
Deep Learning by Example on Biowulf 

 Class #6. Graph Convolutional Networks, handling imbalanced data

          and their application to classification of cancer types

Gennady Denisov, PhD



Intro and goals
graph, nodes / vertices, links / edges, feature, node degree

Non-bio examples:

Citation network: 

nodes = documents,

(directed) edges = citations

Social network: 

nodes = individuals,

edges = connections

Gene expression data 

(class #3) - could be represented

by a complete graph

Dense layers

degree = 

N-1

Bio example: GCN_Cancer

nodes = genes; edges = associations between 

genes; data similar to those of class #3, 

but the tasks / approaches are different

Question: how do we represent and learn the structure of data?

Convolutional or 

Recurrent layers

Learning

Data with irregular structure: 

should be represented 

by a graph

Graph Convolutional 

(+ Pooling) layers 

degree -

variable

Representation

Data with regular structure

(classes #1,2,4,5)

image

sequence



Examples overview

CNN RNN AE GAN RLN GCN MPN- Supervised ML like in classes #1 and #2, but the data are similar to those in #3

- Primary purpose: demystifying the Graph Neural Networks

- “Transition” examples: the more “traditional” MLP / DenseNet can still be used

- Graph imposes constraints / provides additional knowledge about the data,

  which may allow for more accurate predictions as compared to the 

  constraint-agnostic models.

https://hpc.nih.gov/training/deep_learning_by_example.html  



Prototype example #1: the graph classification task

gene expression matrix, node features, undirected graph, singletons, 

adjacency matrix, graph classification task

Input: 
Gene expression data matrix generated randomly “on the fly”, with rows 

= samples, columns = genes and values =1 (gene is expressed, shown 

in color) or =0 (gene is unexpressed, shown as white). The samples can 

be of two types: “normal” (label=0) or “tumor” (label=1). In each the 

type of samples, genes are associated into two modules, designated 0 

and 1, with the same probability of expression for all genes in a module, 

but different probabilities across different modules. 

Task: 

Train a graph convolutional network model on this data, so that it could 

predict the class labels for new, previously unseen samples.

Graph notation

Nodes = genes

Node feature = gene 

               expression level

Edges = associations 

               between genes

Undirected graph:

Adjacency matrix:

- symmetric ( no directed edges)

- values   1 ( no multi-edges)

Modules = [[0,0,0,1,1],

                  [0,0,1,1,1]]



Prototype example #1 (cont.): GCNConv vs Dense layer

Graph 

Convolutional

Network 

CONCLUSION: Dense layer can be regarded as GCNConv layer

                          with adjacency matrix of ones.

Missing links: A-D, A-E, B-D, B-E,D-A, E-A, D-B, E-B.

The corresponding weights are constrained to 0 

Inputs

Vanilla Graph Convolution: Kipf, T.N., Welling, M.: arXiv preprint (2016)

Complete

graph

Adjacency

matrix 

of ones

MultiLayer

Perceptron 

(MLP)

Input

No missing links / zero weights in the fully connected layer. 





Prototype example #1 (cont.): 

GCNConv vs Conv1D / Conv2D layers
filtering, k-hop neighborhood, pooling, supernode, parent-child relationship

1D Convolution

with ‘same’ padding

2D Convolution

with ‘same’ padding

Input image

Output image

CONCLUSION: the filtering performed by the GCNConv layer is analogous to the

                          Conv1D / Conv2D with ‘same’ padding and kernel of size = 3.

O  =    wi *  Ii  +  b

NOTE: an analog of the Conv1D / Conv2D with kernel of size > 3 would be a ChebConv

            layer, to be discussed later in this class, which employs a k-hop neighborhood 

            of a node to update its value, with k > 1. 

1D Convolution

with ‘valid’ padding

2D Convolution

with ‘valid’ padding

1) Filtering 2) Pooling, a.k.a. 

