
Deep Learning by Example on Biowulf
Class #7: Message Passing and Self Attention-based Networks,

data augmentation, transfer learning and their application

to drug molecule property prediction

Gennady Denisov, PhD

Intro: application of Deep Learning to analysis of molecules

Molecule as a graph

Nodes = atoms, Edges = bonds

The representation is unique

Molecule as a SMILES string

NC(=O)CCCl
The representation is

ambiguous

Biological example:

MPSAN-MP: Message Passing

and Self-Attention based Networks

for Molecular Property prediction

A composite application that supports

both the graph and SMILES

representations of molecules

Natural language

Processing

(NLP)

text document SMILES dataset

sentence SMILES string,

word SMILES token,

Relevant non-bio applications:

Predicting quantum

mechanical properties

of organic molecules

Message Passing

(= generalization of

Graph Convolution)

Adjacency

matrix

Nodes features: Edges features

One-hot encoded matrices

Graph Convolutional or similar layers

SMILES enumeration:

O=C(CCCl)N

O=C(N)CCCl

alternative SMILES strings

representing the same molecule

'N', 'C', '(', '=', 'O', ')', 'C', 'C', 'Cl‘

SMILES tokenization:

Recurrent or similar layers

CNN RNN AE GAN RLN GCN MPN,SAN

Examples overview

Supervised ML approach, in a way similar to those of classes #1, #2 and #6.

Data is an extended set of data from class #5, but the tasks/methods are

different.

Two new types of layers to discuss: MessagePassing and MultiHeadAttention.

How data augmentation and transfer learning can help to fight overfitting?

https://hpc.nih.gov/training/deep_learning_by_example.html

Prototype example #1: Message Passing Network (MPN) model

for classification of molecules represented by graphs

Input:
1) a set of randomly generated cartoon drug molecules,

 - each molecule represented by a linear/unbranched chain of M atoms/nodes,

 - linked to each other as specified by the adjacency / pair indices matrix

 - with each node/atom possessing a random vector of N binary features, and

 - each link/bond possessing a random vector of L binary features;

2) a target motif with fixed values for the atom and bond features.

 - if a drug molecule contains the motif, it will be considered “good” for treating

 a hypothetical disease and assigned the ground truth label = 1,

 - otherwise, it will be assigned the label = 0 and not supposed to help in

 treating the disease.

Task:

Train a Message Passing Network (MPN) model on this data, so that it could

predict the class labels for new, previously unseen cartoon molecules.

N (=3) features per node/atom

L (=2) features per link/bond

M (=7) atoms

node features, edge features, pair indices

Adjacency matrix

(class #6):

Pair_indices matrix

(= a non-sparse version of

the adjacency matrix):

[[0,0],

 [0,1], [1,1], [1,0],

 [1,2], [2,2], [2,1],

 [2,3], [3,3], [3,2],

 [3,4], [4,4], [4,3],

 [4,5], [5,5], [5,4],

 [5,6], [6,6], [6,5]]

Prototype example #1 (cont.): MessagePassing layer

vs vanilla Graph Convolution

(=3) – degree of a node B.dB

YB = Xi
 · wi + bB , i = A, B, C

dB

1

one-hop

neighbors

and self

GCNConv (class #6):

CONCLUSIONS:

- the MP filtering is performed in 2 steps: the Message step and the Update step

- these interspersed steps are iterated T times (T ≥ 1)

- the Message computations involve both the adjacent node features and edge features

- the edge features are not updated during the MP

- the Message Passing (MP) filtering is a generalization of the GCNConv transformation

- like GCNConv, the MP is a local transformation, involving current node and its one-hop neighbors

Gilmer et al., arXiv 2017

message passing

Xi - “old” features

Yi – “new” features

wi, bB – adjustable weights

Message Passing :
- MB - message variable

- eij - edge features

- U(. , .) - update function

1) MB = Xi
 · eiB · wi + bB, i = A, B, C

one-hop

neighbors

and self

2) YB = U (MB, XB) # in our code: U() GRUcell()

dB

1

T (=4)

iterations

Prototype example #1 (cont.):

the training code

Get data

Define

a model

Run the

model

 - fit

Header Inputs:

X: nodes/atoms features

E: edges/bonds features

PI: pair indices matrix

MI: molecule indicator

Model summary:

Total params: 71,041

Trainable params: 71,041

Non-trainable params: 0

MI = np.array([1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,…])

- imports

- HP defs

https://keras.io/examples/graph/mpnn-molecular-graphs/

Prototype example #2: Self-Attention Network (SAN) model for

classification of molecules represented by sequences of tokens

X (data) Y (labels)

1

0

0

1

0

0

1

0

1

...

