

Deep Learning by Example on Biowulf

Class #7: Message Passing and Self Attention-based Networks, data augmentation, transfer learning and their application to drug molecule property prediction

Gennady Denisov, PhD

Intro: application of Deep Learning to analysis of molecules

Molecule as a graph

Nodes = atoms, **Edges** = bonds The representation is **unique**

One-hot encoded matrices

Edges feature									
bond_type									
	single	double	triple	aron). 1.				
ú	1	0	0	0					
pu	0	1	0	0					
ō	1	0	0	0					
	1	0	0	0					
	1	0	0	0					

Adjacency									
matrix									
	СІ	С	С	ο	С	Ν			
СІ	1	1							
С	1	1	1						
С		1	1		1				
0				1	1				
С			1	1	1	1			
Ν					1	1			

Graph Convolutional or similar layers

Relevant non-bio applications:

Predicting quantum mechanical properties of organic molecules Natural language Processing (NLP)

Message Passing (= generalization of Graph Convolution)

text document ↔ SMILES dataset sentence ↔ SMILES string, word ↔ SMILES token,

Molecule as a SMILES string

The representation is ambiguous

SMILES enumeration:

SMILES tokenization:

'N', 'C', '(', '=', 'O', ')', 'C', 'C', 'CI'

Recurrent or similar layers

Biological example:

MPSAN-MP: Message Passing and Self-Attention based Networks for Molecular Property prediction

A composite application that supports **both the graph and SMILES** representations of molecules

Examples overview

https://hpc.nih.gov/training/deep_learning_by_example.html

						_		
Class #	1	2	3	4	5	6	7	
Bio app	Bioimage segmentation / fly brain connectome	Genomics / prediction of function of non-coding DNA	Genomics / reduction of dimensionality of cancer transcriptome	Bioimage synthesis / developmental biology	Drug molecule design	Genomics / classification of cancer types	Drug molecule property prediction	
Neural network type	Convolutional	Recurrent or 1D- Convolutional	Autoencoder	Generative Adversarial	Reinforcement Learning	Graph Convolutional	Message Passing, Transformer	
ML type	Supervised	Supervised	Unsupervised	Unsupervised	Reinforcement	Supervised	Supervised	
Supervised ML approach, in a way similar to those of classes #1, #2 and #6.								
Data is an extended set of data from class #5, but the tasks/methods are								

different.

Two new types of layers to discuss: MessagePassing and MultiHeadAttention. How data augmentation and transfer learning can help to fight overfitting?

Prototype example #1: Message Passing Network (MPN) model for classification of molecules represented by graphs

node features, edge features, pair indices

M (=7) atoms

Input:

- 1) a set of randomly generated cartoon drug molecules,
 - each molecule represented by a linear/unbranched chain of M atoms/nodes,
 - linked to each other as specified by the adjacency / pair indices matrix
 - with each node/atom possessing a random vector of N binary features, and
 - each link/bond possessing a random vector of L binary features;
- 2) a target motif with fixed values for the atom and bond features.
 - if a drug molecule contains the **motif**, it will be considered "good" for treating a **hypothetical disease** and assigned the ground truth **label = 1**,
 - otherwise, it will be assigned the **<u>label = 0</u>** and not supposed to help in treating the disease.

Task:

Train a **Message Passing Network (MPN)** model on this data, so that it could **predict the class labels** for new, previously unseen cartoon molecules.

N (=3) features per node/atom

L (=2) features per link/bond

Adjacency matrix

(class #6):

Pair_indices matrix (= a non-sparse version of the adjacency matrix):

> [[0,0], [0,1], [1,1], [1,0], [1,2], [2,2], [2,1], [2,3], [3,3], [3,2], [3,4], [4,4], [4,3], [4,5], [5,5], [5,4], [5,6], [6,6], [6,5]]

Prototype example #1 (cont.): MessagePassing layer vs vanilla Graph Convolution

message passing

Gilmer et al., arXiv 2017

CONCLUSIONS:

- the MP filtering is performed in 2 steps: the Message step and the Update step
- these interspersed steps are iterated T times (T \ge 1)
- the Message computations involve both the adjacent node features and edge features
- the edge features are not updated during the MP
- the Message Passing (MP) filtering is a generalization of the GCNConv transformation
- like GCNConv, the MP is a local transformation, involving current node and its one-hop neighbors

Prototype example #2: Self-Attention Network (SAN) model for classification of molecules represented by sequences of tokens

Transformer: Vaswani et al. Attention is all you need, NIPS 2017

Residual connection: He et al, CVPR 2016.

nput:
) a set of cartoon drug molecules represented by strings of fixed length M(=10),
generated randomly from a certain set of tokens, e.g. {'A', 'B', 'C', 'D', 'E', 'F', 'G'}.
 a motif, i.e. specific string of "functional" tokens, e.g. "ABC".
f a drug molecule contains the motif, it will be considered "good" for treating a
hypothetical disease and assigned the ground truth <u>label = 1</u> , otherwise it will be
assigned the label = 0 , and is not supposed to help in treating the disease.
lask.

train a **Self-Attention Network (SAN)** model on this data, so that it could **predict the class labels** for new, previously unseen cartoon drug molecules.

Transformer layer (TL) construct

CONCLUSION:

sequence analysis can be performed with models involving Attention mechanism implemented in the Transformer layer(s), i.e. there's no need in the Recurrent or 1D Convolutional layers.

Prototype example #2: the Self-Attention algorithm

query, key, value, self attention, multi-head attention

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html

Purpose: capture the long-range dependencies and relationships within input sequences; identify and weigh the importance of different parts of the sequence, with weight coeff. depending on input values.

Analogy with a Web search for a video on YouTube: the search engine will map your \underline{query} (Q), i.e. the text in a search bar, against a set of <u>keys</u> (K), e.g. video title, description, etc., associated with candidate videos in a database, then present you <u>values</u> (V), e.g. the best-matched videos.

Multi-Head Attention:

- the algorithm outlined above represents a single "attention head"
- with H > 1 attention heads, tensor X will be split into H subtensors along the embedding dimension, then each the subtensor processed independently and the results concatenated.

Prototype example #2 (cont.): the training code

How to run the prototype examples on Biowulf?

Biological example #7. MPSAN-MP: Message Passing and Self-Attention based Networks for Molecular Property prediction

https://hpc.nih.gov/apps/mpsan_mp.html

<u>MPN model (Keras):</u> https://keras.io/examples/graph/mpnn-molecular-graphs/

- - SMILES-BERT (PyTorch): https://github.com/uta-smile/SMILES-BERT

Molecular-graph-BERT (Keras): https://github.com/zhang-xuan1314/Molecular-graph-BERT

Task:

given a molecule represented by either a **graph** or a sequence of **SMILES** tokens, predict, depending on the type of data used,

- either a **discrete property value / binary label** (e.g. drug is "good" or "bad"),
- or a **continuous property value /label** (e.g. "how good" the drug is)

Problem:

limited amount of labeled ground truth data,

which is insufficient for training a full-scale target model, leads to **over-fitting.**

Two solutions to explore

- 1) increase the size of a training dataset \Rightarrow **<u>data augmentation</u>**
- 2) decrease the # of adjustable parameters \Rightarrow transfer learning

SMILES enumeration:

NC(=0)CCCI O=C(CCCI) N

The code overview

<u>Header</u>

 parse command line options

<u>Get data:</u> ChEMBL, ZINC, BBBP, JAK2, LogP, bLogP

Define model(s)

- MPN, SAN,
- BERT
- SAN-BERT

Run the models

Flowchart:

- train (=fit)

- pretrain
- finetune

MPSAN-MP data (preprocessed)

JAK2: https://github.com/isayev/ReLeaSE/blob/master/data/jak2_data.csv LogP: https://github.com/isayev/ReLeaSE/blob/master/data/logP_labels.csv BBBP: https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/BBBP.csv ChEMBL: https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_33/ ZINC: https://bioinformaticsreview.com/20200720/how-to-download-small-molecules-forvirtual-screening-from-zinc-database/