Coarsening

super-

nodes

parent nodes

child 

node

kernel
2-hop

neighbors

1-hop

neighbors

Filtering, a.k.a. Graph Convolution 

in the narrow sense

(only reassigns the node 

features, but does not 

change the number 

of nodes)

O  =    wi *  Ii  +  b
1-hop

neighborhood



Prototype example #1 (cont.): training code

Spektral:  https://graphneural.network

1  GCNNet

0  MLP
graph_net =

Header

- tensorflow

- spektral

- graph_net

Run

the model

GCN: Kipf, T.N., Welling, M.: arXiv preprint (2016)

Get data

- modules

- adj matrix

- samples 

  and labels

Define a model:

- Functional API

- GCNConv vs 

   Dense 

- loss and 

  optimizer



Prototype example #2: imbalanced input data

containing singlentons

n_s (# of singletons),
= genes that are not associated / 

   co-expressed with other genes

IR (imbalance ratio)
= # green samples / # red samples

Two additional 

hyperparameters:

Undirected graph

with singleton 

genes

Adjacency matrix

with singleton 

genes



Predictions from the prototype example #2

% correct predictions for 

p = prob = 0.7
Parameterization of the gene 

expression probabilities

CONCLUSIONS:

- the constraints imposed on singletons by the adjacency matrix in GCN 

  allow for attenuation of the effect of “noise” introduced by the presence of singletons, 

  and hence for a better performance of the GCN over the constraint-agnostic MLP 

  on balanced data

- since MLP possesses more adjustable parameters than GCN, it provides 

  more flexibility in handling the challenge of data imbalance, and therefore 

  can overperform the GCN on imbalanced data 



How to run the simple/prototype

 models on Biowulf?



Biological example #6: 

GCN_Cancer: Classification of Cancer Types

Using Graph Convolutional Networks

prepocess.py predict.py

Input data:

- GE levels

- adjacency

  matrices

train.py visualize.R

GCN_Cancer pipeline (reimplemented in Keras from Tensorflow):

Use ~80%

of ground 

truth data

Predict sample 

type using 

~20% of data

Balance training data;

optionally, compute custom 

adjacency matrices

Bar plots of 

prediction error 

by sample type

STRING = Search Tool for the Retrieval 

of INteracting Genes/proteins

The STRING database

Protein-protein interaction (PPI)

 / association confidence scores 

- used to generate adjacency matrices 

  for the settings involving only protein

  coding genes

GCN_Cancer input: RNA- seq data for 

- 731 normal samples and

- 10,340 tumor samples representing 33

   types of cancer

Goal: classify each sample as one of 

          34 types

R.Ramirez et al., Frontiers in Physics (2020)

NIH program led by the NCI and NHGRI



Overview of the GCN_Cancer code

Get data

- GCE, GCES, 

- PPI, PPIS

Define model(s)

- GCN_Cancer

  model

- GCNConv

- ChebConv 

- MinCutPool

- DiffPool 

Run the models

- data balancing, 

  SMOTE variants

- classification error

Header

- imports, incl. 

  Spektral

- parsing command 

  line options

https://hpc.nih.gov/apps/GCN_Cancer.html



The GCN_Cancer data

RNA-seq data

- highly imbalanced

- normal samples from 

23 tissues only

R.Ramirez et al., Frontiers in Physics (2020)

Adjacency matrices

GCE, GCES

 gene expr. Spearman 

correlation coefficients

+ threshold=0.6

Size: 3866 x 3866

Data matrices 

GCE: genes of

any type,

no singletons

8850 samples

x 3866 genes

GCES: genes of 

any type,

including singletons;

8850 samples  

X 7091 genes

GCE: gene co-expression

PPI, PPIS

STRING association  

confidence scores 

+ threshold=0.6

Size: 4444 x 4444PPI: protein 

coding  genes, 

no singletons;

8896 samples 

X 4444 genes

PPIS: protein 

coding genes, 

including singletons;

8850 samples x 

X 7091 genes
PPI: protein-protein interaction 



The GCN_Cancer model

Features of the Keras implementation: 
- classifies each sample as one of C=34 types 

- supports GCNConv, ChebConv (=default) and Dense as the 1st layer in the network model

- optionally, allows for balancing of the number of training samples across different classes

- optionally, allows for Pooling, with two supported types of layers: MinCutPool and DiffPool

