NeST-VNN: A visible neural network model for drug response prediction.
NeST-VNN is an interpretable neural network-based model that predicts cell response to a drug. This framework integrates information across multiple levels of cancer cell biology to understand drug response, and can serve to identify and explain biomarkers for clinical application.
Reference:
- Park, S., Silva, E., Singhal, A. et al.,
A deep learning model of tumor cell architecture elucidates response and resistance to CDK4/6 inhibitors.
Nat Cancer (2024). https://doi.org/10.1038/s43018-024-00740-1 - Zhao, Singhal, et al.,
Cancer Mutations Converge on a Collection of Protein Assemblies to Predict Resistance to Replication Stress.
Cancer Discov 1 March 2024; 14 (3): 508–523. https://doi.org/10.1158/2159-8290.CD-23-0641.
Documentation
Important Notes
- Module Name: nest_vnn (see the modules page for more information)
- Unusual environment variables set
- NEST_VNN_HOME installation directory
- NEST_VNN_BIN executable directory
- NEST_VNN_SRC source code directory
- NEST_VNN_DATA sample data directory
Interactive job
Interactive jobs should be used for debugging, graphics, or applications that cannot be run as batch jobs.
Allocate an interactive session and run the program. Sample session:
[user@biowulf]$ sinteractive --gres=gpu:v100x:1 [user@cn3335 ~]$ module load nest_vnn [+] Loading singularity 4.0.1 on cn3335 [+] Loading nest_vnn 20240321Available executables:
[user@cn3335 ~]$ ls $NEST_VNN_BIN predict.py train.pyUsage:
[user@cn3335 ~]$ train.py -h ... [user@cn3335 ~]$ predict.py -h ...etc.
Running an example:
[user@cn3335 ~]$ git clone https://github.com/idekerlab/nest_vnn [user@cn3335 ~]$ cd nest_vnn/sample [user@cn3335 ~]$ train.py \ -onto ontology.txt \ -gene2id gene2ind.txt \ -cell2id cell2ind.txt \ -train training_data.txt \ -mutations cell2mutation.txt \ -cn_deletions cell2cndeletion.txt \ -cn_amplifications cell2cnamplification.txt \ -std ./std.txt \ -modeldir ../pretrained_models \ -genotype_hiddens 4 \ -lr 0.0005 \ -cuda 0 \ -epoch 50 \ -batchsize 64 \ -optimize 1 \ -zscore_method "auc" Total number of cell lines = 1244 Total number of genes = 718 There are 1 roots: NEST There are 131 terms There are 1 connected componenets epoch train_corr train_loss true_auc pred_auc val_corr val_loss grad_norm elapsed_time 0 -0.0054 40.2999 0.7483 -0.0546 nan 5.0000 0.0016 11.6349 Model saved at epoch 0 1 -0.0088 40.2999 0.7470 -0.0547 nan 5.0000 0.0021 10.2514 2 0.0271 40.2999 0.7496 -0.0548 nan 5.0000 0.0024 9.8969 3 0.0561 40.2999 0.7473 -0.0548 -0.0107 5.0000 0.0037 9.9493 4 0.0125 40.2999 0.7480 -0.0545 0.1610 5.0000 0.0186 9.9294 5 0.0362 40.2996 0.7476 -0.0494 0.2768 4.9999 0.1245 9.8724 6 0.1281 40.2989 0.7473 -0.0364 0.3046 4.9982 0.2250 9.8917 Model saved at epoch 6 7 0.2081 40.2980 0.7488 -0.0210 0.3411 4.9962 0.3514 10.3478 Model saved at epoch 7 8 0.2822 40.2985 0.7483 -0.0042 0.3336 4.9890 0.5787 10.3481 Model saved at epoch 8 9 0.3698 40.2939 0.7485 0.0130 0.3365 4.9884 0.7771 10.3774 10 0.3969 40.2923 0.7491 0.0305 0.3566 4.9842 1.0461 9.9322 Model saved at epoch 10 ... Model saved at epoch 48 49 0.6431 36.6766 0.7482 0.7417 0.2937 4.4424 186.3786 10.4491 [user@cn3335 ~]$ exit [user@biowulf ~]$