Python on Biowulf

There are three distinct ways to run python code or applications on biowulf:

  1. Using one of the general purpose python modules (see the table below for which modules are available and what packages are installed). The large number of packages available in these environments are updated regularly. These modules are convenient and are most useful for development or when the exact version of installed packages is not important. Note that there is also a link from /usr/local/bin/python to the general purpose python 2.7 environment and from /usr/local/bin/python3 to a python 3 environment
  2. Using a private installation of mambaforge. Users who need stable, reproducible environments are encouraged to install mambaforge in their data directory and create their own private environments. This is less convenient than the general use environments but allows users to quickly install packages themselves, create invariant environmets for stability, and install packages that may not be suited for inclusion in the general purpose environments.
  3. Using the system python 3.6 which is located in /usr/bin/python3. This is the python installed with the operating system and contains few packages. Rarely used.
Changelog
top
Jun 2023: Cluster update from Centos7 to Rocky8

Coincident with the update of the Biowulf operating system there were several major changes to the python setup:

Jan 2022
Sep 2020: python/3.8 becomes available
Apr 2020: python/3.7 becomes the default module
The default python module changed to python/3.7 since python/2.7 is not supported any longer. python/2.7 continues to be available and /usr/local/bin/python still points to python 2.7.
Jul 2019: python/3.7 becomes available
Jun 2018: Cluster update from RHEL6 to RHEL7

Coincident with the update of the Biowulf operating system there were several major changes to the python setup:

Common pitfalls
top

This is a list of common pitfalls for python users on the cluster. Some of these are discussed in other sections of this documentation in more detail.

Some commonly use command line tools are also included in the python environments
Some of the python packages in our environments depend on commonly used command line tools. Since our environments are created with conda, this means conda insists on installing these tools along with the python package. A common example is samtools/bcftools. This means loading a python module after loading a samtools module will result in samtools from the python environment appearing first in your PATH.
Implicit multithreading while using multiprocessing
Certain python libraries can use implicit multithreading to speed up some numerical algorithms. The number of threads used for this is determined by the environment variable OMP_NUM_THREADS. If this is done while also using multiprocessing then batch jobs can be overloaded. For example, if creating a multiprocessing jobs with 10 worker processes and setting OMP_NUM_THREADS also to 10, a total of 10 * 10 = 100 threads are created. To avoid this happening accidentally the python modules set OMP_NUM_THREADS to 1. It needs to be set to more than one explicitly to take advantage of parallelized math libraries.
Overloaded jobs due to nested parallelism
One example of this is passing a model that parallelize such as XGBClassifier (xgboost) to RandomizedSearchCV (scikit-learn) which parallelizes the search across a parameter space. Both will by default attempt to use all CPUs. So if there are N CPUs detected, RandomizedSearch will start N processes running XGBClassifier and each process will run N threads. This can be prevented by explicitly specifying the number of parallel threads/processes at each level. In this case, both components take `n_jobs` as an argument. The product of the two should equal the number of available CPUs.
Implicit multithreading without setting OMP_NUM_THREADS
If OMP_NUM_THREADS is not set, the numerical libraries will attempt use all CPUs on a compute node. Unless all CPUs have been allocated this will result in overloading the job. The general use python modules set OMP_NUM_THREADS to 1 requiring users to explicitly set the variable higher to take advantage of implicit multithreading. If you are using your own python environments, please be sure to set OMP_NUM_THREADS explicitly for all code that can potentially multithread.
multiprocessing.cpu_count()
The cpu_count() function of the multiprocessing package always reports the total CPU count for a node. This is often the cause for overloaded python batch jobs. Instead query the environment for SLURM_CPUS_PER_TASK and default to 2, the minimum allocation.
[user@biowulf ~]$ sinteractive --cpus-per-task=2
...
[user@cn3444 ~]$ module load python/3.9
[user@cn3444 ~]$ python
Python 3.9.9 | packaged by conda-forge | (main, Dec 20 2021, 02:41:03)
[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import multiprocessing
>>> multiprocessing.cpu_count()
56  # <-- wrong
>>> import os
>>> int(os.environ.get('SLURM_CPUS_PER_TASK', '2'))
2   # <-- right
Hung multiprocessing pools
If a worker in a multiprocessing pool gets killed as can happen if a job exceeds allocated memory, the whole pool will wait indefinitely (i.e. until the job times out) for the killed worker to return results. Make sure to allocate sufficient memory and test code.
Python startup problem
Python looks through a lot of paths for certain files during startup. Therefore, starting up many concurrent python processes can strain the shared file system. This is especially true if running large swarms where each subjob runs multiple short python processes. If you have very short running python processes, please modify the code such that each script does more work.
Packages installed in the home directory
Python includes ~/.local/lib/pythonX.X/site-packages in the package search path. If you have packages installed there they can override the centrally installed packages. This can lead to hard to diagnose problems. If you have problems that are resolved by adding the -s option a broken package installed in your home directory may be the cause.
matplotlib in non-interactive environments
By default matplotlib uses an interactive backend. This works if the backend can connect to a graphical user interface (e.g. if using X11 forwarding through an ssh tunnel or NX). However, if there is no GUI to connect to, this will fail with an error message that includes.
Could not connect to any X display

This can be solved by using a non-interactive backend for plotting. Which backend matplotlib uses can be changed in a couple of different ways:

matplotlib settings can be modified using a matplotlibrc file. This file can be placed either in the current working directory or in ~/.config/matplotlib. If placed in the former it will only affect jobs run from this directory. If placed in the latter, it will affect all your calls to matplotlib. For example, if you'd like to change the default backend, create the file ~/.config/matplotlib/matplotlibrc with the following content:

backend: agg

Alternatively, you can set the MPLBACKEND environment variable either ad hoc or in your .bashrc:

export MPLBACKEND=agg

And finally, it can also be set programatically:

>>> import matplotlib
>>> matplotlib.use("agg")

Available backends and the currently active backends can be queried interactively in python:

>>> import matplotlib
>>> matplotlib.rcsetup.interactive_bk
['GTK', 'GTKAgg', 'GTKCairo', 'GTK3Agg', 'GTK3Cairo', 'nbAgg', 'Qt4Agg', 'Qt4Cairo', 'Qt5Agg', 'Qt5Cairo', 'TkAgg', 'TkCairo', 'WebAgg', 'WX', 'WXAgg', 'WXCairo']
>>> matplotlib.rcsetup.non_interactive_bk
['agg', 'cairo', 'gdk', 'pdf', 'pgf', 'ps', 'svg', 'template']
>>> import matplotlib.pyplot as plt
>>> plt.get_backend()
'agg'
python environments and NoMachine problems
If you add the executables of the conda dbus package to your PATH in one of your startup files (e.g. ~/.bashrc), NoMachine may fail with a black screen. This can happen when you load a python module or activate your own conda installation. The solution is to remove any unnecessary initialization from your .bashrc or, if this is an environment under your control, remove the dbus package from the environment.
General purpose Python environments
top

The general purpose Python environments are made available through the module system:

[user@cn3444 ~]$ module -t avail python
/usr/local/lmod/modulefiles:
python/2.7
python/3.6
python/3.7
python/3.8
python/3.9

[user@cn3444 ~]$ module load python/3.8
[+] Loading python 3.9  ...