- optionally, allows for multiple levels of Filtering (+ Pooling)

https://hpc.nih.gov/apps/GCN_Cancer.html

Spektral: https://graphneural.network



Vanilla Graph Convolution: the GCNConv layer

Kipf, T.N., Welling, M.: arXiv preprint (2016)

spektral.layers.GCNConv(num_channels, activation=None, …)

degree matrix, normalized adjacency matrix

GCNConv

  filtering 

X

Y

Yi =                   Xj
 ·wj + bi

di



1

one-hop

neighbors

and self

= number of immediate

       neighbors of the node i,

incl. itself

di



GCNConv transformation

A = {aij} 

Adjacency matrix

D = diag(j aij} 
Degree matrix

where:Y  =  Â ·W ·X + b Â =    -1/2 ·Ã·    -1/2 =D


D


Normalized adjacency

 matrix
GCNConv in matrix form

=

Ã  = A + I = D + ID


including

self-edges

I = 



spectral approach, Convolution theorem, Fast Fourier transform,

Graph Laplacian, eigenvectors, Chebyshev polynomials

Graph Laplacian: 

L = D - A
Eigenvectors of L:
U = {u1, u2, u3, u4}

ChebConv

   filtering 

X

Y

4

0

1

1

Eigenvalues of L:
  = {1, 2, 3, 4}

spektral.layers.ChebConv(channels,  K=1,  … ) 

Graph 

Convolution:

Graph Fourier transform: 

     =  F(X) = UT ·X,   

inverse:  X = F-1(    ) = U · 

X


X


X


X = vector of node features

T(k)(x) = Chebyshev polynomials: 

       T(0)(x) = I      T(1)(x) = x

       T(n+1)(x) = 2x·T(n)(x) – T(n-1) (x)=  (2/max)·L- I  = normalized 
                      Graph Laplacian

L
~

Y  =  T(k )(   )·W·X + bL
~K

k=0

employs K-hop neighborhood of a node to update its value 

Chebyshev Convolution: the ChebConv layer 

M.Defferard et al, arXiv preprint (2016)

n

Main ideas from convolution of discrete 1D signals:

From the Convolution theorem: f ⁎ g = F 
-1

{ F { f }·F { g }}, where F{ } = Fourier transform 

“Regular” convolution in the time / spatial domain:

Fast Fourier transform: decomposing a signal into eigenfunctions of Laplacian L = - d2/dt2 

  x[k] =  [ Xc[n] · cos(2·k n / N) + Xs[n] · sin(2·k n / N) ]



Classification error: using the original 

/ imbalanced input data

VAE

tSNE results from the class #3: 

COAD and READ are not well separable 
6_COAD Colon adenocarcinoma

24_READ Rectum adenocarcinoma

Data 

type
GCNNet DenseNet

ChebNet, 

K=1

ChebNet, K=1

(orig. publication)

GCES 9.28% 5.7% 4.5% 5.76±0.251%

GCE 6.4% 4.32% 4.19% 5.77±0.146 %

PPIS 7.79% 5.09% 4.37% 5.39±0.107%

PPI 6.44% 5.06% 5.02% 11.02±0.883%

R.Ramirez et al., Frontiers in Physics (2020)

https://hpc.nih.gov/apps/GCN_Cancer.html

CONCLUSIONS:

1) DenseNet overperforms      

    GCNNet

2) ChebNet is the best

3) The ChebNet error is primarily

    due to misclassification of

    COAD / READ



Classification error: using preprocessed 

/ balanced input data

Data 

type

ChebNet,

K = 1 

ChebNet,

K=10

ChebNet,

K=20

ChebNet,

K=100

GCE 0.09% 0% 0% 0%

GCES 0.54% 0.32% 0.32% 0.32%

PPI 0.18% 0.14% 0.046% 0.046%

PPIS 0.54% 0.41% 0.32% 0.14%

Imbalanced data

Undersampling Oversampling

- naïve balancing: duplicating

  randomly selected minority samples

- using SMOTE variants (total = 85):

  MWMOTE and LLE_SMOTE 

  perform well

naïve balancing, synthetic minority oversampling technique (SMOTE)

SMOTE variants: G.Kovacs,  SMOTE variants – Neurocomputing (2019)

