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Examples:

Generating face images BioGANs: GANs for biological image synthesis

What is a GAN?
- A composite network comprising 2 subnetworks: Generator and Discriminator 

- The G produces fake data from scratch/noise;      learns to trick the D

- The D compares fake data against the true data;  learns to expose the G

Intro and goals

Counterfeiter vs police analogy Forger vs art dealer/critique analogy

I.Goodfellow et al., Generative Adversarial Nets. NIPS Proc. 2014

D

G

Noise

Features: 
Generative model: the goal is to generate new, synthetic instances of data that can pass for real data

G and D are trained by pitting one against the other – thus the adversarial, i.e. antagonistic, or confrontational

“…The most interesting idea in ML in the last 10 years.” (Yann LeCun)



Examples overview

CNN RNN AE GAN RLN GCN MPN- unsupervised ML

- generative model, functionally similar to VAE

- composite network comprising two subnetworks 

- the subnetworks are trained interactively, 

by playing a minimax game

- GAN flavors: GAN, DCGAN, WGAN, WGAN-GP



Deep Convolutional GAN (DCGAN): a simple example

RNN/1D CNN prototype example from class #2:

Input: a set of training sequences of 0’s and 1’s with binary labels

assigned to each sequence depending on whether or not 

a certain (unknown) motif is present in the sequence

Example: 01011100101

Task: predict the label, or the occurrence of the unknown motif, 

in new, previously unseen sequences.

A motif detection model of class # 2

A.Radford et al, arXiv:1511.06434v2 (2016)

Architecture guidelines for stable DCGANs:
- Use convolutions (D) and transposed convolutions (G) instead of MaxPooling / Upsampling layers

- Use BatchNormalization in both the G and the D.

- Avoid Dense/Fully Connected hidden layers

- ….

tensors, units, layers, parameters, hyperparameters, convolution 

Input: a training set of only “good” sequences of 0’s and 1’s,

i.e. all of them contain a certain motif 

Example: 01011001100110011001111

Task: learn what makes all of the training sequences “good”

and then generate new “good” sequences from scratch.

Challenge: only positive examples, no labels

DCGAN prototype example:

Conv2D

Output: 

Y =  wi* Xi + b

Input: X

Z=A(wi·Yi+b)



The Transposed Convolution (a.k.a. deconvolution, 

or fractional-strided convolution)

V.Dumoulin, F.Visin - A guide to convolution arithmetic for deep learning (2018)

convolution, transposed convolution, stride, kernel size, padding

Y
(output)

X
(input)

Conv2D

input size    i = 5
kernel_size k = 3
strides        s = 2 
padding      p = 0 (‘valid’) 

output size o = 2

Conv2D Conv2D

i  = 4
k = 3
s = 1
p = 0

o = 2

i  = 5
k  = 3
s = 1
p = 1(‘same’)

o = 5

input_size    i’  = 2
kernel_size  k’ = 3
strides         s’ = 2
padding       p’ = 2 

output_size o’ = 5

Y
(output)

Conv2DTranspose
o’ = i’+ (i’-1)*(s’-1)+ 2*p’ – k’+1)

Conv2DTranspose:

‘valid’  padding: p’ = k’ – 1
‘same’ padding: o’ = i’ * s’

i + 2*p = k + s*(o – 1)

Conv2D:

‘valid’  padding: p = 0
‘same’ padding: o = round(i / s)

X
(input)

Conv2DTranspose(10,      3, padding = ‘same’, …)

num. of

filters /

kernels 

filter /

kernel

size

10



The simple GAN code: 

(1) header and (2) defining a model

(1) Header:

- general Python 

imports

- Numpy imports

- Keras library 

imports

(2) Define a model 

- discriminator (D)

- generator (G)

- combined model 

(GAN)

- Conv1DTranspose

- BatchNormalization

generator, discriminator, GAN, compile, loss, optimizer, trainable

D

G

GAN

D outputs the probability

that the input data is “good”

1) like D, GAN outputs a probability

2) like G, GAN takes noise as input

3) only G weights are adjustable when training GAN

GAN = D(G(z))



