
NIH	HPC	Object	storage	
system	overview

Tim	Miller
NIH	HPC	Systems	Staff
btmiller@helix.nih.gov
https://hpc.nih.gov
January	9,	2018

Outline

• Overview	of	the	object	storage
• A	first	practical	example
• When	would	you	want	to	use	object	storage?
• How	do	you	get	access	to	the	object	storage?
• Using	the	NIH	HPC	object	storage
• HPC	staff	developed	tools
• Rclone
• s3cmd

• Programming	your	own	tools

Introductions	and	Administrivia

• Who	am	I?
• Who	are	you?
• How	much	data	are	you	storing	on	the	HPC	systems?
• What	do	you	know	about	object	storage?
• What	makes	you	interested	in	object	storage?
• How	can	I	and	the	rest	of	our	staff	help	you?

• Can	you	access	your	HPC	account?
• Do	you	have	an	object	storage	allocation	already?

Outline

• Overview	of	the	object	storage
• A	first	practical	example
• When	would	you	want	to	use	object	storage?
• How	do	you	get	access	to	the	object	storage?
• Using	the	NIH	HPC	object	storage
• HPC	staff	developed	tools
• Rclone
• s3cmd

• Programming	your	own	tools

Basics	of	object	storage

• “Web	Scale”	storage
• Highly	reliable	(dispersed	over	multiple	sites)
• Easy	to	expand	(just	add	more	disks)
• Accessed	via	simple	list,	put,	get,	delete	semantics	(examples	forthcoming)

• Different	from	file	based	storage	systems
• Objects	are	accessed	by	NAME,	not	PATH
• Completely	flat	name	space
• No	concept	of	directories,	but	“/”	is	a	valid	character	in	object	names
• Data	and	metadata	are	stored	together	with	the	object	(sometimes	true	in	file	
storage	systems	as	well)

The	NIH	HPC	object	storage	system

• https://hpc.nih.gov/storage/object.html
• Dedicated	for	use	by	NIH	HPC	system	(helix,	biowulf)	users
• Accessible	from	Helix,	Biowulf,	and	compute	nodes
• No	Globus	or	Helixdrive (more	on	this	later)

• Geographically	distributed	(B12,	Shady	Grove)
• However	no	off-site	back-ups	(tape	or	otherwise)

Components	of	the	system

• Manager
• Staff	interacts	with	it
• Used	for	provisioning,	
monitoring,	etc.

• Accessor
• Primary	point	of	user	
interaction

• Storage	server
• Actually	holds	data
• No	direct	user	interaction

Manager

Accessors

Storage	
servers

Components	of	the	system

• Manager
• Staff	interacts	with	it
• Used	for	provisioning,	
monitoring,	etc.

• Accessor
• Primary	point	of	user	
interaction

• Storage	server
• Actually	holds	data
• No	direct	user	interaction

Manager

Accessors

Storage	
servers

You	don’t	need	to	know	anything	
about	the	physical	hardware.

However,	if	you	want	to	write	your	
own	custom	access	routines,	you	need	
the	accessors’	addresses.

Logical	View

9

Logical	view	components	(1)

• Each	user	has	access	to	one	or	more	VAULTS
• These	are	like	buckets,	for	those	familiar	with	Amazon	S3,	except	they	are	
created	by	system	administrators.

• The	vaults	are	containers	for	objects
• Objects	contain	both	data	and	metadata	(we’ll	see	examples)	
• Physically,	objects	are	divided	up	and	different	parts	are	sent	to	multiple	
different	storage	servers
• The	system	is	designed	to	be	able	to	lose	a	certain	number	of	storage	servers	
and	still	be	able	to	reconstruct	objects.

Logical	view	components	(2)

• I/O	operations	are	performed	via	accessors
• Use	S3	operations	layered	on	top	of	the	HTTP	protocol
• Six	accessors:	os{1,2}naccess{1,2,3}
• A	RESTful	API	(REpresentational State	Transfer)	– see	next	bullet	point!
• When	configuring	some	programs	to	access	the	object	store,	you	must specify	which	
accessor	to	use
• We’ll	see	examples	later

• Take	a	REST!
• A	RESTful	API	handles	transactions
• PUT,	GET,	DELETE
• No	multiple-part	requests!