[user@cn3444 ~]$ python
Python 3.9.9 | packaged by conda-forge | (main, Dec 20 2021, 02:41:03)
[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy
>>> 

These are fully featured (conda) environments with many installed packages including the usual modules that make up the scientific Python stack (see below). These environments best suited for development and for running code that is not dependent on specific versions of the installed packages. Packages in these environments are updated regularly. If you need more stability to ensure reproducibility or because your code depends on the presence of certain fixed versions of packages you can also build your own environments.

Python scientific stack

The usual scientific python stack (numpy, scipy, scikit-learn, numba, pandas, ...) is included in all the general purpose environments. Numpy and scipy are compiled against the accelerated Intel MKL library.

Because they are compiled against MKL, some mathematical operations (e.g. SVD) can make use of multithreading to accelerate computation. The number of threads such operations will create is determined by the environment variable OMP_NUM_THREADS. To avoid accidentally overloading jobs, especially when also doing multiprocessing, this variable is set to 1 by the python modules. If your code can take advantage of implicit parallelism you can set this variable to match the number of allocated CPUs for cluster jobs or adjust it such that the product of OMP_NUM_THREADS * number of processes equals the number of allocated CPUS. For example, if allocating 16 CPUs and planning on using multiprocessing with 4 workers, OMP_NUM_THREADS can be set as high as 4 without overloading the allocation.