The simple GAN code (cont.): 

getting data and training the model

(4) Run the model

- train_on_batch

- num. of epochs

- batch size

motif, train_on_batch, epoch, batch size, predict

(3) Get data 

- motif



The GAN optimization objective

D(x; wD) → 1

D(G(z; wG); wD)   → 1

real data   x;    fake data  G(z); z  noise

Jminimax = min  max  Edata { ln D(x; wD) }  +  Enoise { ln (1 – D(G(z; wG); wD) }
wG wD

The minimax optimization objective:

Standard neural net

Loss

w1

w2

A.Yadav, S.Shah et al., ICLR 2018

D(G(z; wG); wD)   → 0

Re-write

from the 

previous

slide

ln D(x ; wD) → max

ln(1 – D(G(z;  wG); wD)) → max

ln(1 – D(G(z; wG); wD)) → min

Adversarial neural net

Jminimax

wD
wG



Mode collapse
What is mode collapse? 

- an issue that often occurs in GANs due to problems in training

when training/real data comprise >= 2 types/”modes”

- generator can only produce a single type of output or a small 

subset of types

Predictions from the model: 

Input: a training set of “good” sequences of 2 types (“modes”),

each sequence containing a motif of one type 

Example:  01011001100110011001111,  00010101010101010111010

Task: train a GAN on these data and then count the sequences of 

the two types in the data generated by model after training.

The mode collapse prototype example:

Computed results: 



How to run the simple GAN examples

on Biowulf?

Executables

Data with 

single motif 

Data with 

two motifs  



Example 4. BioGANs: GANs for Biological Image Synthesis

A.Osokin e.a. IEEE Int. Conf. on Computer Vision (ICCV), 2017

https://github.com/aosokin/biogans

https://hpc.nih.gov/apps/biogans.html

Fission yeast cells

Bgs4
Bgs4

+

Alp14

Bgs4

+

Arp3

Bgs4

+

Cki2

Bgs4

+

Mkh1

Bgs4

+

Sid2

Bgs4

+

Twa1

train.py predict.py visualize.py

The BioGANs pipeline (reimplemented in Keras from PyTorch):

Data: the Localization Interdependency network (LIN) dataset

Biological task: investigate how different polarity factors interact with one another

Computational task: train a GAN on available data and generate synthetic images 

that show localization of multiple polarity factors,

together with Bgs4, at the same stage of cell growth cycle

(i.e. the images that cannot be produced experimentally)

Proteins: growth marker Bgs4  and polarity factors Alp14, Arp3, Cki2, …



An overview of the BioGANs 

training code

Getting data

- LIN dataset

Define a (network) model

- models available:

DCGAN, 

DCGAN-separable,

DCGAN-starshaped

Run the model

- GAN algorithms:

(traditional) GAN

WGAN

WGAN-GP

- optimizer: RMSProp

Header

- import statements

- parsing the command

line options

The Keras source code:

train.py, predict.py,

visualize.py, gans.py,

models.py, dataloader.py, 

options.py,

https://hpc.nih.gov/apps/biogans.html



BioGANs data: the Localization Interdependency

Network (LIN) dataset

J.Dodgson et al, https://www.biorxiv.org/content/10.1101/116749v1.full

- 2D fluorescence microscopy images of Fission yeast 

cells, each (7 14) x 4 m

- 2-channel images of size is 48 x 80 pixels

(1 pixel = 100 nm)

- red channel = protein Bgs4, localizes in the area 

of active growth

- green channel =  any of 41 different polarity factors

that define a cell geometry

- 170,000 images for 41 polarity factors available in the in

the LIN dataset. 