• Pre-written	programs	(and	your	own)

Outline

• Overview	of	the	object	storage
• A	first	practical	example
• When	would	you	want	to	use	object	storage?
• How	do	you	get	access	to	the	object	storage?
• Using	the	NIH	HPC	object	storage
• HPC	staff	developed	tools
• Rclone
• s3cmd

• Programming	your	own	tools

Our	first	example:	just	showing	off

• Key	commands
• obj_df
• obj_ls
• obj_put
• obj_get

• Key	take-aways
• Object	storage	is	not	accessed	like	disk	storage
• We	have	to	use	special	tools	(or	write	our	own)
• Programs	need	to	be	directly	aware	of	the	object	store	to	use	it,	or	files	must	
be	staged	to	an	intermediate	location.

Outline

• Overview	of	the	object	storage
• A	first	practical	example
• When	would	you	want	to	use	object	storage?
• How	do	you	get	access	to	the	object	storage?
• Using	the	NIH	HPC	object	storage
• HPC	staff	developed	tools
• Rclone
• s3cmd

• Programming	your	own	tools

Use-cases	for	object	storage

• Read-intensive	workloads
• Object	storage	is	much	more	efficient	at	reading	than	writing.
• An	entire object	has	to	be	re-written	for	each	change

• Computationally	expensive	to	process	and	disperse	the	data
• Lots	of	over-writing

• Static	data
• Related	to	the	above
• Data	that	doesn’t	change	often,	but	still	used
• E.g.	reference	genomics	files

When	not	to	use	object	storage

• Content	of	data	changes	
frequently	(database	
updates)
• Data	will	not	need	to	be	
repeatedly	read	(use	
scratch	or	lscratch)
• Only	need	to	read	part	of	
each	unit	of	data	(object	
store	will	read	the	whole	
thing	usually)
• Reads	are	performance	
critical

Some	important	limits	of	the	HPC	object	store

• Accessible	only	within	the	HPC	systems’	network
• This	will	probably	change	– no	time	frame
• No	Globus	access	(may	change)
• No	Helixdrive access	(will	not	change,	but	once	open	to	NIH	you	can	use	other	
tools	to	provide	a	similar	interface)

• No	“self-service”	vault/bucket	creation
• Vaults	are	created	by	the	HPC	staff
• Users	may	be	added/removed	from	a	vault	by	the	owner	by	e-mailing	staff

Rules,	policies,	and	archiving

• ALL	NIH	HPC	policies	that	apply	to	other	HPC	storage	systems	apply	to	
the	object	store
• No	personally-identifiable	information	(PII)
• No	personal	health	information	(PHI)
• No	archiving	– objects	must	be	actively	computed	against!

• “Limited	archive”	functionality	coming	in	2018
• Up	to	seven	years	of	storage	for	inactive	research	data
• Protection	against	accidentally	deletes/overwrites
• Easy(?)	user	interface	to	store/query/retrieve	archived	data.
• Announcement	forthcoming!	Please	e-mail	staff@hpc.nih.gov if	you	would	
like	to	be	a	beta	tester.

Outline

• Overview	of	the	object	storage
• A	first	practical	example
• When	would	you	want	to	use	object	storage?
• How	do	you	get	access	to	the	object	storage?
• Using	the	NIH	HPC	object	storage
• HPC	staff	developed	tools
• Rclone
• s3cmd

• Programming	your	own	tools

Requesting	object	storage

https://hpc.nih.gov/nih/object_request.html

• Accessible	from	within	the	NIH	network	(and	VPN).
• If	off-campus,	e-mail	staff@hpc.nih.gov.

Standard	information	about	
yourself	and	what	you	want	
the	object	storage	
allocation	for.

Unlike	your	data	directory,	
you	can	choose	any	name	
for	your	vault	(within	
reason).	If	you	leave	this	
blank,	the	vault	name	will	
be	the	same	as	your	user	
name.

You	also	have	to	tell	us	how	
big	you	would	like	your	
vault.	We	generally	will	not	
give	out	more	than	20	TB	
until	you	show	that	you	can	
make	effective	use	of	it.

For	your	justification,	be	
sure	to	specify	why	you	are	
requesting	object	storage	
rather	than	disk	storage.	
Letting	us	know	whether	
you	plan	to	use	your	own	
programs	or	HPC	developed	
or	installed	tools	is	also	
helpful.