Installed packages
top

The following packages are available in the general purpose python environments

Packagepython/3.8python/3.9python/3.10
abseil-cpp20210324.220210324.2n/a
absl-py1.4.01.4.01.4.0
aioeasywebdav2.4.02.4.02.4.0
aiohttp3.8.43.8.43.8.4
aioredis2.0.12.0.12.0.1
aiosignal1.3.11.3.11.3.1
alabaster0.7.130.7.130.7.13
alsa-lib1.2.7.21.2.7.21.2.8
amply0.1.60.1.60.1.6
anndata0.9.10.9.10.9.1
anyio3.7.13.7.13.7.1
aom3.5.03.5.03.5.0
appdirs1.4.41.4.41.4.4
apptools5.1.05.1.0n/a
argcomplete3.1.13.1.13.1.1
argh0.27.20.27.20.27.2
argon2-cffi21.3.021.3.021.3.0
argon2-cffi-bindings21.2.021.2.021.2.0
arrow1.2.31.2.31.2.3
arrow-cpp6.0.16.0.110.0.1
arviz0.15.10.15.10.15.1
asn1crypto1.5.11.5.11.5.1
astor0.8.10.8.10.8.1
astroid2.15.52.15.52.15.5
astropy5.2.25.3.15.3.1
asttokens2.2.12.2.12.2.1
astunparse1.6.31.6.31.6.3
async_generator1.101.101.10
async-timeout4.0.24.0.24.0.2
atk-1.02.38.02.38.02.38.0
atomicwrites1.4.11.4.11.4.1
attmap0.13.20.13.20.13.2
attrn/an/a2.5.1
attrs23.1.023.1.023.1.0
automat22.10.022.10.022.10.0
autopep81.5.62.0.22.0.4
aws-c-auth0.6.80.6.80.6.21
aws-c-cal0.5.120.5.120.5.20
aws-c-common0.6.170.6.170.8.5
aws-c-compression0.2.140.2.140.2.16
aws-c-event-stream0.2.70.2.70.2.17
aws-checksums0.1.120.1.120.1.14
aws-c-http0.6.100.6.100.7.0
aws-c-io0.10.140.10.140.13.12
aws-c-mqtt0.7.100.7.100.7.13
aws-crt-cpp0.17.100.17.100.18.16
aws-c-s30.1.290.1.290.2.1
aws-c-sdkutils0.1.10.1.10.1.7
aws-sdk-cpp1.9.1601.9.1601.9.379
babel2.12.12.12.12.12.1
backcall0.2.00.2.00.2.0
backports1.01.01.0
backports.functools_lru_cache1.6.51.6.51.6.5
backports.os0.1.10.1.1n/a
backports.shutil_get_terminal_size1.0.01.0.0n/a
backports.zoneinfo0.2.10.2.10.2.1
basemapn/a1.3.71.3.7
basemap-datan/a1.3.21.3.2
bcrypt3.2.23.2.23.2.2
beautifulsoup44.12.24.12.24.12.2
bedtools2.31.02.31.02.31.0
bidict0.22.10.22.10.22.1
binaryornot0.4.40.4.40.4.4
binutils_impl_linux-642.392.392.39
binutils_linux-642.392.392.39
biom-format2.1.152.1.152.1.15
biopython1.811.811.81
bitarray2.7.62.7.62.7.6
black23.3.023.3.023.3.0
blas2.1162.1162.116
blas-devel3.9.03.9.03.9.0
bleach6.0.06.0.06.0.0
blinker1.6.21.6.21.6.2
blosc1.21.41.21.41.21.4
bokeh2.4.32.4.33.2.0
boltons23.0.023.0.023.0.0
boost-cpp1.77.01.77.01.81.0
boto2.49.02.49.02.49.0
boto31.28.11.28.11.28.1
botocore1.31.11.31.11.31.1
bottleneck1.3.71.3.71.3.7
brotli1.0.91.0.91.0.9
brotli-bin1.0.91.0.91.0.9
brotlipy0.7.00.7.00.7.0
brunsli0.10.10.1
bz2file0.980.980.98
bzip21.0.81.0.81.0.8
ca-certificates2023.5.72023.11.172024.7.4
cached-property1.5.21.5.21.5.2
cached_property1.5.21.5.21.5.2
cachetools4.2.44.2.45.3.1
cairo1.16.01.16.01.16.0
c-ares1.19.11.19.11.19.1
c-blosc22.10.02.10.02.10.0
certifi2023.5.72023.11.172024.6.2
cffi1.15.11.15.11.15.1
cfitsio4.1.04.1.04.1.0
cftime1.6.21.6.21.6.2
chardet5.1.05.1.05.1.0
charls2.3.42.3.42.3.4
charset-normalizer3.2.03.2.03.2.0
click8.1.48.1.48.1.4
clikit0.6.20.6.20.6.2
cloudpickle2.2.12.2.12.2.1
clyent1.2.21.2.21.2.2
coincbc2.10.102.10.102.10.10
coin-or-cbc2.10.102.10.102.10.10
coin-or-cgl0.60.70.60.70.60.7
coin-or-clp1.17.81.17.81.17.8
coin-or-osi0.108.80.108.80.108.8
coin-or-utils2.11.92.11.92.11.9
colorama0.4.60.4.60.4.6
colorcet3.0.13.0.13.0.1
coloredlogs15.0.115.0.115.0.1
colorful0.5.40.5.40.5.4
colormath3.0.03.0.03.0.0
colorspacious1.1.21.1.21.1.2
comm0.1.30.1.30.1.3
commonmark0.9.10.9.10.9.1
conda23.3.123.3.123.3.1
conda-package-handling2.0.22.0.22.0.2
conda-package-streaming0.8.00.8.00.8.0
configargparse1.5.51.5.51.5.5
configobj5.0.85.0.8n/a
configparser5.3.05.3.05.3.0
connection_pool0.0.30.0.30.0.3
constantly15.1.015.1.015.1.0
contextlib221.6.021.6.021.6.0
contourpy1.1.01.1.01.1.0
cookiecutter2.2.02.2.02.2.0
crashtest0.4.10.4.10.4.1
crc32c2.3.post02.3.post02.3.post0
crcmod1.71.71.7
cryptography39.0.039.0.039.0.0
cudatoolkit11.2.211.2.211.2.2
cuda-version11.211.211.2
cudnn8.8.0.1218.8.0.1218.8.0.121
cupy12.1.012.1.012.1.0
curl7.87.07.87.07.87.0
cutensor1.7.0.11.7.0.11.7.0.1
cvxopt1.3.11.3.11.3.1
cvxpy1.3.21.3.21.3.2
cvxpy-base1.3.21.3.21.3.2
cxxfilt0.3.00.3.00.3.0
cycler0.11.00.11.00.11.0
cython0.29.360.29.360.29.36
cytoolz0.12.00.12.00.12.0
cyvcf20.30.160.30.16n/a
darkdetect0.8.00.8.00.8.0
dask2023.3.02023.3.02023.7.0
dask-core2023.3.02023.3.02023.7.0
dask-jobqueue0.8.20.8.20.8.2
dataclasses0.80.80.8
datashape0.5.40.5.40.5.4
datrie0.8.20.8.20.8.2
dav1d1.0.01.0.01.0.0
dbus1.13.61.13.61.13.6
debugpy1.6.71.6.71.6.7
decorator5.1.15.1.15.1.1
deepdiff6.3.16.3.16.3.1
defusedxml0.7.10.7.10.7.1
dendropy4.6.14.6.14.6.1
deprecated1.2.141.2.141.2.14
descartes1.1.01.1.01.1.0
diff-match-patch202304302023043020230430
dill0.3.60.3.60.3.6
dipy1.7.01.7.01.7.0
distlib0.3.60.3.60.3.6
distributed2023.3.02023.3.02023.7.0
dm-tree0.1.70.1.70.1.7
dnspython2.3.02.3.02.3.0
docopt0.6.20.6.20.6.2
docstring-to-markdownn/a0.120.12
docutils0.20.10.20.10.20.1
double-conversion3.2.03.2.03.2.0
dpath2.1.62.1.62.1.6
dropbox11.36.211.36.211.36.2
dsdp5.85.85.8
ecdsa0.18.00.18.0n/a
ecos2.0.112.0.112.0.11
edflib-python1.0.71.0.71.0.7
eeglabio0.0.2.post40.0.2.post40.0.2.post4
eigen3.4.03.4.03.4.0
elfutils0.1880.1880.188
entrypoints0.40.40.4
envisage6.0.16.0.1n/a
et_xmlfile1.1.01.1.01.1.0
