CytoSig is a data-driven infrastructure hosted by the National Cancer Institute. CytoSig includes both a database of target genes modulated by cytokines and a predictive model of cytokine signaling activity and regulatory cascade from transcriptomic profiles.
Allocate an interactive session and run the program. Sample session:
[user@biowulf]$ sinteractive --mem=8g -c8 --gres=lscratch:10 [user@cig 3335 ~]$ module load CytoSig [+] Loading singularity 3.10.5 on cn3335 [+] Loading CytoSig 0.1 [user@cn3335 ~]$ CytoSig_run.py -h Usage: CytoSig_run.py -i <input profiles> -o <output prefix> -r <randomization count, default: 1000> -a <penalty alpha, default: 10000> -e <generate excel report: 0|1, default: 0> -s <use an expanded response signature: 0|1, default: 0>Download the CytoSig repository with test data to the current folder:
[user@cn3335 ~]$ wget https://github.com/data2intelligence/CytoSig/archive/refs/tags/v0.1.tar.gz [user@cn3335 ~]$ tar -zxf v0.1.tar.gz & rm -f v0.1.tar.gz [user@cn3335 ~]$ cd CytoSig-0.1Run the unit test:
[user@cn3335 ~]$ python3-cs -m unittest tests.prediction Output: Use permutation test with nrand = 1000 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% Use permutation test with nrand = 1000 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% . ---------------------------------------------------------------------- Ran 1 test in 3.095s OKRun SitoSig on test data:
[user@cn3335 ~]$ CytoSig_run.py -i CytoSig-0.1/tests/GSE147507.diff.gz -o output Use permutation test with nrand = 1000 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%