

Introduction to Revision Control with

Afif Elghraoui
NIH HPC staff

staff@hpc.nih.gov

mailto:staff@hpc.nih.gov

Why?

● Sanity
– No need to manually maintain multiple copies of the same

file.
– No need to preserve commented out sections of old code

in your working copy.

● History
● Annotations
● Undoability
● Collaboration

Getting started

● git config --global user.name “Fulan bin
Fulan”

● git config --global user.email
fulan@example.com

● export EDITOR=nano

echo “!!” >> ~/.bashrc

Global configurations go into ~/.gitconfig by
default. Local configurations are per-repository.

Basic Workflow

What Goes in Git?

● Content that is manually generated and
maintained.

● Primarily text files. Don’t commit large binary
files because Git can’t compare and track them
efficiently. If you need to track them, consider
tools like git-lfs or git-annex.

https://git-lfs.github.com/
https://git-annex.branchable.com/

Ignoring files: .gitignore

● Specify file names or patterns in a file
named .gitignore in your repository to avoid
accidentally committing unwanted files like
– Editor backups

– Program outputs

– Sensitive information

Commit Messages

https://xkcd.com/1296/

https://xkcd.com/1296/

Commit Messages

● Bad:
Updated README

● Good:
README: update installation steps due to os
upgrade

The new version of the OS no longer comes with
support for foo, which we were relying on.

Inspecting the Repository

● git log
– See the change history of a file: git log -p
filename

● git blame

● git diff

● A graphical utility: gitk(1)

● Use git checkout to move to different points
in history

Why? Annotations
git blame

https://github.com/git/git/blame/master/README.md

https://github.com/git/git/blame/master/README.md

Marking Important Snapshots:
versioning and

git tag
● Example: create an annotated tag marking the

current snapshot as version 0.1.0:
git tag -a 0.1.0

a commit id can be specified at the end if you
don’t want the tag pointing to the current HEAD.

● Semantic versioning - https://semver.org/

Helpful Conventions

● Put meaningful components on their own line to
 be able to get more useful comparisons
– When editing prose in a markup language, put a

line break after every sentence to get this effect.

https://xkcd.com/1285/

https://xkcd.com/1285/

Remote Repositories

● Common Git hosting providers are GitHub,
GitLab, and Bitbucket

● Use git remote to manage remote
repositories from your working directory.

Branching and Collaboration

● Create a new branch:

 git branch branchname

● Switch to branch:

git checkout branchname

...or create the branch and switch to it in one step:

git checkout -b branchname

● Make your changes (edit, git add, git commit)

● Push your branch to the remote repository

git push origin branchname --set-upstream

● Switch back to the default branch

git checkout master

git merge

● Git can automatically merge branches if there
are no conflicting changes.

● Merge conflicts are presented to you to resolve:
– Both versions of the file are available for comparing.

– Use a merge tool to make your life easier. See

git mergetool --tool-help for a list of options.

● Fun fact: git pull is actually a shorthand for
git fetch followed by git merge

Resources

● reference book: https://git-scm.com/book/en/v2
● man pages:

– git(1)

– man git-subcommand or git help
subcommand

● more man pages:
– giteveryday(7)

– gittutorial(7)

https://git-scm.com/book/en/v2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

