RSeQC package provides a number of useful modules that can comprehensively evaluate high throughput sequence data especially RNA-seq data. Some basic modules quickly inspect sequence quality, nucleotide composition bias, PCR bias and GC bias, while RNA-seq specific modules evaluate sequencing saturation, mapped reads distribution, coverage uniformity, strand specificity, transcript level RNA integrity etc.
Allocate an interactive session and run the program. Sample session:
[user@biowulf]$ sinteractive salloc.exe: Pending job allocation 46116226 salloc.exe: job 46116226 queued and waiting for resources salloc.exe: job 46116226 has been allocated resources salloc.exe: Granted job allocation 46116226 salloc.exe: Waiting for resource configuration salloc.exe: Nodes cn3144 are ready for job [user@cn3144 ~]$ module load rseqc [user@cn3144 ~]$ bam_stat.py -i input.bam $> output [user@cn3144 ~]$ exit salloc.exe: Relinquishing job allocation 46116226 [user@biowulf ~]$
Create a batch input file (e.g. rseqc.sh). For example:
#!/bin/bash set -e module load rseqc bam_stat.py -i input.bam > output
Submit this job using the Slurm sbatch command.
sbatch [--mem=#] rseqc.sh
Create a swarmfile (e.g. rseqc.swarm). For example:
cd dir1;bam_stat.py -i input.bam > output cd dir2;bam_stat.py -i input.bam > output cd dir3;bam_stat.py -i input.bam > output
Submit this job using the swarm command.
swarm -f rseqc.swarm [-g #] --module rseqcwhere
-g # | Number of Gigabytes of memory required for each process (1 line in the swarm command file) |
--module rseqc | Loads the TEMPLATE module for each subjob in the swarm |