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Intro and goals

What is Reinforcement Learning (RL)?

- a framework for decision making (“observe and act”)

- two entities: AGENT and ENVIRONMENT

- the AGENT receives OBSERVATIONS,

based on which it executes ACTIONS, 

and, in response to them, receives REWARDS

- the ENVIRONMENT receives ACTIONS

and emits OBSERVATION and REWARDS

Examples:

ReLeaSE: Deep RL for de novo drug design

Generator network  AGENT

Predictor network  ENVIRONMENT

- determine the ACTION(S) (“decision”) that will maximize an expected cumulative REWARD
Goal:

SMILES (Simplified Molecular-Input Line-Entry Specification) string:

Playing ATARI game with Deep RL

agent, environment, observations, actions, rewards

The RL paradigm



Examples overview

- RL = 3
rd

camp of methods:

SL: requires a ground truth with static/fixed labels/targets; 

UL: no ground truth and predefined/supervised labels

RL: labels/targets are adjusted dynamically, based on rewards

- DRL is a challenging topic; marries RL to DL

RL => learning objective, DL => mechanism

will illustrate with 3 simple/prototype examples



rt +  · rt+1 +  2· rt+2 + … 

Value-based RL: the simplest (tabular) Q-learning example

state, policy, return, discount rate, episode, state-action value (Q-)function, learning rate

Q(st , at ) = E [rt +  · rt+1 +  2· rt+2 + … ]   → max
π

State-action value 

function:
(= the learning objective)

return Gt =cumulative discounted (0 <   1) future reward over the duration of an episode

Bellman 

equation:

discount 

rate

(0 <   1)

newQ(st , at ) = Q(st , at ) +  ·   [ rt +     ·   max Q(st+1, a) – Q(st , at )]
a

learning 

rate

(0    1)

reward

(employs 

dynamic

programming)

Task: determine the best deterministic policy 

π:  a = π(s)

that will maximize an expected future return

Input: an agent that emulates a newborn child

Actions: 

{Eat, Drink }

Rewards 

States (Observations):

{Hungry, Thursty}



A code for the tabular Q-learning example

Header

Set 

params

Run the 

model

(length of

each episode

= 1)

Define 

a model

Updating 

the Q-table 

Updating

the best 

policy

Each episode 

is of length = 1



Deep Q-learning: a prototype sequence optimization example
Original study: MolDQN, Zhou et al. Nature Sci. Reports (2019)

2slen states

2*slen actions

Input:

state: a sequence of 0’s and 1’s 

action: random substitution of a character 

at a random position 

a target motif sequence, e.g. 0011

reward: the diff. between the LA scores

after and before an action.

Task:

infer the best deterministic

policy π: a = π (s) that will 

produce an optimal sequence

(= containing the motif) 

from any sequence



A prototype sequence optimization 

example (cont.) 

Training algorithm:

(1) predict Q-targets using current network weights 

(2) update the Q-targets with Bellman equation

(3) re-train the network against the updated Q-targets

Limitations of Q-learning:

- instability: small variations in 

Q-vals may dramatically change 

the best policy

- low performance for large #states

Bellman equation:

newQ(s, ai ) = Q(s, ai )

+  · [rt + 

+ · maxa Q(snext , a) 

- Q(s, ai )]

Each episode 

is of length = 1



Policy-based deep RL: a prototype de novo

sequence generation example
Input:

state: a “partial” sequence of 0’s and 1’s 

action: appending a random character 

(0 or 1) at the end of the sequence

a target motif sequence, e.g. 0011

reward: the difference between the LA scores

after and before an action; r  0

Task: 

infer the best probabilistic policy π = P (a | s) 
that will allow generation of an optimal sequence

(i.e. containing a predefined motif) from scratch 

Addressing the limitations of Q-learning: 

(a) stability: small variations in P(a|s) will not 

affect the (random) actions dramatically 

(b) efficiency: a policy gradient algorithm 

does not require exploring all possible states



A code for the de novo sequence generation 

example (cont.)

baselined reward, REINFORCE algorithm

REINFORCE:  R.J.Williams, Machine Learning (1992)

Training algorithm:

(1) predict P-targets using current network weights 

(2) update the P-targets with REINFORCE

(3) re-train network against the updated P-targets

Each episode 

is of length = slen



How to run the prototype examples on Biowulf

Tabular Q-learning

Deep Q-network

for sequence

optimization

Deep policy network

for sequence

de novo generation



Biological example #5. 