Continuous labels/PVs **Discrete/binary labels/PVs**

SMILES and cont. PV: Janus protein kinase 2 inhibition coefficient. Jogp(a) dataset: ~14K SMILE and cont. PV: logarithm of n-octanol/ water partition coeff.

jak2(a) dataset: ~2K

bbbp(a) dataset: ~2K SMILES and binary label: whether or not molecule can penetrate blood/brain barrier membrane

blogp(a) dataset: ~14K SMILE and binary label: "binarized" logp(a) dataset label=1 if PV. > 1.88, =0 otherwise.

odenisovga@biowu	lf:/data/denisovga/1_D	L_Course/7_MP1	ls		- C	X	
smiles		pva	al n_a	atoms	n_tok	ens	
 [C-]#[N+]C1=C clccc(Nc2nc3c Nc1nc2c(-c3cc CN(c1ccnc2[nH Nc1[nH]nc2ccc	CCC (0CC2CC2) cccn3n2)cc1 ncc3)cccn2n1]ccc12)C1CCC (-c3ccccc3C1	0C1 7.1 5.9 L 5.1 CCC1 5.1 I)cc12 6.1	L3 13 96 16 35 16 75 17 L8 17		21 24 25 25 26		
			1.5	54		A11 V	
<			,			> .;	
denisovga@bio	wulf:/data/denis	ovga/1_DL_0	Cours	_		×	
niles	pval r	n_atoms	n_t	oken	IS	\sim	
CC	1.77 3	3	4				
.COC1	-0.14 4		6				
CC=CC#N	-0.25 6	5	9				
c1ncccn1	0.36 7	7	9				
		1,	1		A	. 11	
						>	
					_	~	
Select denisov	ga@biowulf:/dat	a/denisovga		n to	kens		
100001	1	6		o	Reno		
(co) (co) (0 0	8		8 12			
C(Br)C(F)(.c(nccc1)C	F)F 1 CNC 1	/ 10		13 14			
		1 39			411		
		1,55				>	
Select denisovo	ga@biowulf:/dat	a/denisovga	/1 D	23		Х	
iles nron	erty val	ue n at	oms	n tol	ens		
(0)C(=0)C	0 6 11	ae n_au			CI15	-	
12ccc3c4c	cc(0)cc40	ccc3c1c	cc20	1 2	0 30		
C(0)clc(C	l)cccclC	1 1 11	18				
cl[nH]cnc	2[nH]cnc.	12 0 10	15				

chembl: ~2.4M SMILES, ChEMBL-33 database id

🧕 denisovga@biowulf:/data	/denisovga/1_DL_Course/7	_MPNs	- 🗆	×
smiles	chembl_id	n_ato <mark>m</mark> s	n_token	S ^
 C=COC(C)=0 0=C1CCC(=0)N1C1 CC(CN)c1cnc[nH]1 c1csc(C2CCCN2)n1 c1.c1.NCCCOCCCN	CHEMBL1470323 CHEMBL2107513 CHEMBL322988 CHEMBL4570297 CHEMBL3217082	6 8 9 10 11	10 14 13 16 13	
	1	L,37	Al	1 ~
<				>

zinc: a random subset = 25M SMILES, ZINC database id

denisovga@biowulf:/data/denisovga/1_DL_Course/7_MPNs	-		Х
<pre>smiles zink_id n_atoms n_tokens Cn1cc(S(N)(=0)=0)cc1C(=0)C(=0)0 238833219 15</pre>	31		\sim
N[C@H](Cc1cnc[nH]1)C(=0)N[C@H](C0)C(=0)0 4533	527	17_29	
CN(CC) = 0 C C(0) C C C C C C C C C C C C C C C C C C C	0 13	21	
1,1		Тс	op 🗸

NOTEs:

- suffix "a" stands for ~10x augmentation
- the *blogp* dataset was generated following the SMILES-BERT paper

