DeepTMHMM on Biowulf
DeepTMHMM: A Deep Learning Model for Transmembrane Topology Prediction and Classification.
The model encodes the primary amino acid sequence by a pre-trained language model and decodes the topology by a state space model to produce topology and type predictions at unprecedented accuracy. DeepTMHMM makes it possible to scan full proteomes in order to detect both classes of transmembrane proteins.
References:
- Jeppe Hallgren, Konstantinos D. Tsirigos, Mads D. Pedersen, José Juan Almagro Armenteros, Paolo Marcatili, Henrik Nielsen, Anders Krogh and Ole Winther. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. bioRxiv 2022.
Documentation
Important Notes
- Module Name: deeptmhmm (see the modules page for more information)
- GPU-capable. See GPU allocation guide.
- Environment variables set
- DEEPTMHMM_HOME
- Example files in $DEEPTMHMM_HOME/test
Interactive job
Interactive jobs should be used for debugging, graphics, or applications that cannot be run as batch jobs.
Allocate an interactive session and run the program.
Sample session (user input in bold):
[user@biowulf]$ sinteractive salloc.exe: Pending job allocation 46116226 salloc.exe: job 46116226 queued and waiting for resources salloc.exe: job 46116226 has been allocated resources salloc.exe: Granted job allocation 46116226 salloc.exe: Waiting for resource configuration salloc.exe: Nodes cn3144 are ready for job [user@cn3144 ~]$ module load deeptmhmm [user@cn3144 ~]$ DeepTMHMM --fasta $DEEPTMHMM_HOME/test/sample.fasta --output-dir out Running DeepTMHMM on 1 sequence... Step 1/4 | Loading transformer model... Step 2/4 | Generating embeddings for sequences... Generating embeddings: 100%|█████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.31s/seq] Step 3/4 | Predicting topologies for sequences in batches of 1... Topology prediction: 100%|███████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:07<00:00, 7.18s/seq] Step 4/4 | Generating output... [user@cn3144 ~]$ ls out TMRs.gff3 deeptmhmm_results.md embeddings plot.png predicted_topologies.3line probabilities [user@cn3144 ~]$ exit salloc.exe: Relinquishing job allocation 46116226 [user@biowulf ~]$
Batch job
Most jobs should be run as batch jobs.
Create a batch input file (e.g. tmhmm.sh). For example:
#!/bin/bash set -e module load deeptmhmm DeepTMHMM --fasta $DEEPTMHMM_HOME/test/sample.fasta --output-dir out
Submit this job using the Slurm sbatch command.
sbatch --gpus 1 [--cpus-per-task=#] [--mem=#] tmhmm.sh
Swarm of Jobs
A swarm of jobs is an easy way to submit a set of independent commands requiring identical resources.
Create a swarmfile (e.g. tmhmm.swarm). For example:
DeepTMHMM --fasta sample1.fasta --output-dir sample1_out DeepTMHMM --fasta sample2.fasta --output-dir sample2_out DeepTMHMM --fasta sample3.fasta --output-dir sample3_out DeepTMHMM --fasta sample4.fasta --output-dir sample4_out
Submit this job using the swarm command.
swarm -f tmhmm.swarm [-g #] [-t #] --module deeptmhmmwhere
-g # | Number of Gigabytes of memory required for each process (1 line in the swarm command file) |
-t # | Number of threads/CPUs required for each process (1 line in the swarm command file). |
--module deeptmhmm | Loads the DeepTMHMM module for each subjob in the swarm |