ReLeaSE: Reinforcement Learning for Structural Evolution

data.py models.py options.py smiles.py utils.py stackAugmentedRNN.py

M.Popova et al., Sci. Adv. (2018)

release_train.py release_predict.py release_visualize.py

Source code
(reimplemented 

in Keras
from PyTorch)

Model

- novel method for de novo generation of chemical compounds

- with desired physico-chemical (e.g. logP) and/or bioactivity 

properties  (e.g. JAK2)

- based on DRL, with 2 network models and 2 stages of training: 

1) both Generator and Predictor are trained separately with SL

2) both models are trained jointly with RL

Summary

RL

Workflow

G and P trained separately

SL

Generate SMILES

Bioactive compounds

re-training of G assisted by P

https://github.com/isayev/ReLeaSE

https://hpc.nih.gov/apps/ReLeaSE.html



Overview of the ReLeaSE training code
(only the main function has been shown)

Get data

- SMILES strings

- preprocessing, incl. tokenization

Define models

- Generator and Predictor  

- Embedding layer

- StackAugmentedRNN layer

- GRU layer

Run the models

- Reinforcement

- Delayed rewards

- Rollout

- Adam optimizer

Header

- imports,

- parsing command line

options



ReLeaSE data: SMILES strings and target property values

Generator data: SMILES string + ChEMBL id

Total size: ~ 1.6M 

Predictor data: SMILES string + property value
Total size:  ~14K for logP, and 

~2K for JAK2

Example:  

OC(=O)C1CCCNC1

SMILES string:
(Simplified Molecular Input Line Entry Specification) 

Target property values: 

- physical properties considered important for

drug molecules: e.g. the n-octanol-water partition

coefficient, logP (= a measure of lipophilicity) 

- biological activity: e.g., the Janus protein kinase 2 

inhibition coefficient, JAK2

https://www.youtube.com/watch?v=zqUaxbSAYHQ

https://www.molinspiration.com/cgi-bin/properties



- takes a (preprocessed) partial SMILES string as an input

- outputs the next token probability values 

- makes use of Embedding, StackAugmenteRNN and Softmax layers

- the StackAugmenteRNN layer has been implemented in Keras

for the first time; it surpasses LSTM in the accuracy of the next token prediction

The Generator network overview



Data preprocessing and embedding by Generator

SMILES tokenization, preprocessing, embedding 

SMILES pair encoding: https://github.com/XinhaoLi74/SmilesPE

NC(=O)CCCl      CHEMBL171266

Sample SMILES string:

'N',  'C',  '(',  '=',  'O', 

')', 'C',  'C',  'Cl‘

# Two control tokens 

# (not a part of SMILES):

'<'  (start token)

'>'  (end token)

Tokenization

'#', '%10', ...,  '/', '1', '2', ..., 

'B', 'Br', 'F', 'I', 'N', 'P', 'S', ...

'[B-]', '[Br]', '[CH-]', '[CH2]', ...

'[NH+]', '[NH-]', '[NH2+]', ...

'[cH-]', '[n+]', '[n-]', '[nH+]',

'[nH]', '[o+]', '[s+]', '\\', 

'c', 'n', 'o', 'p', 's'

Other available SMILES tokens (total = 87):

Embedding layer:
- transforms order #’s to float vectors in the Embedding space

- purpose: make all the tokens  equi-distant

- takes two positional arguments:

input dim – size of the input vocabulary (89)

output_dim – dimension of the embedding space (128)

<   N

<N   C

<NC   (

<NC(   =

<NC(=   O

<NC(=O   )

<NC(=O)   C

<NC(=O)C   C

<NC(=O)CC   Cl

<NC(=O)CCCl   >

X data        Y data

Replace tokens

with their order #’s

30   39

30,39 35

30,39,35   16

...    ...

0, 0, 0,30   39

0, 0,30,39 35

0,30,39,35   16

...    ...

Pad X data with 0’s



Xt

Yt-1

Yt =  A(uXY · Xt + rYY · Yt-1+b)

Yt

The Stack-Augmented RNN layer
A.Joulin and T.Mikolov . arXiv:1503.01007v4 (2015)

St = F(Yt, S
t-1)

at = A · Yt

St[0] = at[push]·D·Yt + at[no-op]·St-1[0] + at[pop]·St-1[1]

St[i] = at[push]·St-1[i-1] + at[no-op]·St-1[i] + at[pop]·St-1[i+1]

SimpleRNNcell (Xt , Yt-1)

Yt = U · Xt + R · Yt-1 + b

SimpleRNNcell (Xt , Yt-1)

