Biowulf High Performance Computing at the NIH
DeepTMHMM on Biowulf

DeepTMHMM: A Deep Learning Model for Transmembrane Topology Prediction and Classification.

The model encodes the primary amino acid sequence by a pre-trained language model and decodes the topology by a state space model to produce topology and type predictions at unprecedented accuracy. DeepTMHMM makes it possible to scan full proteomes in order to detect both classes of transmembrane proteins.

References:

Documentation
Important Notes

Interactive job
Interactive jobs should be used for debugging, graphics, or applications that cannot be run as batch jobs.

Allocate an interactive session and run the program.
Sample session (user input in bold):

[user@biowulf]$ sinteractive
salloc.exe: Pending job allocation 46116226
salloc.exe: job 46116226 queued and waiting for resources
salloc.exe: job 46116226 has been allocated resources
salloc.exe: Granted job allocation 46116226
salloc.exe: Waiting for resource configuration
salloc.exe: Nodes cn3144 are ready for job

[user@cn3144 ~]$ module load deeptmhmm

[user@cn3144 ~]$ DeepTMHMM --fasta $DEEPTMHMM_HOME/test/sample.fasta --output-dir out 
Running DeepTMHMM on 1 sequence...
Step 1/4 | Loading transformer model...

Step 2/4 | Generating embeddings for sequences...
Generating embeddings: 100%|█████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.31s/seq]

Step 3/4 | Predicting topologies for sequences in batches of 1...
Topology prediction: 100%|███████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:07<00:00,  7.18s/seq]

Step 4/4 | Generating output...

[user@cn3144 ~]$ ls out
TMRs.gff3  deeptmhmm_results.md  embeddings  plot.png  predicted_topologies.3line  probabilities
[user@cn3144 ~]$ exit
salloc.exe: Relinquishing job allocation 46116226
[user@biowulf ~]$

Batch job
Most jobs should be run as batch jobs.

Create a batch input file (e.g. tmhmm.sh). For example:

#!/bin/bash
set -e
module load deeptmhmm
DeepTMHMM --fasta $DEEPTMHMM_HOME/test/sample.fasta --output-dir out

Submit this job using the Slurm sbatch command.

sbatch --gpus 1 [--cpus-per-task=#] [--mem=#] tmhmm.sh
Swarm of Jobs
A swarm of jobs is an easy way to submit a set of independent commands requiring identical resources.

Create a swarmfile (e.g. tmhmm.swarm). For example:

DeepTMHMM --fasta sample1.fasta --output-dir sample1_out
DeepTMHMM --fasta sample2.fasta --output-dir sample2_out
DeepTMHMM --fasta sample3.fasta --output-dir sample3_out
DeepTMHMM --fasta sample4.fasta --output-dir sample4_out

Submit this job using the swarm command.

swarm -f tmhmm.swarm [-g #] [-t #] --module deeptmhmm
where
-g # Number of Gigabytes of memory required for each process (1 line in the swarm command file)
-t # Number of threads/CPUs required for each process (1 line in the swarm command file).
--module deeptmhmm Loads the DeepTMHMM module for each subjob in the swarm