exceptiongroup1.1.21.1.21.1.2
executing1.2.01.2.01.2.0
expat2.5.02.5.02.5.0
fabric3.1.03.1.03.1.0
fastcache1.1.01.1.01.1.0
fastrlock0.80.80.8
feather-format0.4.10.4.10.4.1
ffmpeg4.4.24.4.25.1.2
fftw3.3.103.3.103.3.10
filechunkio1.81.81.8
filelock3.12.23.12.23.12.2
flake83.8.46.0.06.1.0
flask2.3.22.3.22.3.2
flask-cors4.0.04.0.04.0.0
flatbuffersn/an/a22.12.06
flit-core3.9.03.9.03.9.0
fmt9.1.09.1.09.1.0
fontconfig2.14.22.14.22.14.2
fonts-conda-ecosystem111
fonts-conda-forge111
fonttools4.40.04.40.04.40.0
font-ttf-dejavu-sans-mono2.372.372.37
font-ttf-inconsolata3.0003.0003.000
font-ttf-source-code-pro2.0382.0382.038
font-ttf-ubuntu0.830.830.83
freeglut3.2.23.2.23.2.2
freetype2.12.12.12.12.12.1
freetype-py2.3.02.3.02.3.0
fribidi1.0.101.0.101.0.10
frozenlist1.3.31.3.31.3.3
fsspec2023.6.02023.6.02023.6.0
ftputil5.0.45.0.45.0.4
func_timeout4.3.54.3.54.3.5
future0.18.30.18.30.18.3
gast0.4.00.4.00.4.0
gcc_impl_linux-6410.4.010.4.010.4.0
gcc_linux-6410.4.010.4.010.4.0
gdk-pixbuf2.42.82.42.82.42.8
gemmin/an/a0.6.4
geneimpacts0.3.70.3.70.3.7
gensim4.3.1n/an/a
geos3.11.23.11.23.11.2
gettext0.21.10.21.10.21.1
gevent21.12.021.12.022.10.2
gffutils0.11.10.11.10.11.1
gflags2.2.22.2.22.2.2
ghostscript9.54.09.54.09.54.0
giflib5.2.15.2.15.2.1
g-ir-build-tools1.76.11.76.11.76.1
g-ir-host-tools1.76.11.76.11.76.1
gitdb4.0.104.0.104.0.10
gitdb24.0.24.0.24.0.2
gitpython3.1.313.1.313.1.31
gl2ps1.4.21.4.21.4.2
glew2.1.02.1.02.1.0
glib2.76.42.76.42.76.4
glib-tools2.76.42.76.42.76.4
glob20.70.70.7
globus-sdk3.23.03.23.03.23.0
glog0.5.00.5.00.6.0
glpk5.05.05.0
gmp6.2.16.2.16.2.1
gmpy22.1.22.1.22.1.2
gnutls3.7.83.7.83.7.8
gobject-introspection1.76.11.76.11.76.1
google-api-core2.10.22.10.22.11.1
google-api-python-client2.92.02.92.02.92.0
googleapis-common-protos1.59.11.59.11.59.1
google-auth1.35.01.35.02.21.0
google-auth-httplib20.1.00.1.00.1.0
google-auth-oauthlib0.4.60.4.60.4.6
google-cloud-core2.3.32.3.32.3.3
google-cloud-storage2.10.02.10.02.10.0
google-crc32c1.1.21.1.21.1.2
google-pasta0.2.00.2.00.2.0
google-resumable-media2.5.02.5.02.5.0
graphite21.3.131.3.131.3.13
graphviz3.0.03.0.06.0.2
greenlet1.1.3.post01.1.3.post02.0.2
grpc-cpp1.42.01.42.0n/a
grpcio1.42.01.42.01.51.1
gsl2.72.72.7
gst-plugins-base1.20.31.20.31.21.3
gstreamer1.20.31.20.31.21.3
gstreamer-orcn/an/a0.4.34
gtk22.24.332.24.332.24.33
gts0.7.60.7.60.7.6
gxx_impl_linux-6410.4.010.4.010.4.0
gxx_linux-6410.4.010.4.010.4.0
gym0.26.10.26.10.26.1
gym-notices0.0.80.0.80.0.8
h5io0.1.80.1.80.1.8
h5netcdf1.1.01.2.01.2.0
h5py3.8.03.7.03.8.0
harfbuzz4.2.04.2.06.0.0
hdf44.2.154.2.154.2.15
hdf51.12.21.12.11.12.2
hdf5storage0.1.190.1.190.1.19
heapdict1.0.11.0.11.0.1
helpdev0.7.10.7.10.7.1
hiredis2.2.32.2.32.2.3
holoviews1.16.21.16.21.16.2
html5lib1.11.11.1
htseq2.0.32.0.32.0.3
htslib1.15.11.15.11.17
httplib20.22.00.22.00.22.0
httpstan4.6.14.6.14.6.1
humanfriendly10.010.010.0
hyperlink21.0.021.0.021.0.0
hypothesis6.80.16.80.16.80.1
icu69.169.170.1
idna3.43.43.4
igv-reports1.7.01.7.0n/a
ihmn/an/a0.43
imagecodecs2022.8.82022.8.82022.8.8
imageio2.31.12.31.12.31.1
imageio-ffmpeg0.4.80.4.80.4.8
imagesize1.4.11.4.11.4.1
importlib-metadata6.8.06.8.06.8.0
importlib_metadata6.8.06.8.06.8.0
importlib-resources6.0.06.0.0n/a
importlib_resources6.0.06.0.06.0.0
incremental22.10.022.10.022.10.0
inflection0.5.10.5.10.5.1
iniconfig2.0.02.0.02.0.0
intervaltree3.1.03.1.03.1.0
invoke2.1.32.1.32.1.3
ipycanvas0.13.10.13.10.13.1
ipyevents2.0.12.0.12.0.1
ipykernel6.24.06.24.06.29.5
ipympl0.9.30.9.30.9.3
ipyparallel8.6.18.6.18.6.1
ipython8.12.28.14.08.14.0
ipython_genutils0.2.00.2.00.2.0
ipyvtklink0.2.30.2.20.2.3
ipywidgets7.7.58.0.77.7.5
isa-l2.30.02.30.02.30.0
isort5.12.05.12.05.12.0
itsdangerous2.1.22.1.22.1.2
jackn/an/a1.9.22
jaraco.classes3.2.33.2.33.2.3
jasper4.0.02.0.332.0.33
jaxn/an/a0.3.25
jaxlibn/an/a0.3.25
jbig2.12.12.1
jdcal1.4.11.4.11.4.1
jedi0.17.20.18.20.18.2
jeepney0.8.00.8.00.8.0
jellyfish1.0.01.0.01.0.0
jinja23.1.23.1.23.1.2
jinja2-time0.2.00.2.00.2.0
jmespath1.0.11.0.11.0.1
joblib1.3.01.3.01.3.0
jpeg9e9e9e
json50.9.140.9.140.9.14
jsoncpp1.9.51.9.51.9.5
jsonpatch1.321.321.32
jsonpickle2.2.02.2.02.2.0
jsonpointer2.02.02.0
jsonschema4.18.04.18.04.18.0
jsonschema-specifications2023.6.12023.6.12023.6.1
jupyter1.0.01.0.01.0.0
jupyter_client8.3.08.3.08.3.0
jupyter_console6.6.36.6.36.6.3
jupyter_core5.3.05.3.15.3.1
jupyter_events0.6.30.6.30.6.3
jupyterlab_pygments0.2.20.2.20.2.2
jupyterlab_widgets1.1.43.0.81.1.4
jupyter_server2.7.02.7.02.7.0
jupyter_server_terminals0.4.40.4.40.4.4
jxrlib1.11.11.1
keras2.7.02.7.02.11.0
keras-preprocessing1.1.21.1.21.1.2
kernel-headers_linux-644.18.04.18.02.6.32
keyring24.2.024.2.024.2.0
keyutils1.6.11.6.11.6.1
kiwisolver1.4.41.4.41.4.4
krb51.20.11.20.11.20.1
lame3.1003.1003.100
lazy_loader0.20.20.2
lazy-object-proxy1.9.01.9.01.9.0
lcms22.142.142.14
ld_impl_linux-642.392.392.39
lerc4.0.04.0.04.0.0
levenshteinn/a0.21.10.21.1
libabseiln/an/a20220623.0
libaec1.0.61.0.61.0.6
libarchive3.5.23.5.23.6.2
libarrown/an/a10.0.1
libavif0.10.10.10.10.10.1
libblas3.9.03.9.03.9.0
libbrotlicommon1.0.91.0.91.0.9
libbrotlidec1.0.91.0.91.0.9
libbrotlienc1.0.91.0.91.0.9
