antiSMASH allows the rapid genome-wide identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genomes. It integrates and cross-links with a large number of in silico secondary metabolite analysis tools that have been published earlier.
Allocate an interactive session and run the program.
Sample session (user input in bold):
[user@biowulf]$ sinteractive salloc.exe: Pending job allocation 46116226 salloc.exe: job 46116226 queued and waiting for resources salloc.exe: job 46116226 has been allocated resources salloc.exe: Granted job allocation 46116226 salloc.exe: Waiting for resource configuration salloc.exe: Nodes cn3144 are ready for job [user@cn3144 ~]$ module load antismash [user@cn3144 ~]$ antismash --cpus 2 $ANTISMASH_HOME/test/Streptomyces_coelicolor.gbk [user@cn3144 ~]$ exit salloc.exe: Relinquishing job allocation 46116226 [user@biowulf ~]$
Create a batch input file (e.g. antismash.sh). For example:
#!/bin/bash set -e module load antismash antismash --cpus $SLURM_CPUS_PER_TASK $ANTISMASH_HOME/test/Streptomyces_coelicolor.gbk
Submit this job using the Slurm sbatch command.
sbatch [--cpus-per-task=#] [--mem=#] antismash.sh
Create a swarmfile (e.g. antismash.swarm). For example:
antismash --cpus $SLURM_CPUS_PER_TASK sample1.gbk antismash --cpus $SLURM_CPUS_PER_TASK sample2.gbk antismash --cpus $SLURM_CPUS_PER_TASK sample3.gbk antismash --cpus $SLURM_CPUS_PER_TASK sample4.gbk
Submit this job using the swarm command.
swarm -f antismash.swarm [-g #] [-t #] --module antismashwhere
-g # | Number of Gigabytes of memory required for each process (1 line in the swarm command file) |
-t # | Number of threads/CPUs required for each process (1 line in the swarm command file). |
--module antimash | Loads the antiSMASH module for each subjob in the swarm |