Yt =

A (U·Xt + R·Yt-1 + b)

LSTMcell (Xt , Yt-1)

GRUcell (Xt , Yt-1)

SimpleRNNcell (Xt , Yt-1)

+ P · St-1

+ P · St-1

+ P · St-1

Yt =  StackAugmentedRNNcell (Xt , Yt-1,, S
t-1)

t

Xt

Yt

R
(mxm)

U 
(1xm)

Yt-1

t

from class #2

at (action)

St (stack)

D (m x 1)

A 

(mx3)

p
o

p

p
u

s
h

n
o

-o
p

i

St-1 (stack)

stack depth=k

P (k x m)



The Predictor network overview

- takes a complete SMILES string as an input

- performs a single pass through the network

- outputs a target property value

- makes use of LSTM as a (single) recurrent layer

- there is still a room for improvement, see e.g. 

Message Passing NNs, Jo et al, Methods 179 (2020) 65-72



The Reinforcement framework: a flowchart

re-distributing delayed rewards, rollout 

RUDDER:  J.A.Arjona-Medina et al. arXiv:1806.07857 (2019)

Generator

predict 

P-targets

START

new episode

End

token?

yes

END

current episode

noAction: sample 

next token Rollout

Predictor

predict

delayed 

rewards Ri

Re-distribute

delayed 

rewards

Update Generator’s

P-targets using 

REINFORCE

Re-train Generator

against the 

updated P-targets 

Estimate 

immediate

reward

Append 

the token

to SMILES

Rollout: Q(st, at)  (R1 + R2 + … RN ) / N

SMILES string

length

Embedding

space 

t

R1

R2

R3

R4

R5

perform trial completions of the SMILES string

rt   ·Q(st+1, at+1)  – Q(st, at)

Re-distributing the delayed rewards:

(derived from the definition of a Q-function):

- make a guess about immediate rewards

based on delayed rewards



How to run the ReLeaSE application on Biowulf

https://hpc.nih.gov/apps/ReLeaSE.html

Using a single GPU: Using 4 GPUs:



Conclusions

1) Introduction to RL and DRL

- Agent and Environment

- Actions, States/Observations, Rewards and Policy

- Value-based RL: (tabular) Q-learning and Deep Q-network (DQN)

- Policy-based RL: Deep Policy Network (DPN) and

the REINFORCE algorithm

2) The ReLeaSE application:

- a composite network: Generator + Predictor

- Tokenization and Preprocessing

- Embedding layer

- Stack-Augmented RNN layer

- GRU layer

- Distributing the Delayed Rewards and Rollout

3) Other topics:

- Adam optimizer



BACKUP SLIDES



The Gated Recurrent Unit (GRU) cell
K.Cho et al, arXiv:1409.1259v2 (2014)

SimpleRNN cell: one neuron

Yt =  tanh(b + wXY ·Xt + wYY ·Yt-1)

Xt , Yt-1 → Yt

LSTM (Long Short-Tetm Memory) 

cell: 4 neurons / 3 gates

1) Xt, Yt-1, St-1 → St

2) Xt, Yt-1, St → Yt

St = state tensor

rt (Xt ,Yt-1 ) =       (br + wXr · Xt +  wYr ·Yt-1)

zt (Xt ,Yt-1 ) =       (bz  + wXz  · Xt +  wYz ·Yt-1)

gt (Xt ,Yt-1 ) =  tanh(bg + wXg · Xt +  wrYg ·(rt  Yt-1))

Yt = zt (Xt ,Yt-1 )  Yt-1 + [1 - zt (Xt ,Yt-1 )]  gt (Xt ,Yt-1 )

GRU cell: 3 neurons / 2 gates

Xt , Yt-1 → Yt

reset gate

update gate

… → Yt-2 → Yt-1 → Yt → …

Short-term memory:



The Adaptive Moment Estimation (Adam) optimizer

w = vector of weights

t = update #
γ = learning rate ( a hyperparameter)

wJ = gradient of the loss with respect to weights 

Basic gradient descent 

formula for updating weights
wt+1  = wt - γ ·wJ(wt )

D.P.Kingma and J.L.Ba, Int. Conf. on Learning Representations, 2015.

or

Momentum (class #3) RMSprop optimizer (class #4)

E[…] = running average

 = small parameter

- a momentum-like update

- a RMSprop-like update

mt ^ =  mt  / (1 - 1
t )

vt ^ = E[wJ(w )2]t / (1 - 2
t )

Adam 

gradient descent 

formula 