libcapn/an/a2.66
libcblas3.9.03.9.03.9.0
libclang13.0.113.0.115.0.7
libclang13n/an/a15.0.7
libclang-cpp1212.0.112.0.112.0.1
libclang-cpp1414.0.614.0.614.0.6
libclang-cpp15n/an/a15.0.7
libcrc32c1.1.21.1.21.1.2
libcupsn/an/a2.3.3
libcurl7.87.07.87.07.87.0
libdbn/an/a6.2.32
libdeflate1.131.131.13
libdrm2.4.1142.4.1142.4.114
libedit3.1.201912313.1.201912313.1.20191231
libev4.334.334.33
libevent2.1.102.1.102.1.10
libexpat2.5.02.5.02.5.0
libffi3.4.23.4.23.4.2
libflacn/an/a1.4.3
libgcc-devel_linux-6410.4.010.4.010.4.0
libgcc-ng13.1.013.1.013.1.0
libgcryptn/an/a1.10.1
libgd2.3.32.3.32.3.3
libgfortrann/an/a3.0.0
libgfortran513.1.013.1.013.1.0
libgfortran-ng13.1.013.1.013.1.0
libgirepository1.76.11.76.11.76.1
libglib2.76.42.76.42.76.4
libglu9.0.09.0.09.0.0
libgomp13.1.013.1.013.1.0
libgoogle-cloudn/an/a2.5.0
libgpg-errorn/an/a1.47
libgpuarray0.7.60.7.60.7.6
libgrpcn/an/a1.51.1
libhwloc2.8.02.8.02.9.1
libiconv1.171.171.17
libidn22.3.42.3.42.3.4
liblapack3.9.03.9.03.9.0
liblapacke3.9.03.9.03.9.0
libllvm1010.0.110.0.110.0.1
libllvm1111.1.011.1.011.1.0
libllvm1212.0.112.0.112.0.1
libllvm1313.0.113.0.1n/a
libllvm1414.0.614.0.614.0.6
libllvm15n/an/a15.0.7
libllvmspirv15n/an/a15.0.0
libmamba1.1.01.1.01.2.0
libmambapy1.1.01.1.01.2.0
libmation/an/a1.5.23
libmicrohttpd0.9.770.9.770.9.77
libnetcdf4.8.14.8.14.8.1
libnghttp21.51.01.51.01.51.0
libnsl2.0.02.0.02.0.0
libogg1.3.41.3.41.3.4
libopenblasn/an/a0.3.23
libopencvn/a4.5.54.6.0
libopus1.3.11.3.11.3.1
libosqp0.6.30.6.30.6.3
libpciaccess0.170.170.17
libpng1.6.391.6.391.6.39
libpq14.514.515.1
libprotobuf3.19.63.19.63.21.12
libqdldl0.1.50.1.50.1.5
librsvg2.54.42.54.42.54.4
libsanitizer10.4.010.4.010.4.0
libsndfilen/an/a1.2.0
libsodium1.0.181.0.181.0.18
libsolv0.7.240.7.240.7.24
libspatialindex1.9.31.9.31.9.3
libsqlite3.42.03.42.03.42.0
libssh21.10.01.10.01.10.0
libstdcxx-devel_linux-6410.4.010.4.010.4.0
libstdcxx-ng13.1.013.1.013.1.0
libsystemd0n/an/a252
libtasn14.19.04.19.04.19.0
libtheora1.1.11.1.11.1.1
libthrift0.15.00.15.00.16.0
libtiff4.4.04.4.04.4.0
libtool2.4.72.4.72.4.7
libudev1n/an/a253
libunistring0.9.100.9.100.9.10
libunwind1.6.21.6.21.6.2
libutf8proc2.8.02.8.02.8.0
libuuid2.38.12.38.12.38.1
libuv1.43.01.43.01.44.2
libva2.18.02.18.02.18.0
libvorbis1.3.71.3.71.3.7
libvpx1.11.01.11.01.11.0
libwebp1.2.41.2.41.2.4
libwebp-base1.2.41.2.41.2.4
libxcb1.131.131.13
libxgboost1.7.41.7.41.7.4
libxkbcommon1.0.31.0.31.5.0
libxml22.9.142.9.142.10.3
libxslt1.1.331.1.331.1.37
libzip1.9.21.9.21.9.2
libzlib1.2.131.2.131.2.13
libzopfli1.0.31.0.31.0.3
line_profiler4.0.34.0.34.0.3
linkify-it-pyn/an/a2.0.0
llvmlite0.40.10.40.10.40.1
llvm-openmp16.0.616.0.616.0.6
llvm-spirv-15n/an/a15.0.0
locket1.0.01.0.01.0.0
logmuse0.2.60.2.60.2.6
loguru0.7.00.7.00.7.0
lxml4.8.04.8.04.9.2
lz44.3.24.3.24.3.2
lz4-c1.9.31.9.31.9.4
lzo2.102.102.10
magma2.5.42.5.42.5.4
mako1.2.41.2.41.2.4
mamba1.1.01.1.01.2.0
markdown3.4.33.4.33.4.3
markdown-it-py3.0.03.0.03.0.0
markupsafe2.1.32.1.32.1.3
marshmallow3.19.03.19.03.19.0
matplotlib3.7.23.7.23.7.2
matplotlib-base3.7.23.7.23.7.2
matplotlib-inline0.1.60.1.60.1.6
matplotlib-venn0.11.9n/an/a
mayavi4.8.1n/an/a
mccabe0.6.10.7.00.7.0
mdit-py-pluginsn/an/a0.4.0
mdurl0.1.00.1.00.1.0
mesalib23.0.023.0.023.0.0
meshio5.3.45.3.45.3.4
metis5.1.05.1.05.1.0
mffpy0.8.00.8.00.8.0
mistune3.0.03.0.03.0.0
mizani0.9.20.9.20.9.2
mkl2022.1.02022.1.02022.1.0
mkl-devel2022.1.02022.1.02022.1.0
mkl-include2022.1.02022.1.02022.1.0
mne1.2.31.2.31.4.2
mne-base1.2.31.2.31.4.2
mne-qt-browser0.5.10.5.10.5.1
mock5.0.25.0.25.0.2
modelcifn/an/a0.9
more-itertools9.1.09.1.09.1.0
mpc1.3.11.3.11.3.1
mpfr4.2.04.2.04.2.0
mpg123n/an/a1.31.3
mpmath1.3.01.3.01.3.0
msgpack-python1.0.51.0.51.0.5
multidict6.0.46.0.46.0.4
multipledispatch0.6.00.6.00.6.0
munkres1.1.41.1.41.1.4
mypy_extensions1.0.01.0.01.0.0
mysql-common8.0.328.0.328.0.32
mysql-connector-python8.0.298.0.298.0.31
mysql-libs8.0.328.0.328.0.32
natsort8.4.08.4.08.4.0
nbclassic1.0.01.0.01.0.0
nbclient0.8.00.8.00.8.0
nbconvert7.6.07.6.07.6.0
nbconvert-core7.6.07.6.07.6.0
nbconvert-pandoc7.6.07.6.07.6.0
nbformat5.9.05.9.05.9.0
nccl2.18.3.12.18.3.12.18.3.1
ncurses6.46.46.4
nest-asyncio1.5.61.5.61.5.6
netcdf41.6.21.6.01.6.2
nettle3.8.13.8.13.8.1
networkx3.13.13.1
nibabel5.1.05.1.05.1.0
nilearn0.10.10.10.10.10.1
ninja1.11.11.11.11.11.1
nlohmann_jsonn/an/a3.11.2
nltkn/a3.8.13.8.1
nodejs17.8.017.8.018.12.1
nose1.3.71.3.71.3.7
notebook6.5.46.5.46.5.4
notebook-shim0.2.30.2.30.2.3
npx0.1.10.1.10.1.1
nspr4.354.354.35
nss3.893.893.89
numba0.57.10.57.10.57.1
numexpr2.7.32.7.32.7.3
numpy1.24.41.24.41.24.4
numpydoc1.5.01.5.01.5.0
oauth2client4.1.34.1.34.1.3
oauthlib3.2.23.2.23.2.2
ocl-icd2.3.12.3.12.3.1
odo0.5.10.5.10.5.1
olefile0.460.460.46
opencensus0.11.20.11.20.11.2
opencensus-context0.1.30.1.30.1.3
opencvn/a4.5.54.6.0
openh2642.3.12.3.12.3.1
openjpeg2.5.02.5.02.5.0
openmeegn/an/a2.5.6
openpyxl3.1.23.1.23.1.2
openssl1.1.1u1.1.1w1.1.1w
opt_einsum3.3.03.3.03.3.0
orc1.7.11.7.11.8.2
ordered-set4.1.04.1.04.1.0
orjson3.9.23.9.23.9.2
osqp0.6.30.6.30.6.3
overrides7.3.17.3.17.3.1
p11-kit0.24.10.24.10.24.1
packaging23.123.123.1
palettable3.3.33.3.33.3.3
pandas2.0.32.0.32.0.3
