DeepLabCut is an open source toolbox that builds on a state-of-the-art animal pose estimation algorithm. It allows training of a deep neural network by using limited training data to precisely track user-defined features, so that the human labeling accuracy will be matched.
The DeepLabCut application installed on Biowulf is supposed to be run using GPU. As the first step, please allocate an interactive session:
[user@biowulf]$ sinteractive --gres=gpu:p100:1,lscratch:10 --mem=20g -c14 [user@cn4469 ~]$ module load DeepLabCut/2.3.9 [+] Loading singularity 3.10.5 on cn4469 [+] Loading DeepLabCut 2.3.9
[user@cn4469 user]$ mkdir -p /data/$USER/DLC && cd /data/$USER/DLC [user@cn4469 user]$ cp -r $DLC_MODEL/pretrained .
[user@cn4469]$ git clone https://github.com/AlexEMG/DeepLabCut [user@cn4469]$ cd DeepLabCut [user@cn4469]$ git checkout v2.3.9 #check out the branch that match the version you run [user@cn4469]$ cd examplesTest run in a terminal:
[user@cn4469]$ python-DLC testscript.py [user@cn4469]$ python-DLC testscript_multianimal.py
python-DLC -m "deeplabcut"
vglrun python-DLC -m "deeplabcut"
Create a batch input file (e.g. DLC.sh). For example:
#!/bin/bash set -e module load DeepLabCut cd /data/$USER python-DLC testscript_multianimal.py
Submit this job using the Slurm sbatch command.
sbatch --partition=gpu --gres=gpu:p100:1 [--cpus-per-task=#] [--mem=#] DLC.sh