Remember	to	check	the	box	
at	the	bottom	indicating	
that	you	understand	what	
object	storage	is	and	the	
policies	associated	with	its	
use.

Once	you	have	submitted	the	form

• You’ll	get	an	e-mail	confirmation
• The	HPC	staff	will	contact	you	if	there	are	any	questions	about	your	
request
• Your	storage	will	be	set	up.	You’ll	be	given	a	set	of	access	keys that	
you	can	use	to	access	your	space.

More	policies	to	be	aware	of

• NO back-ups	or	snapshots
• If	you	delete	something	from	the	object	store,	it’s gone (unless	you	have	
another	copy	somewhere).
• Likewise,	if	you	overwrite	an	object,	the	original	copy	is	unrecoverable.

• There	will	be	an	exception	for	archival	vaults	only.

• Reduce	metadata	operations
• As	much	as	possible,	avoid	listing	vault	contents	– it’s	slow!
• Use	a	regular	scheme	for	naming	objects	or	keep	an	off-line	index

• No	PII,	PHI,	or	Archiving

Hands-on:	setting	up	access

• I	will	distribute	access	keys	to	individuals/teams
• Note:	the	vaults	used	in	this	class	are	TEMPORARY
and	will	be	deleted	a	day	or	so	after	the	class	ends.
• In	other	words,	don’t	store	anything	you	actually	want	
to	keep	(only)	here.

• Create	a	file	/home/$USER/.boto
• Replace	$USER	with	your	user	name
• Make	sure	the	file	is	only	readable	by	you

• Put	the	following	contents	in	the	file:

Hands-on:	setting	up	access

• Check	that	you	can	“see”	your	vault	when	you	do	
obj_df.
• Note	– obj_df will	not	work	with	temporary	student	vaults.
• How	much	space	do	you	have	on	the	object	store?
• Tip:	obj_df reports	value	in	bytes,	which	is	not	very	easy	to	
read.	Use	“obj_df -h”	to	get	human-readable	values.

• Run	“obj_ls”	to	see	the	contents	of	your	vault
• This	will work	with	temporary	student	vaults
• If	your	vault	name	is	not	the	same	as	your	username,	use		
“-v	<vaultname>”	to	specify	which	vault.

• Is	there	anything	in	your	vault?

Outline

• Overview	of	the	object	storage
• A	first	practical	example
• When	would	you	want	to	use	object	storage?
• How	do	you	get	access	to	the	object	storage?
• Using	the	NIH	HPC	object	storage
• HPC	staff	developed	tools
• Rclone
• s3cmd

• Programming	your	own	tools

Overview	of	staff-developed	tools

Using	obj_df

• Shows	you	how	much	space	you	have	on	vaults	you	have	write access	to.
• Can	get	the	same	information	(in	a	slightly	different	format)	via	checkquota

Using	obj_ls

• Lists	objects	in	a	vault
• Owner	ID	is	specific	to	the	object	store	(i.e.	not	a	Linux	UID)

A	prettier	view

• -h:	sizes	are	human	readable
• -m:	only	print	out	files	that	match	a	given	pattern

Listing	different	vaults

• Some	users	have	access	to	multiple	vaults	(see	obj_df)
• Use	-v	flag	on	all obj tools	to	specify		a	vault
• The	default	vault	is	the	same	as	your	username	(may	not	exist)

Putting	data	onto	the	object	store

• Use	obj_put
• Numerous	options	–
we’ll	go	through	some	
of	the	more	important

Putting	data	onto	the	object	store

• Use	prefix	(-p,	--prefix)	
to	make	a	“directory”,	
e.g.	”-p	new_results/”
• Trailing	slash	is	
important!

• Use	-F	(--full-objname)	
to	have	the	object	
name	be	the	full	path	
on	the	system.
• Use	-R	to	recursively	
copy	data.

An	example

Getting	the	data	back	with	obj_get

• Like	obj_put,	has	a	lot	of	
options
• Several	are	important!