ABCBDFFGCA

DGCEBFEACG

BAGAEDCBFA

DCFABCBEBE

DCFGAEADCE

DCCDBEACGF

CGCBFGAABC

GAACEADEEC

DCDDABCDBC

...

Input:

1) a set of cartoon drug molecules represented by strings of fixed length M(=10),

generated randomly from a certain set of tokens, e.g. {’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’}.

2) a motif, i.e. specific string of ”functional” tokens, e.g. “ABC”.

If a drug molecule contains the motif, it will be considered “good” for treating a

hypothetical disease and assigned the ground truth label = 1, otherwise it will be

assigned the label = 0, and is not supposed to help in treating the disease.

Task:

train a Self-Attention Network (SAN) model on this data, so that it could predict

the class labels for new, previously unseen cartoon drug molecules.

Transformer: Vaswani et al. Attention is all you need, NIPS 2017

Residual connection: He et al, CVPR 2016.

CONCLUSION:

sequence analysis can be performed with models involving Attention mechanism implemented

in the Transformer layer(s), i.e. there’s no need in the Recurrent or 1D Convolutional layers.

Transformer

layer (TL)

construct

Residual connectionsMultiHeadAttention

layer

Prototype example #2: the Self-Attention algorithm

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html

query, key, value, self attention, multi-head attention

Analogy with a Web search for a video on YouTube: the search engine will map your query (Q),

i.e. the text in a search bar, against a set of keys (K), e.g. video title, description, etc., associated with

candidate videos in a database, then present you values (V), e.g. the best-matched videos.

Purpose: capture the long-range dependencies and relationships within input sequences; identify

and weigh the importance of different parts of the sequence, with weight coeff. depending on input values.

Multi-Head Attention:

- the algorithm outlined above represents a single “attention head”

- with H > 1 attention heads, tensor X will be split into H subtensors

 along the embedding dimension, then each the subtensor processed

 independently and the results concatenated.

Prototype example #2 (cont.):

the training code

Label assignment

based on the presence of

the motif “ABC”

Multihead

Attention

layer

How to run the prototype examples

on Biowulf?

Biological example #7. MPSAN-MP: Message Passing and Self-
Attention based Networks for Molecular Property prediction

MPN model (Keras): https://keras.io/examples/graph/mpnn-molecular-graphs/

SMILES-BERT (PyTorch): https://github.com/uta-smile/SMILES-BERT

Task:
given a molecule represented by

either a graph or a sequence of SMILES tokens,

predict, depending on the type of data used,

- either a discrete property value / binary label

 (e.g. drug is “good” or “bad”),

- or a continuous property value /label

 (e.g. “how good” the drug is)

Problem:
limited amount of labeled ground truth data,

which is insufficient for training a full-scale target model,

leads to over-fitting.

Two solutions to explore
1) increase the size of a training dataset data augmentation

2) decrease the # of adjustable parameters transfer learning

…

NC(=O)CCCl

O=C(CCCl) N

SMILES

enumeration:

https://hpc.nih.gov/apps/mpsan_mp.html

Molecular-graph-BERT (Keras): https://github.com/zhang-xuan1314/Molecular-graph-BERT

The code overview

Get data: ChEMBL,

ZINC, BBBP, JAK2,

LogP, bLogP

Define model(s)

- MPN, SAN,

- BERT

- SAN-BERT

Run the models

- train (=fit)

- pretrain

- finetune

Header

- parse command

 line options

Flowchart:

preprocess.py (optional) train.py predict.py visualize.R

MPSAN-MP data (preprocessed)
JAK2: https://github.com/isayev/ReLeaSE/blob/master/data/jak2_data.csv

LogP: https://github.com/isayev/ReLeaSE/blob/master/data/logP_labels.csv

BBBP: https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/BBBP.csv

ChEMBL: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_33/

ZINC: https://bioinformaticsreview.com/20200720/how-to-download-small-molecules-for-

virtual-screening-from-zinc-database/

chembl: ~2.4M
SMILES, ChEMBL-33 database id

zinc: a random subset = 25M
SMILES, ZINC database idN

o
 l

a
b

e
ls

/P
V

s

logp(a) dataset: ~14K
SMILE and cont. PV:

logarithm of n-octanol/

water partition coeff.

