Header



Hyperparameter optimization 

with KerasTuner (cont.)

3) Define 

    a model

hp = object of class 

HyperParameters

4) Run the 

    model

hypermodel, tuner, search, HP configuration, objective, 

project_name, max_trials, executions_per_trial

tuner = object of class 

RandomSearch

HP configuration = (depth,hidden_dim) 

 # configurations = 6 x 4 = 24



Optimizing the latent dimension

3) Define 

    a model

4) Run the 

    model

2) Get

   data

1) Header

Results:

Assume fixed values:

depth  = 3

hidden_dim = 12



How to run the simple/prototype models  

on Biowulf?

objective score “jumps” by 4 orders of magnitude



Example 3. Tybalt: extracting a biologically relevant 

latent space from cancer transcriptomes

Tybalt paper:  J.P.Way, C.S.Greene, Pacif Symp. on Biocomputing (2018)

Tybalt orig.code:    https://github.com/greenelab/tybalt

Tybalt on Biowulf:  https://hpc.nih.gov/apps/Tybalt.html

Input: 20,530 gene expression profiles in

            10,459 samples representing 33 types of cancer: 

             - 9,732 tumor samples 

             - 727 normal samples

Steps:

1) Preprocessing: extract a subset of genes with the

    most variable expression profiles (20,530 → 5,000)

2) Production (involves deep learning):

    reduce the dimensionality of the feature space

    by 50 fold (5000 → 100) using 

       variational autoencoder.

    For comparison, the same task will also be performed by 

denoising autoencoder

3) Postprocessing: verify that samples encoded 

    by autoencoder retain biological signals

Data from: TCGA

(The Cancer Genome Altas)
- NIH program led by NCI and NHGRI

Task:  Extract a biologically relevant latent space  

            from the transcriptome



Overview of the Tybalt training code

Getting data

- data in TSV format

Defining a model

- models: VAE, ADAGE 

- tuners:

  RandomSearch

  BayesianOptimization

  Hyperband

Running the model

- fit

- search

Extra:

- tSNE

Header

- parse the command

  line options

Imports statements,

other function 

definitions
https://hpc.nih.gov/apps/Tybalt.html

(only the main function is shown)



Tybalt data

Raw RNA-seq 

gene expression data
(downloaded)

Preprocessed RNA-seq 

gene expression data
(used as input by the DL code)
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HiSeqV2.tsv

shape=(10459, 20530)

pancan_scaled_rnaseq.tsv

shape=(10459, 5000)

Other raw data                                    Shape

Gistic2_CopyNumber_all_thresholded.by_genes 

                                                          (24776, 10845)

PANCAN_mutation                   (2034801,       10)

samples.tsv                        (11284,     860)

PANCAN_clinicalMatrix              (12088,       35) 

Other processed data                        Shape

pancan_mutation.tsv           (7515, 29829)

status_matrix.tsv              (7230, 29829)

tybalt_features_with_clinical.tsv (10375,    117)

… 

(RNAseq gene expression, copy number, mutation and clinical) 

preprocess_data.py



The ADAGE (denoising autoencoder) model
ADAGE paper:  J.Tan et al., mSystems (2016)

Sizes of data tensors:

- original_dim  = 5,000

- latent_dim     =    100

= ||X – X || 

  MSE(X, X) → min

X
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Dropout (0.1)



The VAE (variational autoencoder) model 

input_dim
High-dim

input data

High-dim

reconstructed

data
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Reconstruction

        loss

Reparametrization 

trick:

z = μ +  ·  ε

ε = N(0,1)

Sizes of data tensors:

original_dim = 5000

hidden_dim  =   100   

latent_dim    =   100
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loss
hidden_dim

latent_dim

Lambda

latent_dim

input_dim

hidden_dim

Z

Low-dim data 

representation

X X

X

Total loss = 

   Reconstr. loss

+ * Regul. loss



Grid (CANDLE)

Hyperparameter optimization with KerasTuner

Keras tuners:  RandomSearch, BayesianOptimization, Hyperband, Sklearn

Hyperband

BayesianOptimization

# epochs

O
b
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c

ti
v
e

Tunable HP depth hidden_dim  batch_size num_epochs learning_rate

Default range 

of var. (from 

orig. paper)

[0, 1] [100, 300] [0.01,  

0.05, 

0.1, 1.]  

[50, 100, 

128, 200]

[10, 25, 50, 

100]

[0.0005, 0.001, 

0.0015, 0.002, 

0.0025 ]

hparam

O
b

je
c

ti
v
e

Sklearn 

1280 HP 

  configs 

total

RandomSearch

CANDLE (Grid, Bayesian; parallel):  https://hpc.nih.gov/apps/candle/index.html



Samples encoded by VAE retain biological signals

RNAseq

VAE

tSNE of VAE-encoded samples (100→ 2) 

preserve the same clusters as tSNE of unencoded

RNAseq samples (5000 → 2).

Encoding 82 stratifies patient sex

Encodings 53 and 66 separate melanoma tumors



Projections do not preserve 

the structure of clusters

to x-axis to y-axis

tSNE: t-distributed Stochastic Neighbor Embedding 

Task: 

map data points, 

together with their neighbors, 

from a high-dim “input” space 

(e.g. dim=100 or 5000)

to a low-dim “embedding” 

space (dim=2), 

for subsequent visualization 

Orig. paper: L. Van der Maaten, J.Hinton – J. Machine Learning Res. 9 (2008) 2579-2605

Application to SC transcriptomics: D.Koback, P.Berens - Nature Comm. (2019) 10:5416

tSNE

sklearn.manifold.TSNE(n_components=2,

                                     perplexity=30.0,

                                     init='random', 

                                     learning_rate=200.0, … )

Learning rate:

N = 10,459 data size

Initialization: starting data 

distribution in the low-dim space

PCARandom ɳ = max(200, N/12)

Perplexity: effective # neighbors 

of a data point;

Low

(5) 

High 

(50) 

Tybalt’s choice:  Perp = 20



How to run the Tybalt application on Biowulf?

https://hpc.nih.gov/apps/tybalt.html



Summary

1) Intro using a simple example

    - basic shallow and deep autoencoders (AEs):  the shallow AE mimics the PCA

    and cannot capture the nonlinear relationships between data components

    - deep basic autoencoder with nonlinear activations supercedes the PCA

      and can be regarded as nonlinear extension of the PCA

    - data with larger number of components require a deeper AE model 

      with larger intermediate data tensors

    

2) Hyperparameter optimization with KerasTuner

    - the task of optimizing latent dimension can be formulated as HPO problem

    - hypermodel, hyperparameter configuration, trial, executions per trial

    - the tuner object and the search method

3) The biological example

    - ADAGE (denoising autoencoder) model

    - VAE (variational autoencoder) model, reparametrization trick,

               reconstruction and regularization losses

    - Grid search

    - Keras tuners: RandomSearch, BayesianOptimization, Hyperband

    - the VAE encodings retain biological signals

    - tSNE for visualization of high-dimensional data
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