Getting	the	data	back	with	obj_get

• Note	use	of	-r,	-o,	and	-p
• Rely	on	having	metadata
associated	w/	the	object.
• Probably	will	not	work	
unless	placed	with	
obj_put.
• Overriden by	-D	

• --strip	requires	-D
• --stdout is	a	very	useful	
option
• Stream	object	data	to	
programs

Streaming	to	stdout example

• Useful	for	piping	into	commands
• Cannot	ingest	data	from	a	pipe
• It	would	probably	be	way	too	slow

Practice	time!

• Copy	/data/classes/objectstore to	your	data	directory
• Copy	the	file	lamb.txt to	your	object	store	vault	
• Verify	that	the	copy	is	there.	How	did	you	do	this?
• Read	the	data	back	from	the	object	store	two	different	ways

• Stream	it	to	standard	output
• Read	it	back	to	a	file	in	a	new	directory	called	lamb2

• Upload	the	data	fruits.txt in	the	“some_files”	directory	to	your	object	store	
vault
• Sort	the	fruits.txt data	alphabetically	(use	the	Linux	sort	command),	output	
the	results	to	your	data	directory,	and	then	copy	the	sorted	file	to	the	
object	store.

Permissions	and	obj_chmod

• By	default,	objects	in	vault	are	only	visible	to	users	who	have	access	
rights	to	that	vault.
• Vaults	are	treated	similarly	to	shared	data	directory:	requestor	becomes	the	
vault	owner	who	can	add	or	delete	users.
• Users	can	have	read-only	or	read-write	permissions

• A	user	who	has	write permission	on	a	vault	can	make	an	object	
publicly	visible.
• Use	obj_chmod to	set	“private”	or	“public-read”	permissions
• Available	via	HTTP	“wget -O	output	http://os1naccess1/vault/object”
• Not	accessible	beyond	the	NIH	HPC	systems,	but	this	will	change

Using	the	obj command

• obj is	a	single	command	that	gives	access	to	all	object	commands
• See	“obj help”	for	usage
• E.g.	“obj put”	calls	“obj_put”
• One	additional	function	– “obj url”,	prints	a	URL	of	a	publicly-available	object

• Use	in	conjunction	with	obj_chmod
• URL	is	only	reachable	within	the	HPC	systems!	

Overview	of	Rclone

• Another	tool	for	copying/synchronizing	data	between	file	storage	and	
object	storage
• Specializes	in	synchronizing	entire	directories	to/from	object	storage
• Like	rsync,	but	for	the	object	store
• Not	the	most	convenient	tool	for	single	files,	but	more	convenient	than	obj_*	
for	lots	of	data

• In	addition	to	the	HPC	object	store,	can	talk	to	other	systems	(S3,	
DreamHost,	etc.).
• Remember	to	use	--no-check-certificate	when	using	with	the	HPC	
object	store	(might	want	an	alias)
• Web	site	https://hpc.nih.gov/apps/rclone.html

Configuring	rclone

• Load	the	module
• module load rclone

• Configure:
• rclone config
• Remember	what	you	named	your	object	store	(or	check	~/.rclone.cfg)

• For	HPC	object	store
• Choose	Amazon	S3	storage
• Enter	object	key	and	secret	key
• For	region	– choose	S3	clone	that	understands	v2	signatures	(12)
• Enter	os1naccess2	as	the	endpoint	(can	use	os{1,2}naccess{1,2,3})
• Leave	other	items	as	default
• See	example	at	https://hpc.nih.gov/apps/rclone.html!

Using	rclone

• Important	argument	“--no-check-certificate”
• Needed	for	NIH	HPC	object	store,	since	it	uses	self-signed	SSL	certificate

• Vaults	are	denoted	<storage-system-name>:<vault-name>
• E.g.	nihhpc-obj:btmiller
• The	storage	system	name	is	what	you	defined	it	to	be	when	configuring	rclone!

• “rclone ls”	– list	a	directory
• E.g.	“rclone ls	nihhpc-obj:btmiller”
• “rclone lsd”	will	list	only directories	

• “rclone copy”	– copy	from	source	to	destination
• “rclone move”	– move	from	source	to	destination
• “rclone (purge|rmdir)”	– removes	paths
• Sources	and	destinations	can	be

• Object	store	(HPC	or	other)
• Filesystem	paths

Configuring	s3cmd

• Another	general	purpose	tool	for	accessing	S3	storage
• Has	similar	functionality	to	the	HPC	developed	tools
• To	configure,	just	run:	s3cmd --configure

• Provide	your	access	key	and	secret	keys
• Up	to	you	if	you	want	an	encryption	password	(but	don’t	forget	it!)
• No	need	to	use	HTTPS	on	the	HPC	network	(but	you	can	for	extra	protection)	– if	you	use	it,	
you	will	need	the	--no-check-certificate	option.

