mosaicforecast on Biowulf
MosaicForecast is a machine learning method that leverages read-based phasing and read-level features to accurately detect mosaic SNVs (SNPs, small indels) from NGS data. It builds on existing algorithms to achieve a multifold increase in specificity.
References:
- Dou Y, Kwon M, Rodin RE, Cortés-Ciriano I, Doan R, Luquette LJ, Galor A, Bohrson C, Walsh CA, Park PJ. Accurate detection of mosaic variants in sequencing data without matched controls Nat Biotechnol. 2020 Mar;38(3):314-319. doi: 10.1038/s41587-019-0368-8. Epub 2020 Jan 6. PubMed | Journal
Documentation
- mosaicforecast Main Site:Main Site
Important Notes
- Module Name: mosaicforecast (see the modules page for more information)
- Mosaicforecast was installed as a container. There are 6 functions included in the packages, and please call them directly (without python or Rscript).
Phase.py ReadLevel_Features_extraction.py Prediction.R Train_RFmodel.R PhasingRefine.R MuTect2-PoN_filter.py
- Environment variables set
- $MOSAIC_TESTDATA #include demo and umap_mappability(bigWig file,k=24) from hg19
- $MOSAIC_MODEL #include pre-trained model to predic genotypes, please choose the one match your sequence depths.
Interactive job
Interactive jobs should be used for debugging, graphics, or applications that cannot be run as batch jobs.
Allocate an interactive session and run the program.
Sample session (user input in bold):
[user@biowulf]$ sinteractive --cpus-per-task=2 --mem=2G salloc.exe: Pending job allocation 46116226 salloc.exe: job 46116226 queued and waiting for resources salloc.exe: job 46116226 has been allocated resources salloc.exe: Granted job allocation 46116226 salloc.exe: Waiting for resource configuration salloc.exe: Nodes cn3144 are ready for job [user@cn3144 ~]$ module load mosaicforecast [user@cn3144 ~]$ Phase.py Usage: python Phase.py bam_dir output_dir ref_fasta input_positions(file format:chr pos-1 pos ref alt sample, sep=\t) min_dp_inforSNPs(int) Umap_mappability(bigWig file,k=24) n_threads_parallel sequencing_file_format(bam/cram) Note: 1. Name of bam files should be "sample.bam" under the bam_dir, and there should be corresponding index files. 2. There should be a fai file under the same dir of the fasta file (samtools faidx input.fa). 3. The "min_dp_inforSNPs" is the minimum depth of coverage of trustworthy neaby het SNPs. 4. Bam file is preferred than cram file, as the program would run much more slowly if using cram format. [user@cn3144 ~]$ mkdir mosaicforecast_test && cd mosaicforecast [user@cn3144 ~]$ cp -r ${MOSAIC_TESTDATA:-none}/* . [user@cn3144 ~]$ Phase.py ./demo/ test_out \ /fdb/GATK_resource_bundle/b37-2.8/human_g1k_v37_decoy.fasta \ ./demo/test.input 20 k24.umap.wg.bw 2 bam [user@cn3144 ~]$ exit salloc.exe: Relinquishing job allocation 46116226 [user@biowulf ~]$
Batch job
Most jobs should be run as batch jobs.
Create a batch input file (e.g. mosaicforecast.sh). For example:
#!/bin/bash #SBATCH --cpus-per-task=2 #SBATCH --mem=2G #SBATCH --time=2:00:00 #SBATCH --partition=norm set -e module load mosaicforecast cp -r ${MOSAIC_TESTDATA:-none}/* . cp -r ${MOSAIC_MODEL:-none}/* . Prediction.R demo/test.SNP.features models_trained/250xRFmodel_addRMSK_Refine.rds Refine test.SNP.predictions
Submit the job:
sbatch mosaicforecast.sh
Swarm of Jobs
A swarm of jobs is an easy way to submit a set of independent commands requiring identical resources.
Create a swarmfile (e.g. job.swarm). For example:
Prediction.R demo/test.SNP.features models_trained/250xRFmodel_addRMSK_Refine.rds Refine SNP.predictions Prediction.R demo/test.DEL.features models_trained/deletions_250x.RF.rds Phase DEL.predictions
Submit this job using the swarm command.
swarm -f job.swarm [-g #] --module mosaicforecastwhere
-g # | Number of Gigabytes of memory required for each process (1 line in the swarm command file) |
--module | Loads the module for each subjob in the swarm |