jak2(a) dataset: ~2K
SMILES and cont. PV:

Janus protein kinase 2

inhibition coefficient.

bbbp(a) dataset: ~2K
SMILES and binary label:

whether or not molecule

can penetrate blood/brain

barrier membrane

C
o

n
ti

n
u

o
u

s
 l

a
b

e
ls

/P
V

s

blogp(a) dataset: ~14K
SMILE and binary label:

“binarized” logp(a) dataset

label=1 if PV. > 1.88,

 =0 otherwise.

NOTEs:

- suffix “a” stands for ~10x augmentation

- the blogp dataset was generated

 following the SMILES-BERT paper

D
is

c
re

te
/b

in
a
ry

 l
a

b
e

ls
/P

V
s

The effect of the data augmentation:

predictions from the MPN and SAN models

(1) mean squared error in predicted PVs vs observed PVs, or

(2) %error in prediction of binary labels

Target dataset

 (size)

Model

(source dataset)

(1) (2)

jak2

(1.9K)

jak2a

 (21K)

logp

(14.1K)

logpa

(142K)

bbbp

(2.04K)

bbbpa

 (21K)

blogp

(14.1K)

blogpa

(142K)

MPN 0.52 0.039 0.16 0.019 11.51% 0.98% 7.24% 0.05%

SAN 0.78 0.43 0.61 0.28 13.1% 4.85% 16.2% 21%

Conclusion

- data augmentation dramatically and consistently improves PV predictions from the MPN

- according to the published literature, this phenomenon was unknown prior to the class

SMILES enumeration / data augmentation : https://github.com/EBjerrum/SMILES-enumeration

Why the data augmentation works well

for the MPN model, and not for SAN model?

CONCLUSION:

- SAN: computing the attention scores between the tokens in the input sequence located at

 different positions is confused by their reshuffling as the result of SMILES enumeration.

- MPN: SMILES enumeration does not affect the molecular graph, which is unique, so the

 model will only benefit from the increased size of the augmented training dataset.

Original jak2 data:

both the models overfit the data

The ~10x augmented jak2 data:

MPN dramatically outperforms SAN

https://hpc.nih.gov/apps/mpsan_mp.html

Transfer learning: the SMILES-BERT approach

Transfer learning:

knowledge learned from a task is re-used

in order to boost performance on a related task

The SMILES-BERT setup:

the source model (BERT) and the target model

share a block of layers known as BERT_Encoder

BERT: Bidirectional Encoder Representation from Transformers, J.Devlin et al., arXiv 2019

SMILES-BERT paper: S.Wang et al, ACM-BCB ’19, September 7–10, 2019

Q: Is there a way we could do better

 with the SAN-based model as well?

Pretraining on unlabeled data

trainable
weights

frozen

Finetuning on labeled data

Two stages of training the SMILES-BERT model:

1) pretraining the (auxiliary) source model

 on the vast amount of unlabeled data

 employs the masked language modeling (MLM):

 - input and output sequences of the same length

 - a fraction of input tokens is randomly mutated

 by masking or substitution with other tokens

 - model is trained to recover the mutated tokens

2) finetuning the target model on labeled data:

 - re-use BERT_Encoder with frozen parameters

 - train the target model to output property values

Transfer learning: pre-training the SAN-BERT model

Pretraining loss (accuracy)

Data (size)

 Model

chembl

 (2.4M)

zinc

(25M)

SAN-BERT
0.00014

(99%)

0.006

(96%)

https://hpc.nih.gov/apps/MPSAN_MP.htm

BERT_Encoder

chembl data: 30 epochs

 zinc data: 10 epochs, as advised by

the SMILES-BERT paper

The SAN-BERT source model

- similar to SMILES-BERT, but implemented in Keras

- BERT_Encoder: N(=6) consecutive Transformer layers

- Classifier: 2 Dense layers + layer(s) without adjustable params

- inputs and outputs sequences of the length specified by user

 (default = 64); discards longer and pads shorter sequences

- employs SmilesPE tokenizer,

 vocabulary = [‘<pad>’, ‘#', '%10’, …, '-', '/’, '1', '2’, …,'=', 'B’,

 'Br', 'C’, 'Cl’, …, '[NH-]', '[NH2+]', …, '[n+]', '[n-]’,

 '[nH+]', …, '\\', 'o', 'p’, …, ‘<unk>’, <mask>’]