pandoc3.1.33.1.33.1.3
pandocfilters1.5.01.5.01.5.0
panel0.14.40.14.41.2.0
pango1.50.71.50.71.50.14
param1.13.01.13.01.13.0
paramiko3.2.03.2.03.2.0
parasail-python1.3.41.3.41.3.4
parquet-cpp1.5.11.5.11.5.1
parso0.7.00.8.30.8.3
partd1.4.01.4.01.4.0
pastel0.2.10.2.10.2.1
patchelf0.17.20.17.20.17.2
path16.7.116.7.116.7.1
pathlib22.3.7.post12.3.7.post12.3.7.post1
path.pyn/a12.5.0n/a
pathspec0.11.10.11.10.11.1
pathtools0.1.20.1.20.1.2
patsy0.5.30.5.30.5.3
pbr5.11.15.11.15.11.1
pbzip21.1.131.1.131.1.13
pcre8.458.45n/a
pcre210.4010.4010.40
pep81.7.11.7.11.7.1
peppy0.35.60.35.60.35.6
pexpect4.8.04.8.04.8.0
pickleshare0.7.50.7.50.7.5
pigz2.62.62.6
pillow9.2.09.2.09.2.0
pip23.1.223.1.223.1.2
pixman0.40.00.40.00.40.0
pkg-config0.29.20.29.20.29.2
pkgutil-resolve-name1.3.101.3.101.3.10
plac1.3.51.3.51.3.5
platformdirs3.8.13.8.13.8.1
plotly5.15.05.15.05.15.0
plotly-orca3.4.2n/an/a
plotnine0.12.10.12.10.12.1
pluggy1.2.01.2.01.2.0
plumbum1.8.21.8.21.8.2
ply3.113.113.11
pmw2.0.12.0.1n/a
pocl3.03.04.0
pocl-coren/an/a4.0
pocl-cpun/an/a4.0
pocl-cpu-minimaln/an/a4.0
pocl-cudan/an/a4.0
pooch1.7.01.7.01.7.0
poyo0.5.00.5.00.5.0
prettytable3.7.03.7.03.7.0
proj9.0.19.0.09.1.0
prometheus_client0.17.00.17.00.17.0
prompt-toolkit3.0.393.0.393.0.39
prompt_toolkit3.0.393.0.393.0.39
protobuf3.19.63.19.64.21.12
psutil5.9.55.9.55.9.5
pthread-stubs0.40.40.4
ptyprocess0.7.00.7.00.7.0
pugixml1.11.41.11.41.11.4
pulp2.7.02.7.02.7.0
pulseaudion/an/a16.1
pure_eval0.2.20.2.20.2.2
py1.11.01.11.0n/a
py2bit0.3.00.3.0n/a
pyarrow6.0.16.0.110.0.1
pyasn10.4.80.4.80.4.8
pyasn1-modules0.2.70.2.70.2.7
pybedtools0.9.00.9.0n/a
pybind11-abi444
pycairo1.24.01.24.01.24.0
pycodestyle2.6.02.10.02.11.1
pycosat0.6.40.6.40.6.4
pycparser2.212.212.21
pycrypton/a2.6.12.6.1
pyct0.4.60.4.60.4.6
pyct-core0.4.60.4.60.4.6
pycurl7.45.17.45.17.45.1
pydicom2.4.12.4.1n/a
pydocstyle6.3.06.3.06.3.0
pydot1.4.21.4.21.4.2
pyerfa2.0.0.32.0.0.32.0.0.3
pyface8.0.08.0.0n/a
pyfaidx0.7.2.10.7.2.10.7.2.1
pyfasta0.5.20.5.20.5.2
pyflakes2.2.03.0.13.1.0
pygletn/a1.5.271.5.27
pygments2.15.12.15.12.15.1
pygpu0.7.60.7.60.7.6
pygraphviz1.91.91.10
pyhamcrestn/a2.0.42.0.4
pyjwt2.7.02.7.02.7.0
pylev1.4.01.4.01.4.0
pylint2.17.42.17.42.17.4
pylint-venvn/a3.0.23.0.2
pyls-black0.4.6n/an/a
pyls-spyder0.3.20.4.00.4.0
pymatreader0.0.320.0.320.0.32
pymongon/a4.4.04.4.0
pynacl1.5.01.5.01.5.0
pynndescent0.5.100.5.100.5.10
pynvim0.4.30.4.3n/a
pyodbcn/a4.0.394.0.39
pyopencl2023.1.12023.1.12023.1.1
py-opencvn/a4.5.54.6.0
pyopengl3.1.63.1.63.1.6
pyopenssl23.2.023.2.023.2.0
pyparsing3.0.93.0.93.0.9
pyproj3.4.03.3.13.4.1
pyqt5.12.35.12.35.15.7
pyqt5-sip4.19.184.19.1812.11.0
pyqtchart5.125.12n/a
pyqtgraph0.12.40.12.40.13.3
pyqt-impl5.12.35.12.3n/a
pyqtwebengine5.12.15.12.15.15.7
pyrsistent0.19.30.19.30.19.3
pysam0.21.00.21.00.21.0
pysftp0.2.90.2.90.2.9
pyshp2.3.12.3.12.3.1
pysimdjson5.0.25.0.25.0.2
pysmin/a0.3.40.3.4
pysocks1.7.11.7.11.7.1
py-spyn/a0.3.140.3.14
pystan3.6.03.6.0n/a
pytabix0.10.1n/a
pytables3.7.03.7.03.7.0
pytest7.4.07.4.07.4.0
pytest-arraydiffn/a0.5.00.5.0
pytest-doctestplusn/a0.13.00.13.0
pytest-openfilesn/a0.5.00.5.0
pytest-remotedatan/a0.4.00.4.0
pytest-runnern/a6.0.06.0.0
python3.8.153.9.153.10.8
python_abi3.83.93.10
python-dateutil2.8.22.8.22.8.2
python-fastjsonschema2.17.12.17.12.17.1
python-flatbuffers2.02.023.5.26
python-graphviz0.20.1n/an/a
python-hostlistn/a1.211.21
python-irodsclient1.1.81.1.81.1.8
python-isal1.1.01.1.01.1.0
python-json-logger2.0.72.0.72.0.7
python-jsonrpc-server0.4.0n/an/a
python-language-server0.36.2n/an/a
python-levenshteinn/a0.21.10.21.1
python-lmdbn/a1.4.11.4.1
python-lsp-blackn/a1.3.01.3.0
python-lsp-jsonrpcn/a1.0.01.1.2
python-lsp-servern/a1.7.41.9.0
python-lsp-server-basen/a1.7.41.9.0
python-picard0.70.70.7
python-slugify8.0.18.0.18.0.1
python-tzdata2023.32023.32023.3
pytoolconfig1.2.51.2.51.2.5
pytools2023.12023.12023.1
pytorch1.11.01.11.01.12.1
pytz2023.32023.32023.3
pytz-deprecation-shim0.1.0.post00.1.0.post00.1.0.post0
pyu2f0.1.50.1.50.1.5
pyvcf0.6.80.6.8n/a
pyvcf31.0.31.0.31.0.3
pyvista0.40.00.40.00.40.0
pyvistaqt0.11.00.11.00.11.0
pyviz_comms2.3.22.3.22.3.2
pywavelets1.4.11.4.11.4.1
pywin32-on-windows0.1.00.1.00.1.0
pyxdg0.280.280.28
py-xgboostn/a1.7.41.7.4
pyyaml6.06.06.0
pyzmq25.1.025.1.025.1.0
qdarkstyle3.0.23.13.2.3
qdldl-python0.1.5.post20.1.5.post20.1.5.post2
qstylizer0.2.20.2.20.2.2
qt5.12.95.12.9n/a
qtawesome1.2.31.2.31.2.3
qtconsole5.4.35.4.35.5.2
qtconsole-base5.4.35.4.35.5.2
qt-mainn/an/a5.15.6
qtpy2.3.12.3.12.4.1
qt-webenginen/an/a5.15.4
rapidfuzzn/a2.15.12.15.1
ratelimiter1.2.01.2.0n/a
ray1.12.01.12.02.2.0
re22021.11.012021.11.012022.06.01
readline8.28.28.2
redis-py4.5.54.5.54.5.5
referencing0.29.10.29.10.29.1
regex2023.6.32023.6.32023.6.3
reportlab4.0.44.0.44.0.4
reproc14.2.414.2.414.2.4
reproc-cpp14.2.414.2.414.2.4
requests2.31.02.31.02.31.0
requests-oauthlib1.3.11.3.11.3.1
reretry0.11.80.11.80.11.8
retry0.9.20.9.2n/a
retrying1.3.31.3.31.3.3
rfc3339-validator0.1.40.1.40.1.4
rfc3986-validator0.1.10.1.10.1.1
rich13.4.213.4.213.4.2
rlpycairo0.2.00.2.00.2.0
rope1.9.01.9.01.9.0
rpds-py0.8.80.8.80.8.8
rpy23.5.133.5.133.5.13
rsa4.94.94.9