0 errors

1 error

CONCLUSION:
1) balancing the # of training 

samples across classes and

2) using ChebNet at higher K

can dramatically improve the 

accuracy of class predictions



How to run the GCN_Cancer app on Biowulf

https://hpc.nih.gov/apps/GCN_Cancer.html



Summary

1) Intro using simple / prototype examples

    - intro to the graph classification task and graph-related terminology

    - GCNNet model requires a second input - the adjacency matrix 

    - GCNNet vs MLP: Dense layer  GCNConv layer with adjacency matrix of ones

    - GCNConv vs Conv1D and Conv2D: Filtering and Pooling

    - GCNConv is an analog of Conv1D / Conv2D with filter of size = 3

    - imbalanced input data and the presence of singletons may reduce 

      the classification accuracy 

2) The GCN_Cancer application:

- two types of gene association in the GCN_Cancer data: 

      gene co-expression (GCE) and protein-protein interaction (PPI)

    - GCN_Cancer model outputs a vector of class probabilities

    - the GCNConv layer implements a vanilla graph convolution  

    - the meaning of hyperparamreter K in the ChebConv layer

    - the techniques for data balancing: naïve balancing vs SMOTE variants

    - data balancing dramatically reduces the classification error

    - the ChebConv with higher K allows further reduction in the classification error 



BACKUP SLIDES



Differentiable Pooling 

       (agglomerative)

MinCutPool

  (divisive)

Pooling layers: DiffPool and MinCutPool

MinCutPool: F.M.Blanchi et al, arXiv:1907.00481 (2020)

DiffPool: R.Ying et al, arXiv:1806.08804  (2019)

- partition nodes into a specified number C 

  of clusters by removing the minimum # of links:

                    ( # links within cluster k)   

                                                                     →  max

                    (# links between cluster k

                         and the rest of the graph) 

- iteratively aggregate “close” nodes

- compute a hierarchical representation of the graph 

- stop when the target number of clusters
  is reached



Graph convolution with polynomial filters
https://distill.pub/2021/understanding-gnns

https://csustan.csustan.edu/~tom/Clustering/GraphLaplacian-tutorial.pdf

1) Polynomials of Laplacian 

    can be though of as the equivalents of filters in CNNs 

2) More specifically, if X = a vector of features of all nodes in a graph, then

    the convolved vector Y will be:  Y = pw(L) X. In particular, when K = 1, the v-th 

component of Y will be computed based on Xv and its one-hop neighbors:

    Yv = Dv Xv –            Xu

3) Likewise, it can be shown that for any K, the v-th component of Y will be 

computed based on the features of the nodes located at distance no more 

then K-hops away from the node v. This means that polynomial filters are 

localized. 

4) ChebNet further refines this idea of polynomial filters by looking at polynomial 

filters of the form 

 5) Eigenvalues of L are all non-negative, and one of them is always zero. L is 

effectively a scaled-down version of L, with eigenvalues guaranteed to be in 

the range [-1, 1]

K

K

~



The SMOTE variants LLE_SMOTE and MWMOTE

SMOTE variants: SMOTE, distance_SMOTE, SMOTE_D,

                             SMOTE_TomekLinks, LLE_SMOTE, MWMOTE,

                             NT_SMOTE, OUPS, Gazzah, ROSE, … 

                             (total = 85)

MWMOTE: S.Barua et al, IEEE Trans. On Knowledge and Data Eng. (2014)

LLE SMOTE: J.Wang et al., ICSP 2006

MWMOTE: Majority Weighted Minority

                   Oversampling Technique

LLE SMOTE: Locally Linear 

                       Embedding SMOTE

a) identify the most important and      

       hard-to-learn minority class samples

b) assign the importance weights to these 

data using the majority data as an aid

c) generate new/synthetic minority samples

        from the weighted samples  

- majority class - minority class


	Slide 1: Deep Learning by Example on Biowulf    Class #6. Graph Convolutional Networks, handling imbalanced data           and their application to classification of cancer types
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Prototype example #1 (cont.): training code
	Slide 8
	Slide 9: Predictions from the prototype example #2
	Slide 10: How to run the simple/prototype  models on Biowulf?
	Slide 11
	Slide 12: Overview of the GCN_Cancer code
	Slide 13: The GCN_Cancer data
	Slide 14: The GCN_Cancer model
	Slide 15: Vanilla Graph Convolution: the GCNConv layer
	Slide 16
	Slide 17
	Slide 18
	Slide 19: How to run the GCN_Cancer app on Biowulf
	Slide 20: Summary
	Slide 21
	Slide 22
	Slide 23
	Slide 24

