BindCraft is an open-source and automated pipeline for de novo protein binder design pipeline using AlphaFold2 backpropagation, MPNN, and PyRosetta.
Allocate an interactive session and run the program. Sample session:
[user@biowulf]$ interactive --gres=gpu:v100x:1,lscratch:10 --mem=24g -c16 [user@cn0816 ~]$ module load bindcraft [+] Loading cuDNN/8.1.0.77/CUDA-11.2.2 libraries... [+] Loading CUDA Toolkit 11.2.2 ... [+] Loading PyRosetta 387.py3.10 on cn0816 [+] Loading bindcraft 1.5.0 ... [user@cn0816 ~]$ cp -r $BC_SRC . [user@cn0816 ~]$ cd BindCraft-1.5.0 [user@cn0816 ~]$ python -u ./bindcraft.py -h vailable GPUs: Tesla V100-SXM2-32GB1: gpu usage: bindcraft.py [-h] --settings SETTINGS [--filters FILTERS] [--advanced ADVANCED] Script to run BindCraft binder design. options: -h, --help show this help message and exit --settings SETTINGS, -s SETTINGS Path to the basic settings.json file. Required. --filters FILTERS, -f FILTERS Path to the filters.json file used to filter design. If not provided, default will be used. --advanced ADVANCED, -a ADVANCED Path to the advanced.json file with additional design settings. If not provided, default will be used. [user@cn0816 ~]$ ./bindcraft.py \ --settings './settings_target/PDL1.json' \ --filters './settings_filters/default_filters.json' \ --advanced './settings_advanced/default_4stage_multimer.json' Available GPUs: Tesla V100-SXM2-32GB1: gpu ┌──────────────────────────────────────────────────────────────────────────────┐ │ PyRosetta-4 │ │ Created in JHU by Sergey Lyskov and PyRosetta Team │ │ (C) Copyright Rosetta Commons Member Institutions │ │ │ │ NOTE: USE OF PyRosetta FOR COMMERCIAL PURPOSES REQUIRE PURCHASE OF A LICENSE │ │ See LICENSE.PyRosetta.md or email license@uw.edu for details │ └──────────────────────────────────────────────────────────────────────────────┘ PyRosetta-4 2024 [Rosetta PyRosetta4.Release.python310.linux 2024.39+release.59628fbc5bc09f1221e1642f1f8d157ce49b1410 2024-09-23T07:49:48] retrieved from: http://www.pyrosetta.org Running binder design for target PDL1 Design settings used: default_4stage_multimer Filtering designs based on default_filters Starting trajectory: PDL1_l86_s981562 Stage 1: Test Logits 1 models [0] recycles 1 hard 0 soft 0.02 temp 1 loss 11.80 helix 1.90 pae 0.81 i_pae 0.80 con 4.63 i_con 4.00 plddt 0.30 ptm 0.55 i_ptm 0.11 rg 10.75 2 models [1] recycles 1 hard 0 soft 0.04 temp 1 loss 8.78 helix 1.08 pae 0.74 i_pae 0.71 con 4.38 i_con 3.74 plddt 0.40 ptm 0.56 i_ptm 0.13 rg 1.70 3 models [3] recycles 1 hard 0 soft 0.05 temp 1 loss 7.98 helix 0.77 pae 0.59 i_pae 0.59 con 3.79 i_con 3.74 plddt 0.47 ptm 0.59 i_ptm 0.21 rg 0.97 4 models [0] recycles 1 hard 0 soft 0.07 temp 1 loss 7.93 helix 0.71 pae 0.56 i_pae 0.61 con 3.47 i_con 3.91 plddt 0.52 ptm 0.57 i_ptm 0.17 rg 1.30 5 models [3] recycles 1 hard 0 soft 0.09 temp 1 loss 6.29 helix 0.71 pae 0.42 i_pae 0.48 con 2.40 i_con 3.33 plddt 0.72 ptm 0.59 i_ptm 0.23 rg 1.62 6 models [3] recycles 1 hard 0 soft 0.11 temp 1 loss 6.23 helix 0.72 pae 0.42 i_pae 0.49 con 2.20 i_con 3.45 plddt 0.75 ...End the interactive session:
[user@cn0816 ~]$ exit salloc.exe: Relinquishing job allocation 46116226 [user@biowulf ~]$