rtree1.0.11.0.11.0.1
ruamel.yaml0.17.320.17.320.17.32
ruamel.yaml.clib0.2.70.2.70.2.7
s2n1.3.01.3.01.3.31
s3transfer0.6.10.6.10.6.1
scikit-image0.21.00.21.00.21.0
scikit-learn1.3.01.3.01.3.0
scipy1.10.11.11.11.11.1
scooby0.7.20.7.20.7.2
scs3.2.33.2.33.2.3
seaborn0.12.20.12.20.12.2
seaborn-base0.12.20.12.20.12.2
secretstorage3.3.33.3.33.3.3
send2trash1.8.21.8.21.8.2
service_identity18.1.018.1.018.1.0
setuptools68.0.068.0.068.0.0
setuptools-scmn/an/a7.1.0
sh2.0.42.0.42.0.4
shapely2.0.12.0.12.0.1
simplegeneric0.8.10.8.10.8.1
simplejson3.19.13.19.13.19.1
sinfo0.3.10.3.10.3.1
singledispatch3.6.13.6.13.6.1
sip6.7.96.7.96.7.9
six1.16.01.16.01.16.0
slacker0.14.00.14.00.14.0
sleef3.5.13.5.13.5.1
smart_open6.3.06.3.06.3.0
smmap3.0.53.0.53.0.5
snakemake7.30.17.30.17.30.1
snakemake-minimal7.30.17.30.17.30.1
snappy1.1.101.1.101.1.10
sniffio1.3.01.3.01.3.0
snowballstemmer2.2.02.2.02.2.0
sortedcollections2.1.02.1.02.1.0
sortedcontainers2.4.02.4.02.4.0
soupsieve2.3.2.post12.3.2.post12.3.2.post1
sphinx7.0.17.0.17.0.1
sphinxcontrib-applehelp1.0.41.0.41.0.4
sphinxcontrib-devhelp1.0.21.0.21.0.2
sphinxcontrib-htmlhelp2.0.12.0.12.0.1
sphinxcontrib-jsmath1.0.11.0.11.0.1
sphinxcontrib-qthelp1.0.31.0.31.0.3
sphinxcontrib-serializinghtml1.1.51.1.51.1.5
spyder5.0.55.4.35.5.0
spyder-kernels2.0.52.4.42.5.2
sqlalchemy2.0.182.0.182.0.18
sqlite3.42.03.42.03.42.0
stack_data0.6.20.6.20.6.2
statsmodels0.14.00.14.00.14.0
stdlib-list0.8.00.8.00.8.0
stone3.3.13.3.13.3.1
stopit1.1.21.1.21.1.2
suitesparse5.10.15.10.15.10.1
svgutils0.3.40.3.40.3.4
svt-av11.3.01.3.01.4.1
sympyn/a1.121.12
sysroot_linux-642.282.282.12
tabulate0.9.00.9.00.9.0
tbb2021.7.02021.7.02021.9.0
tbb-devel2021.7.02021.7.02021.9.0
tblib1.7.01.7.01.7.0
tenacity8.2.28.2.28.2.2
tensorboard2.6.02.6.02.11.2
tensorboard-data-server0.6.10.6.10.6.1
tensorboard-plugin-wit1.8.11.8.11.8.1
tensorboardx2.5.12.5.12.5
tensorflow2.7.02.7.02.11.0
tensorflow-base2.7.02.7.02.11.0
tensorflow-estimator2.7.02.7.02.11.0
tensorflow-probability0.15.00.15.00.19.0
termcolor2.3.02.3.02.3.0
terminado0.17.10.17.10.17.1
terminaltables3.1.103.1.103.1.10
testpath0.6.00.6.00.6.0
textdistance4.5.04.5.04.5.0
text-unidecode1.31.31.3
theano1.0.51.0.51.0.5
threadpoolctl3.1.03.1.03.1.0
three-merge0.1.10.1.10.1.1
thrift-compiler0.15.00.15.00.16.0
thrift-cpp0.13.00.13.00.16.0
throttler1.2.11.2.11.2.1
tifffile2022.10.102022.10.102022.10.10
tinycss21.2.11.2.11.2.1
tk8.6.128.6.128.6.12
toml0.10.20.10.20.10.2
tomli2.0.12.0.12.0.1
tomlkit0.11.80.11.80.11.8
toolz0.12.00.12.00.12.0
toposort1.101.101.10
torchvision0.12.00.12.00.13.0
tornado6.3.26.3.26.3.2
tqdm4.65.04.65.04.65.0
traitlets5.9.05.9.05.9.0
traits6.4.16.4.1n/a
traitsui8.0.08.0.0n/a
twobitreader3.1.73.1.73.1.7
typed-ast1.5.51.5.5n/a
typing3.10.0.03.10.0.03.10.0.0
typing-extensions4.7.14.7.14.7.1
typing_extensions4.7.14.7.14.7.1
typing_utils0.1.00.1.00.1.0
tzdata2023c2023c2023c
tzlocal5.0.15.0.15.0.1
ubiquerg0.6.20.6.20.6.2
uc-micro-pyn/an/a1.0.1
ujson5.7.05.7.05.7.0
umap-learn0.5.30.5.30.5.3
unicodecsv0.14.10.14.10.14.1
unicodedata215.0.015.0.015.0.0
unidecode1.3.61.3.61.3.6
unixodbc2.3.102.3.102.3.10
uritemplate4.1.14.1.14.1.1
urllib31.26.151.26.151.26.15
utfcpp3.2.33.2.33.2.3
util-linux2.38.12.38.1n/a
veracitools0.1.30.1.30.1.3
virtualenvn/a20.23.120.23.1
vtk9.1.09.1.09.2.5
watchdog3.0.03.0.03.0.0
wcwidth0.2.60.2.60.2.6
webargs8.2.08.2.08.2.0
webencodings0.5.10.5.10.5.1
websocket-client1.6.11.6.11.6.1
werkzeug2.3.62.3.62.3.6
whatthepatchn/a1.0.51.0.5
wheel0.40.00.40.00.40.0
whichcraft0.6.10.6.10.6.1
widgetsnbextension3.6.44.0.83.6.4
wrapt1.15.01.15.01.15.0
wslinkn/an/a1.11.1
wurlitzer3.0.33.0.33.0.3
x2641!164.30951!164.30951!164.3095
x2653.53.53.5
xarray2022.12.02023.6.02023.6.0
xarray-einstats0.5.10.5.10.5.1
xcb-utiln/an/a0.4.0
xcb-util-imagen/an/a0.4.0
xcb-util-keysymsn/an/a0.4.0
xcb-util-renderutiln/an/a0.3.9
xcb-util-wmn/an/a0.4.1
xkeyboard-confign/an/a2.38
xlrd2.0.12.0.12.0.1
xlsxwriter3.1.23.1.23.1.2
xlwt1.3.01.3.01.3.0
xmlrunner1.7.71.7.71.7.7
xmltodict0.13.00.13.00.13.0
xopen1.7.01.7.01.7.0
xorg-damageproto1.2.11.2.11.2.1
xorg-fixesproto5.05.05.0
xorg-glproto1.4.171.4.171.4.17
xorg-inputproto2.3.22.3.22.3.2
xorg-kbproto1.0.71.0.71.0.7
xorg-libice1.0.101.0.101.0.10
xorg-libsm1.2.31.2.31.2.3
xorg-libx111.8.41.8.41.8.4
xorg-libxau1.0.111.0.111.0.11
xorg-libxdamage1.1.51.1.51.1.5
xorg-libxdmcp1.1.31.1.31.1.3
xorg-libxext1.3.41.3.41.3.4
xorg-libxfixes5.0.35.0.35.0.3
xorg-libxi1.7.101.7.101.7.10
xorg-libxrandr1.5.21.5.21.5.2
xorg-libxrender0.9.100.9.100.9.10
xorg-libxt1.3.01.3.01.3.0
xorg-randrproto1.5.01.5.01.5.0
xorg-renderproto0.11.10.11.10.11.1
xorg-util-macros1.19.31.19.31.19.3
xorg-xextproto7.3.07.3.07.3.0
xorg-xf86vidmodeproto2.3.12.3.12.3.1
xorg-xproto7.0.317.0.317.0.31
xyzservicesn/an/a2023.5.0
xz5.2.65.2.65.2.6
yaml0.2.50.2.50.2.5
yaml-cpp0.7.00.7.00.7.0
yapf0.33.00.33.00.33.0
yarl1.9.21.9.21.9.2
yte1.5.11.5.11.5.1
zeromq4.3.44.3.44.3.4
zfp1.0.01.0.01.0.0
zict3.0.03.0.03.0.0
zipp3.15.03.15.03.15.0
zlib1.2.131.2.131.2.13
zlib-ng2.0.72.0.72.0.7
zope.event5.05.05.0
zope.interface6.06.06.0
zstandard0.19.00.19.00.19.0
zstd1.5.21.5.21.5.2
Multiprocessing
top