The effect of the data augmentation: predictions from the MPN and SAN models

SMILES enumeration / data augmentation : https://github.com/EBjerrum/SMILES-enumeration

(1) mean squared error in predicted PVs vs observed PVs, or

(2) %error in prediction of binary labels

Target dataset			(1)			(2)				
(size) Model (source dataset)	<i>jak</i> 2 (1.9K)	<i>jak2a</i> (21K)	<i>logp</i> (14.1K)	<i>logpa</i> (142K)	<i>bbbp</i> (2.04K)	bbbpa (21K)	<i>blogp</i> (14.1K)	blogpa (142K)		
MPN	0.52	0.039	0.16	0.019	11.51%	0.98%	7.24%	0.05%		
SAN	0.78	0.43	0.61	0.28	13.1%	4.85%	16.2%	21%		

Conclusion

- data augmentation dramatically and consistently improves PV predictions from the MPN

- according to the published literature, this phenomenon was unknown prior to the class

Why the data augmentation works well for the MPN model, and not for SAN model?

https://hpc.nih.gov/apps/mpsan_mp.html

Original *jak2* data: both the models overfit the data The ~10x augmented *jak2* data: MPN dramatically outperforms SAN

11

CONCLUSION:

- SAN: computing the attention scores between the tokens in the input sequence located at different positions is confused by their reshuffling as the result of SMILES enumeration.
- MPN: SMILES enumeration does not affect the molecular graph, which is unique, so the model will only benefit from the increased size of the augmented training dataset.

Transfer learning: the SMILES-BERT approach

BERT: Bidirectional Encoder Representation from Transformers, J.Devlin et al., arXiv 2019 SMILES-BERT paper: S.Wang et al, ACM-BCB '19, September 7–10, 2019

Q: Is there a way we could do better with the SAN-based model as well?

Transfer learning:

knowledge learned from a task is **re-used** in order to boost performance on a **related task**

The SMILES-BERT setup:

the **source** model (**BERT**) and the **target** model **share** a block of layers known as **BERT_Encoder**

Two stages of training the SMILES-BERT model:

- pretraining the (auxiliary) source model on the vast amount of unlabeled data employs the masked language modeling (MLM):
 - input and output sequences of the same length
 - a fraction of input tokens is randomly **mutated** by **masking** or **substitution** with other tokens
 - model is trained to recover the mutated tokens

2) finetuning the target model on labeled data:

- re-use BERT_Encoder with frozen parameters
- train the target model to output property values

Pretraining on <u>unlabeled</u> data

Transfer learning: pre-training the SAN-BERT model

https://hpc.nih.gov/apps/MPSAN_MP.htm

The SAN-BERT source model

- similar to SMILES-BERT, but implemented in Keras
- BERT_Encoder: N(=6) consecutive Transformer layers
- Classifier: 2 Dense layers + layer(s) without adjustable params
- inputs and outputs sequences of the length specified by user (default = 64); discards longer and pads shorter sequences
- employs SmilesPE tokenizer,

BERT_Encoder

Pretraining loss (accuracy)

chembl data: 30 epochs *zinc* data: 10 epochs, as advised by the SMILES-BERT paper

Transfer learning: accuracy of predictions from the fine-tuned SAN-BERT model

(1) MSE in predicted PVs vs observed PVs,(2) %error in prediction of binary labels

Target data	(1)	(2)		
Model (source data)	jak2	logp	bbbp	blogp	
SAN	0.78	0.61	13.1%	16.2%	
SAN-BERT (chembl)	0.9	0.7	6.3%	18.6%	
SAN-BERT (zinc)	0.8	0.56	9.3%	12.4%	

The SAN-BERT target model

- inputs unmutated sequences
- re-uses the BERT_Encoder block with frozen parameters
- employs the Finetuner block instead of Classifier
- is trained to output the scalar property values

CONCLUSIONS:

- the MPN model using data enhanced by augmentation remains the winner
- the pretrained BERT_Encoder block may not provide optimal inference performance for the prediction task, since the pretraining stage was focused on a quite different (MLM) task.
- more generally, the transfer learning which aims to re-use knowledge learned from one task in order boost performance on a related task, may or may not succeed, since the notion of a related task is not strictly defined.

error comparable to the ~8.5% error reported in the SMILES-BERT paper for the same data

How to run the MPSAN-MP application on Biowulf?

https://hpc.nih.gov/apps/mpsan_mp.html

```
×
 denisovga@biowulf:/data/denisovga/1_DL_Course/7_MPNs
sinteractive --mem=40g --gres=gpu:a100:1,lscratch:40 -c8
module load mpsan_mp
[+] Loading singularity 4.0.3 on cn2893
[+] Loading mpsan_mp 20240817
ls $MPSAN_MP_SRC
data.py layers.py models.py options.py predict.py
preprocess.py train.py utils.py
cp -r $MPSAN_MP_DATA/* .
train.py
           -h
train.py -d bbbp -m mpn
train.py -d jak2 -m san
                                                                       # training mode
                                                                       # training mode
           -d logp -m mpn
train.py
                                                                       # training mode
                                                                       # pretraining mode
train.py -d chembl -m san_bert
train.pv -d zinc -m san_bert
                                                                       # pretraining mode
train.py -d jak2 -m san_bert -p chembl \
-I checkpoints/bert_encoder.chembl.san_bert.weights.h5  # finetuning mode
train.py -d logp -m san_bert -p zinc \
-I checkpoints/bert_encoder.zinc.san_bert.weights.h5  # finetuning mode
peredict.py -h
predict.py -d jak2 -m san_bert \
           -i checkpoints/bert_mpn.jak2.medium.weights.h5
predict.py -d logp -m san_bert \
           -i checkpoints/bert_spn.logp.medium.weights.h5
module load R
visualize.R results/san.jak2.results.tsv results/mpn.jak2.results.tsv
visualize.R results/san.jak2a.results.tsv results/mpn.jak2a.results.tsv
visualize.R results/san.logp.results.tsv results/mpn.logp.results.tsv
visualize.R results/san.logpa.results.tsv results/mpn.logpa.results.tsv 💻
                                                                          36,74
                                                                                        A11
```

Summary and conclusions

1) The introductory part:

- cartoon examples have been used to introduce (a) the Message Passing mechanism/ network model (MPN) and (b) the Self-Attention Network mechanism / model (SAN)
- the Message Passing layer / data transformation (a) employs both node and edge features of a graph, and (b) generalizes the vanilla Graph Convolution layer
- like the Graph Convolution, the Message Passing is a local transformation of data
- the Self-Attention mechanism captures the long-range relationships and dependencies within input sequences

2) The biological example:

- the MPSAN-MP (a) employs neural networks implementing Message Passing or Self-Attention-based models, (b) depending on the model used, takes as input a set of molecules represented by either graphs or SMILES strings, (c) for each molecule, depending on the type of data used, predicts either a discrete/binary property value (PV) (classification task) or a continuous label/PV (regression task)
- the overfitting issue in PV prediction can be addressed via two approaches:
 (a) using MPN model on data augmented by SMILES enumeration, and
 (b) to some extent, using the SAN-BERT model and transfer learning
- the first of these approaches is preferable / a clear winner; it allows for a dramatic and consistent improvement in the accuracy of PV predictions
- the transfer learning approach may or may not succeed, depending on how much the source/auxiliary task/data is related to the target task/data

BACKUP SLIDES

Cumulative distribution of the SMILES sizes (#tokens, #atoms) in ChEMBL and ZINC data

CONCLUSION:

in the *chembl* data, the SMILES sizes are loosely distributed around the values: # tokens ~45 and # atoms ~27, respectively, whereas in *zinc* data, they are more sharply focused near the values: # tokens ~32 and # atoms ~ 19.

Data augmentation works well for the MPN model on *logp* data

Original *logp* dataset: both the models perform better than on the smaller *jak2* dataset The ~10x augmented *logp* dataset: MPN dramatically outperforms SAN