• Accept	defaults	for	proxies
• Not	done	yet	– one	more	step

• s3cmd		assumes	Amazon	– let’s	change	that!
• Open	~/.s3cfg	with	your	favorite	text	editor
• Set	host_base =	osNnaccessX (N	=	1	or	2;	X	=	1,	2,	or	3)
• Set	host_bucket =	osNnaccessX/bucket	(N	=	1	or	2;	X	=	1,	2,	or	3;	bucket	=	your	vault	name)
• Set	website_endpoint =	http://osNnaccessX/bucket (can	use	HTTPS)

Using	s3cmd

• List	files	– “s3cmd	ls	s3://vault”
• Or	“s3cmd	ls	s3://vault/vfolder”

• Get	space	utilization	“s3cmd	du	s3://vault”
• Use	-H	flag	for	human-readable	size

• Copy	a	file	to	the	object	store	– “s3cmd	put	file	s3://vault/object”
• Copy	from	the	object	store	– “s3cmd	get	s3://vault/object	file”
• Remove	an	object	– “s3cmd	rm s3://vault/object”

Exercises

• Read	“rclone --help”	and	“s3cmd	--help”		
• Configure	either	rclone or	s3cmd	to	access	your	object	store	vault
• Use	your	preferred	software	to	view	the	contents	of	your	object	store	
vault.
• Using	either	rclone or	s3cmd,	upload	the	“some_files”	subdirectory	of	the	
object	store	class	examples	to	your	vault.
• Copy	just	the	files	with	“some_files”	in	their	object	name	to	a	new	
directory	with	either	rclone or	s3cmd.
• Sort	some_files/a_subdirectory/famous_computers.txt by	system	name,	
then	upload	the	results	(via	rclone or	s3cmd)	to	a	new	object	named	
some_files/a_subdirectory/famous_computers_byname.txt

Some	notes	on	metadata

• Metadata	=	data	about	data
• Traditional	file	metadata
• Ownership
• Permissions
• Name
• Disk	location
• Arbitrary?

• Object	storage	metadata
• Arbitrary	key-value	pairs
• Permissions	handled	
separately	via	ACL
• (Re-)Creation	time	set	
automatically

Using	metadata	on	the	object	storage

• Needs	to	be	accessed	via	the	object	API	or	via	“-m”	flag	to	obj_put
• E.g.	set_metadata,	get_metadata methods	in	Boto (more	on	this	later)

• obj_put,	obj_get are	examples	– store	(and	retrieve)	filesystem	path	
for	an	object.
• You	might	want	to	use	metadata	for…
• Anonymized	sample	identifiers
• Type	of	machine/analysis	program	used	to	generate	the	data
• Any	input	paths,	objects
• Just	about	anything	else	you	can	think	of	that	is	not	part	of	the	object’s	data	
itself!

Using	metadata	on	the	object	storage

• Needs	to	be	accessed	via	the	object	API	or	via	“-m”	flag	to	obj_put
• E.g.	set_metadata,	get_metadata methods	in	Boto (more	on	this	later)

• obj_put,	obj_get are	examples	– store	(and	retrieve)	filesystem	path	
for	an	object.
• You	might	want	to	use	metadata	for…
• Anonymized	sample	identifiers
• Type	of	machine/analysis	program	used	to	generate	the	data
• Any	input	paths,	objects
• Just	about	anything	else	you	can	think	of	that	is	not	part	of	the	object’s	data	
itself!

Could	even	have	the	
whole	pipeline	command	
used	to	produce	the	
object	as	metadata!

A		practical	example	using	the	object	store

• Put	raw	data	(gzipped fastq files)	into	the	object	store
• Align	the	fastq files	using	STAR	(read	data	directly	from	object	
storage)
• Create		bigWig coverage
• Make	coverage	available	via	Genome	browser
• Visualize	the	data

Putting	example	data	into	the	object	store

Align	data	from	the	object	store	with	STAR

Align	data	from	the	object	store	with	STAR

Note	the	use	of	input	
redirection	combined	
with	obj get

Create	bigWig of	coverage

• Uses	local	output	files	from	STAR
• Puts	results	back	on	the	object	store	for	later	access

Make	bigWig available	to	CIT	genome	
browser

Visualize	track

Visualize	track

Use	URL	from	”obj url”!