Some common issues with using multiprocessing on biowulf were already pointed out in the common pitfalls section. Beyond those multiprocessing can be made more robust by setting workers up to ignore the SIGINT signal so that a multiprocessing script can be terminated cleanly with scancel or Ctrl-C. The following script also makes sure to correctly detect the number of available CPUs in batch jobs:

#! /usr/bin/env python

from multiprocessing import Pool
import signal
import os

def init_worker():
    """
    This is necessary to be able to interrupt the
    script with CTRL-C (or scancel for that matter).
    It makes sure that the workers ignore SIGINT so
    that any SIGINT sent goes to the master process
    """
    signal.signal(signal.SIGINT, signal.SIG_IGN)

def worker(i):
    return i*i

if __name__ == '__main__':
    # the the number of allocated cpus (or 2 if not run as a slurm job)
    nproc = int(os.environ.get("SLURM_CPUS_PER_TASK", "2"))
    print("Running on %d CPUs" % nproc)
    # set up 50 tasks
    tasks = range(0, 100)
    p = Pool(nproc, init_worker)
    try:
        # run the processing pool
        results = p.map(worker, tasks)
    except (KeyboardInterrupt, SystemExit):
        p.terminate()
        p.join()
        sys.exit(1)
    else:
        p.close()
        p.join()
        # result summary
        print("\n".join("%d * %d = %d" % (a, a, b) for a, b in zip(tasks, results)))

It is also important to benchmark scaling of your code. Many algorithms won't scale well beyond a certain number of parallel multiprocessing workers which can lead to very inefficient resource usage (e.g. allocating 56 CPUs when parallel efficiency drops below 50% at 24 CPUs).

Using rpy2
top

In order to use the rpy2 package on biowulf it is necessary to load a separate rpy2 module which allows the package to find the correct R installation.

[user@cn3444 ~]$ module load python/3.7 rpy2
Python 3.7.5 (default, Oct 25 2019, 15:51:11)
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import rpy2                                                       
>>> import rpy2.robjects as robjects                                  
>>> pi = robjects.r['pi']                                             
>>> pi[0]                                                             
3.141592653589793                                                     
Using ray
top

Ray is a framework for distributed computing. It accomplishes this by

  1. Providing simple primitives for building and running distributed applications.
  2. Enabling end users to parallelize single machine code, with little to zero code changes.
  3. Including a large ecosystem of applications, libraries, and tools on top of the core Ray to enable complex applications.
A gentle introduction to Ray

Ray can be used to parallelize work within a single cluster in which case it is run as a standard single node job. To run a ray cluster on biowulf and parallelize across several nodes, multinode jobs with one task per node are used. The tasks don't have to be exclusive but for real world use they often will be. If you allocate the nodes exclusively make sure to also allocate all resources available on the node.

An example script you can use to configure your own ray workloads is available on GitHub.

[user@biowulf ~]$ git clone https://github.com/NIH-HPC/biowulf_ray.git
[user@biowulf ~]$ sbatch submit-ray

Note: ray, like many other tools, will by default try to use all resources on a node even if they were not all allocated to ray. The sample script above specifically specifies resources to the workers and the cluster head process. Similarly, if you use `ray.init` in, for example, a single node job make sure to specify the number of cpus, gpus, and the memory

Connecting to spyder kernels on compute nodes
top

Spyder is a Python IDE focused on scientific python. It has the ability to connect to a remote spyder kernel running on a compute node using ssh tunnels. Currently the setup is not the most convenient but this may improve in the future.

Create an sinteractive session with the resources you need and 5 tunnels

[user@biowulf ~]$ sinteractive -TTTTT --mem=12g --cpus-per-task=2
salloc: Pending job allocation 9569310
salloc: job 9569310 queued and waiting for resources
salloc: job 9569310 has been allocated resources
salloc: Granted job allocation 9569310
salloc: Waiting for resource configuration
salloc: Nodes cn4270 are ready for job
srun: error: x11: no local DISPLAY defined, skipping
error: unable to open file /tmp/slurm-spank-x11.9569310.0
slurmstepd: error: x11: unable to read DISPLAY value

Created 5 generic SSH tunnel(s) from this compute node to
biowulf for your use at port numbers defined
in the $PORTn ($PORT1, ...) environment variables.


Please create a SSH tunnel from your workstation to these ports on biowulf.
On Linux/MacOS, open a terminal and run:

    ssh  -L 41699:localhost:41699 -L 40387:localhost:40387 -L 42289:localhost:42289 [...snip...]

For Windows instructions, see https://hpc.nih.gov/docs/tunneling
[user@cne444]$

Follow our tunneling instructions to create the tunnels from your local to biowulf. Then start a spyder kernel in the sinteractive session. In the example below we are using one of the general purpose python modules but you can also install the spyder kernel module into your own environment

[user@cn4270]$ module load python/3.10
[user@cn4270]$ spyder_kernel start
starting kernel with python '/usr/local/Anaconda/envs/py3.10/bin/python' - please hold on
----------------------------------------------------
spyder kernel started successfully
----------------------------------------------------
Kernel connection file copied to '~/kernel-652313.json' for convenience
You can use this file via hpcdrive to establish a connection to this kernel
using a remote kernel with host biowulf.nih.gov
Delete the kernel file when you are done
[user@cn4270]$ spyder_kernel status
spyder kernel state file exits
spyder kernel is running

The spyder_kernel helper copies a connection file to your home directory. In the example above ~/kernel-652313.json. You can use this file to connect with your locally installed Spyder to the running kernel by either copying the file to your system or mounting your home directory as a hpcdrive. In the example below I am using the connection file directly via hpcdrive:

Since we are forwarding all the required ports it isn't necessary to check the 'remote connection' box. Alternatively you can skip setting up the local tunnels with the command generated by sinteractive and instead provide your login credentials in the remote kernel section of the dialog. Once the connection has been established verify that you are on a compute node

Stop the kernel when you are done by running exit() in the spyder session or exit from the sinteractive session with

[user@cn4270]$ spyder_kernel stop
spyder kernel has been stopped
Documentation
top