 # total = 110

Transfer learning: accuracy of predictions

from the fine-tuned SAN-BERT model

Target data

Model

(source data)

(1) (2)

jak2 logp bbbp blogp

SAN 0.78 0.61 13.1% 16.2%

SAN-BERT (chembl) 0.9 0.7 6.3% 18.6%

SAN-BERT (zinc) 0.8 0.56 9.3% 12.4%

CONCLUSIONS:

- the MPN model using data enhanced by augmentation remains the winner

- the pretrained BERT_Encoder block may not provide optimal inference performance for the

 prediction task, since the pretraining stage was focused on a quite different (MLM) task.

- more generally, the transfer learning which aims to re-use knowledge learned from one

 task in order boost performance on a related task, may or may not succeed, since the

 notion of a related task is not strictly defined.

(1) MSE in predicted PVs vs observed PVs,

(2) %error in prediction of binary labels

error comparable to the

~8.5% error reported in the

SMILES-BERT paper

for the same data

The SAN-BERT target model
- inputs unmutated sequences

- re-uses the BERT_Encoder block with frozen parameters

- employs the Finetuner block instead of Classifier

- is trained to output the scalar property values

How to run the MPSAN-MP application on Biowulf?

https://hpc.nih.gov/apps/mpsan_mp.html

Summary and conclusions

1) The introductory part:

 - cartoon examples have been used to introduce (a) the Message Passing mechanism/

 network model (MPN) and (b) the Self-Attention Network mechanism / model (SAN)

 - the Message Passing layer / data transformation (a) employs both node and edge

 features of a graph, and (b) generalizes the vanilla Graph Convolution layer

 - like the Graph Convolution, the Message Passing is a local transformation of data

 - the Self-Attention mechanism captures the long-range relationships and

 dependencies within input sequences

2) The biological example:

 - the MPSAN-MP (a) employs neural networks implementing Message Passing or

 Self-Attention-based models, (b) depending on the model used, takes as input a set

 of molecules represented by either graphs or SMILES strings, (c) for each molecule,

 depending on the type of data used, predicts either a discrete/binary property

 value (PV) (classification task) or a continuous label/PV (regression task)

 - the overfitting issue in PV prediction can be addressed via two approaches:

 (a) using MPN model on data augmented by SMILES enumeration, and

 (b) to some extent, using the SAN-BERT model and transfer learning

 - the first of these approaches is preferable / a clear winner; it allows for a dramatic

 and consistent improvement in the accuracy of PV predictions

 - the transfer learning approach may or may not succeed, depending on

 how much the source/auxiliary task/data is related to the target task/data

BACKUP SLIDES

Cumulative distribution of the SMILES sizes

(#tokens, #atoms) in ChEMBL and ZINC data

CONCLUSION:

in the chembl data, the SMILES sizes are loosely distributed around the values:

tokens ~45 and # atoms ~27, respectively, whereas in zinc data, they are more sharply

focused near the values: # tokens ~32 and # atoms ~ 19.

chembl zinc

Data augmentation works well for the MPN model

on logp data

Original logp dataset:

both the models perform better

than on the smaller jak2 dataset

The ~10x augmented logp dataset:

MPN dramatically outperforms SAN

	Slide 1: Deep Learning by Example on Biowulf Class #7: Message Passing and Self Attention-based Networks, data augmentation, transfer learning and their application to drug molecule property prediction
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: How to run the prototype examples on Biowulf?
	Slide 11
	Slide 12: The code overview
	Slide 13: MPSAN-MP data (preprocessed)
	Slide 14: The effect of the data augmentation: predictions from the MPN and SAN models
	Slide 15: Why the data augmentation works well for the MPN model, and not for SAN model?
	Slide 16
	Slide 17
	Slide 18: Transfer learning: accuracy of predictions from the fine-tuned SAN-BERT model
	Slide 19
	Slide 20: Summary and conclusions
	Slide 21
	Slide 22: Cumulative distribution of the SMILES sizes (#tokens, #atoms) in ChEMBL and ZINC data
	Slide 23