Visualize	track

Outline

• Overview	of	the	object	storage
• A	first	practical	example
• When	would	you	want	to	use	object	storage?
• How	do	you	get	access	to	the	object	storage?
• Using	the	NIH	HPC	object	storage
• HPC	staff	developed	tools
• Rclone
• s3cmd

• Programming	your	own	tools

Programming	your	own	tools

• Why?
• Need	to	customize	functionality,	e.g.	reading	metadata	from	objects.
• Combining	reading/writing	data	to	object	store	with	calculations.
• Complicated	access	patterns	– e.g.	reading	and	writing	multiple	objects	
simultaneously.

• Why	not?
• Requires	knowledge	of	Python,	Perl,	Ruby,	C++,	etc.

• NIH	HPC	developed	object	tools	are	all	in	Python	– can	use	as	examples
• If	existing	tools	satisfy	your	needs,	there’s	not	much	point
• HPC	staff	fully	supports	“our”	tools	(and	others	like	Rclone)	– much	less	
support	for	custom	development

Programming	workflow

Open	Connection
(Need	accessor	address,	

credentials)

Open	Vault/Bucket
(Need	to	know	name)

OPTIONAL:	List	
content

(can	be	slow)

OPTIONAL:	operate	on	content	
(create	key,	get	key,	etc.)

May	need	to	know	object	names

Close	Connection

Programming	in	Python:	Boto library

• I’ve	had	more	luck	with	boto v2	than	boto v3
• Boto v3	is	not	compatible	with	our	object	store	L.

• Getting	a	bucket	(vault):

Programming	in	Python:	Boto library

• I’ve	had	more	luck	with	boto v2	than	boto v3
• Boto v3	is	not	compatible	with	our	object	store	L.

• Listing	contents:

Programming	in	Python:	Boto library

• I’ve	had	more	luck	with	boto v2	than	boto v3
• Boto v3	is	not	compatible	with	our	object	store	L.

• Deleting	an	object:

Programming	in	Python:	Boto library

• I’ve	had	more	luck	with	boto v2	than	boto v3
• Boto v3	is	not	compatible	with	our	object	store	L.

• Putting	data:

Programming	in	Python:	Boto library

• I’ve	had	more	luck	with	boto v2	than	boto v3
• Boto v3	is	not	compatible	with	our	object	store	L.

• Getting	data:

Programming	in	other	languages

• Amazon	provides	APIs	to	their	Web	services	for	many	languages
• Python,	PHP,	Perl,	Ruby,	JavaScript,	and	C++	(maybe	others	by	now)
• https://aws.amazon.com/code
• Includes	quite	a	lot	of	documentation,	references,	etc.
• In	principle,	you	can	write	pure	API	calls	and	pass	them	to	curl/wget (or	write	your	
own	HTTP),	but	this	is	really	complicated.

• Some	tweaking	is	often	necessary	to	make	it	work	with	the	HPC	object	
store
• Can’t	just	connect	to	Amazon	regions	– need	to	specify	an	accessor
• URL	format	is	different	(e.g.	Amazon	supports	http://bucket.s3.aws.com)

• HPC	staff	can	provide	advice,	but	software	development	is	ultimately	up	to	
the	user.

Wrap-up,	summary

• Object	store	is	good	for	data	that	is…
• Read-only	in	nature
• Needs	to	be	used	regularly	for	computation
• Only	needs	moderate	performance

• The	object	store	cannot	be	used	for…
• Write-intensive	data
• Data	that	gets	updated	frequently
• Archival	data	(until	we	make	the	limited	archive	available)

• Multiple	different	tools	may	be	used	to	read	and	write	data
• You	can	write	your	own	tools	in	a	variety	of	programming	languages

staff@hpc.nih.gov

Thank	you

• Thank	you	for	attending
• Please	contact	us	with	questions/feedback
• Tim	Miller	– btmiller@helix.nih.gov
• staff@hpc.nih.gov

