Ohana is a suite of software for analyzing population structure and admixture history using unsupervised learning methods. We construct statistical models to infer individual clustering from which we identify outliers for selection analyses.
Allocate an interactive session and run the program.
Sample session (user input in bold):
[user@biowulf]$ sinteractive salloc.exe: Pending job allocation 46116226 salloc.exe: job 46116226 queued and waiting for resources salloc.exe: job 46116226 has been allocated resources salloc.exe: Granted job allocation 46116226 salloc.exe: Waiting for resource configuration salloc.exe: Nodes cn3144 are ready for job [user@cn3144 ~]$ module load ohana [user@cn3144 ~]$ convert ped2dgm sample.ped g.dgm [user@cn3144 ~]$ qpas g.dgm -k 4 -qo q.matrix -fo f.matrix -mi 5 [user@cn3144 ~]$ python $OHANA_HOME/tools/plot_q.py q.matrix q-bar-chart.pdf [user@cn3144 ~]$ convert cov2nwk f.matrix tree.nwk [user@cn3144 ~]$ convert nwk2svg tree.nwk tree.svg [user@cn3144 ~]$ selscan g.dgm f.matrix c.matrix > lle-ratios.txt [user@cn3144 ~]$ exit salloc.exe: Relinquishing job allocation 46116226 [user@biowulf ~]$