- the BioGANs application focuses on Bgs4 and 

6 polarity factors Alp14, Arp3, Cki2, Mkh1, Sid2

and Tea1, totaling to 26,909 images 

Features:

Alp14/Bgs4 Arp3/Bgs4

Cki2/Bgs4 Mkh1/Bgs4

Sid2/Bgs4 Tea1/Bgs4

80

48



The DCGAN model of the BioGANs application

Features of the DCGAN architecture:

- the most basic model implemented as a part of the BioGANs application

- due to the mode collapse, can only generate green channels for a subset of polarity factors



BioGANs generator architrectures:  DCGAN, 

DCGAN-separable and DCGAN-starshaped

DCGAN

A.Osokin e.a. IEEE Int. Conf. on Computer Vision (ICCV), 2017   

DCGAN-starshaped

Two shortcomings of the DCGAN Generator:

- the signal in the green channel is not dependent on / influenced by the red channel

- cannot generate multiple green channels

DCGAN-separable



The Wasserstein GAN (WGAN)
M.Arjovsky et al, Wasserstein GAN – arXiv: 1701.07875 (2017)

EMD, a.k.a. Wasserstein loss = minimum amount of work 

to transform one distribution to another

WGAN ideas: 

- get rid of the  layer =>  can no longer use the BCE loss

- replace D with F; rename F to critic and its output to score s
- as a new loss function, use the Earth Mover’s distance (EMD) 

between the distributions of the critic scores PData (s) and PGen(s)

PGen(s)

s

PData(s)

s

Work = dist * mass (=area of the piece)

dist

Problem with training vanilla GAN: vanishing gradients (discussed in 

class #2) due to the last/sigmoid layer in the Discriminator:

D(I, w) = (F(I, w))   => w D =  · w F → 0    at saturation

 (x)

x

1

0

Binary cross entropy loss:

The approx. Wasserstein loss when the two

distributions are similar/close:

EMD   - E [sData · sGen ]

EMD  → min

forces the two distributions

to have maxima 

at the same locations 



WGAN with gradient penalty (WGAN-GP)
Gulrajani et al., Improved Training of Wasserstein GANs - arXiv:1704.00028v3 (2017)

p = D(I)

||I||

1

0

(Vanilla) GAN:

use sigmoid activation: D(I) =  (F(I))

WGAN features:

(1) rename Discriminator D to Critic F

(2) use EMD loss

(3) clip all weights after each epoch (c = 0.01)

(4) use RMSProp optimizer with lr = 0.00005

How can we limit the growth of critic F to avoid exploding gradients / instability?

WGAN-GP:

penalize the loss to force || F||  be close to 1

WGAN-GP loss = EMD +   · E[ (|| F|| -1)2 ]

s =F(I)

||I||
0

s =F(I) || F||   1

WGAN:

clip the F weights that are beyond [-c, c ]

Data transform. by one layer: Z = A(wi·Xi+b)

Training of WGAN(-GP) 

on data with ||I||  1:

WGAN-GP features:

(1) 

(2)       

(3) penalize the loss using  F;     10

(4) use either RMSProp or Adam optimizer

same as for WGAN



The Root Mean Squared Propagation (RMSProp) optimizer

w = vector of weights

t = update #

Slides: http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Video: https://goo.gl/XUbIyJ

γ = learning rate

wJ = gradient of the loss

Basic gradient descent formula for updating weights:

wt+1  - wt = - γ ·wJ(wt )

Computing the running average of ( J)2, 

 ~ 0.9
E[wJ(w )2]t =  · E[wJ(w )2]t-1 + (1 - ) ·wJ(wt )

2

keras.optimizers.RMSprop( learning_rate=0.001, rho=0.9, epsilon=1e-07, …)

Effective γ: 
- large when moving in the l-direction (with small  J )
- moderate or small when moving in the s-direction 

(with large  J )

E[…] = running average of the magnitudes 

of recent gradient squares

 = small parameter

The RMSprop gradient descent formula:



How to run the BioGANs application on Biowulf?

https://hpc.nih.gov/apps/biogans.html



Summary

1) Intro using a simple example

- simple GAN that can generate sequences containing certain motif(s):

Discriminator network is the same a model from class #2

Generator network produces a sequence from random noise

- the Conv2DTranspose (transposed convolution, a.k.a. deconvolution) layer

- the BatchNormalization layer

- the train_on_batch method

- the mode collapse issue

2) The BioGANs application:

- BioGANs data: the LIN dataset

- generator architectures: DCGAN, DCGAN-separable and 

DCGAN-starshaped

- discriminator/critic architectures: (vanilla) GAN, WGAN and WGAN-GP

- the Earth Mover’s distance (EMD) loss and the gradient penalty

- the gradient descent-based optimization algorithm RMSprop


