NeuSomatic is based on deep convolutional neural networks for accurate somatic mutation detection. With properly trained models, it can robustly perform across sequencing platforms, strategies, and conditions. NeuSomatic summarizes and augments sequence alignments in a novel way and incorporates multi-dimensional features to capture variant signals effectively. It is not only a universal but also accurate somatic mutation detection method.
Allocate an interactive session and run the program. Sample session:
[user@biowulf]$ sinteractive --gres=gpu:k80:1,lscratch:10 --mem=20g -c14 salloc.exe: Pending job allocation 40260664 salloc.exe: job 40260664 queued and waiting for resources salloc.exe: job 40260664 has been allocated resources salloc.exe: Granted job allocation 40260664 salloc.exe: Waiting for resource configuration salloc.exe: Nodes cn4192 are ready for job srun: error: x11: no local DISPLAY defined, skipping [user@cn4192 ~]$ cp -r /usr/local/apps/neusomatic/0.2.1/neusomatic ~/ [user@cn4192 ~]$ cd ~/neusomatic/test/ [user@cn4192 test]$ module load neusomatic [+] Loading neusomatic 0.2.1 on cn4192 [+] Loading singularity on cn4192 [user@cn4192 test]$ ./run_test.sh INFO 2019-10-24 17:23:17,745 __main__ Namespace(dbsnp_to_filter=None, del_merge_min_af=0, del_min_af=0.05, ensemble_tsv=None, filter_duplicate=False, first_do_without_qual=False, good_ao=10, ins_merge_min_af=0, ins_min_af=0.05, long_read=False, matrix_base_pad=7, matrix_width=32, max_dp=100000, merge_r=0.5, min_ao=1, min_dp=5, min_ev_frac_per_col=0.06, min_mapq=10, mode='call', normal_bam='../normal.bam', num_threads=1, reference='Homo_sapiens.GRCh37.75.dna.chromosome.22.fa', region_bed='../region.bed', restart=False, scan_alignments_binary='/opt/neusomatic/neusomatic/bin/scan_alignments', scan_maf=0.05, scan_window_size=2000, snp_min_af=0.05, snp_min_ao=10.0, snp_min_bq=20.0, truth_vcf=None, tsv_batch_size=50000, tumor_bam='../tumor.bam', work='work_standalone') INFO 2019-10-24 17:23:17,745 preprocess ----------------------Preprocessing------------------------ INFO 2019-10-24 17:23:17,747 preprocess Scan tumor bam (and extracting quality scores). INFO 2019-10-24 17:23:17,748 process_split_region Scan bam. INFO 2019-10-24 17:23:17,748 scan_alignments -------------------Scan Alignment BAM---------------------- [...] INFO 2019-10-24 17:23:22,886 __main__ use_cuda: True INFO 2019-10-24 17:23:22,886 call_neusomatic -----------------Call Somatic Mutations-------------------- INFO 2019-10-24 17:23:22,886 call_neusomatic PyTorch Version: 1.1.0 INFO 2019-10-24 17:23:22,886 call_neusomatic Torchvision Version: 0.3.0 INFO 2019-10-24 17:23:22,931 call_neusomatic GPU calling! [...] INFO 2019-10-24 17:23:44,911 postprocess Postprocessing is Done. ### NeuSomatic stand-alone: SUCCESS! ### ### NeuSomatic ensemble: SUCCESS! ### [user@cn4192 test]$ exit exit salloc.exe: Relinquishing job allocation 40260664 [user@biowulf ~]$
Create a batch input file (e.g. neusomatic.sh). For example:
#!/bin/bash module load neusomatic preprocess.py \ --mode call \ --reference Homo_sapiens.GRCh37.75.dna.chromosome.22.fa \ --region_bed region.bed \ --tumor_bam tumor.bam \ --normal_bam normal.bam \ --work work_standalone \ --scan_maf 0.05 \ --min_mapq 10 \ --snp_min_af 0.05 \ --snp_min_bq 20 \ --snp_min_ao 10 \ --ins_min_af 0.05 \ --del_min_af 0.05 \ --num_threads 1 \ --scan_alignments_binary $NEUSOMATIC_BIN/scan_alignments
Submit this job using the Slurm sbatch command.
sbatch --partition=gpu --gres=gpu:k80:1,lscratch:10 --mem=20g -c14 neusomatic.sh
Create a swarmfile (e.g. neusomatic.swarm). For example:
preprocess.py --mode call --region_bed region1.bed --tumor_bam tumor.bam --normal_bam ../normal.bam [...] preprocess.py --mode call --region_bed region2.bed --tumor_bam tumor.bam --normal_bam ../normal.bam [...] preprocess.py --mode call --region_bed region3.bed --tumor_bam tumor.bam --normal_bam ../normal.bam [...]
Submit this job using the swarm command.
swarm -f neusomatic.swarm -g 20 -t 14 --partition=gpu --gres=gpu:k80:1,lscratch:10 --module neusomaticwhere
-g # | Number of Gigabytes of memory required for each process (1 line in the swarm command file) |
-t # | Number of threads/CPUs required for each process (1 line in the swarm command file). |
--module neusomatic | Loads the neusomatic module for each subjob in the swarm |