pySCENIC is a lightning-fast python implementation of the SCENIC pipeline (Single-Cell rEgulatory Network Inference and Clustering). It enables biologists to infer transcription factors, gene regulatory networks and cell types from single-cell RNA-seq data.
Allocate an interactive session and run the program. Sample session:
[user@biowulf]$ sinteractive --mem=12g -c8 --grep=lscratch:20
[user@cig 3335 ~]$ module load pySCENIC
[+] Loading singularity 4.0.1 on cn3335
[+] Loading pySCENIC 0.12.1
[user@cn3335 ~]$ pyscenic
usage: pyscenic [-h] {grn,add_cor,ctx,aucell} ...
Single-Cell rEgulatory Network Inference and Clustering (0.12.1)
positional arguments:
{grn,add_cor,ctx,aucell}
sub-command help
grn Derive co-expression modules from expression matrix.
add_cor [Optional] Add Pearson correlations based on TF-gene expression to the network adjacencies output from the GRN
step, and output these to a new adjacencies file. This will normally be done during the "ctx" step.
ctx Find enriched motifs for a gene signature and optionally prune targets from this signature based on cis-regulatory
cues.
aucell Quantify activity of gene signatures across single cells.
options:
-h, --help show this help message and exit
Arguments can be read from file using a @args.txt construct. For more information on loom file format see http://loompy.org . For more
information on gmt file format see https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats .
[user@cig 3335 ~]$ git clone https://github.com/aertslab/pySCENIC
[user@cig 3335 ~]$ ps_python pySCENIC/tests/test_aucell.py
[user@cig 3335 ~]$ ps_python pySCENIC/tests/test_featureseq.py
[user@cig 3335 ~]$ ps_python pySCENIC/tests/test_math.py
[user@cn3335 ~]$ exit
user@biowulf]$